Κεφάλαιο 3. Αριθμητική για υπολογιστές
|
|
- Αθορ Κωνσταντίνου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κεφάλαιο 3 Αριθμητική για υπολογιστές
2 Αριθμητική για υπολογιστές Λειτουργίες (πράξεις) σε ακεραίους Πρόσθεση και αφαίρεση Πολλαπλασιασμός και διαίρεση Χειρισμός της υπερχείλισης Πραγματικοί αριθμοί κινητής υποδιαστολής (floating-point) Αναπαράσταση και λειτουργίες (πράξεις) 3.1 Εισαγωγή Κεφάλαιο 3 Αριθμητική για υπολογιστές 2
3 Ακέραια πρόσθεση Παράδειγμα: Πρόσθεση και αφαίρεση Υπερχείλιση (overflow) αν το αποτέλεσμα είναι εκτός του εύρους των τιμών Πρόσθεση ετερόσημων τελεστέων, όχι υπερχείλιση Πρόσθεση θετικών τελεστέων Υπερχείλιση αν το πρόσημο του αποτελέσματος είναι 1 Πρόσθεση αρνητικών τελεστέων Υπερχείλιση αν το πρόσημο του αποτελέσματος είναι 0 Κεφάλαιο 3 Αριθμητική για υπολογιστές 3
4 Ακέραια αφαίρεση Πρόσθεση του αντιθέτου του δεύτερου τελεστέου Παράδειγμα: 7 6 = 7 + ( 6) +7: : : Υπερχείλιση αν το αποτέλεσμα είναι εκτός του εύρους των τιμών Αφαίρεση δύο θετικών ή δύο αρνητικών, όχι υπερχείλιση Αφαίρεση θετικού από αρνητικό τελεστέο Υπερχείλιση αν το πρόσημο του αποτελέσματος είναι 0 Αφαίρεση αρνητικού από θετικό τελεστέο Υπερχείλιση αν το πρόσημο του αποτελέσματος είναι 1 Κεφάλαιο 3 Αριθμητική για υπολογιστές 4
5 Χειρισμός της υπερχείλισης Μερικές γλώσσες (π.χ., C) αγνοούν την υπερχείλιση Χρησιμοποιούν τις εντολές του MIPS addu, addui, subu Άλλες γλώσσες (π.χ., Ada, Fortran) απαιτούν τη δημιουργία μιας εξαίρεσης Χρησιμοποιούν τις εντολές του MIPS add, addi, sub Στην υπερχείλιση, καλείται ο χειριστής εξαιρέσεων Αποθήκευση του PC στο μετρητή προγράμματος εξαιρέσεων (exception program counter EPC) Άλμα στην προκαθορισμένη διεύθυνση του χειριστή Η εντολή mfc0 (move from coprocessor reg) μπορεί να ανακτήσει την τιμή του EPC, για να γίνει επιστροφή μετά τη διορθωτική ενέργεια Κεφάλαιο 3 Αριθμητική για υπολογιστές 5
6 Πολλαπλασιασμός Ξεκινάμε με τον πολ/σμό μεγάλου μήκους πολλαπλασιαστέος πολλαπλασιαστής γινόμενο Πολλαπλασιασμός Το μήκος του γινομένου είναι το άθροισμα των μηκών των τελεστέων Κεφάλαιο 3 Αριθμητική για υπολογιστές 6
7 Υλικό πολλαπλασιασμού Αρχικά 0 Κεφάλαιο 3 Αριθμητική για υπολογιστές 7
8 Βελτιστοποιημένος πολλαπλασιαστής Εκτέλεση βημάτων παράλληλα: πρόσθεση/ολίσθηση Ένας κύκλος ανά πρόσθεση μερικού γινομένου Είναι εντάξει, αν η συχνότητα εμφάνισης του πολλαπλασιασμού είναι χαμηλή Κεφάλαιο 3 Αριθμητική για υπολογιστές 8
9 Ταχύτερος πολλαπλασιαστής Χρησιμοποιεί πολλούς αθροιστές Συμβιβασμός κόστους/απόδοσης Μπορεί να υλοποιηθεί με διοχέτευση (pipeline) Πολλοί πολλαπλασιασμοί εκτελούνται παράλληλα Κεφάλαιο 3 Αριθμητική για υπολογιστές 9
10 Πολλαπλασιασμός στον MIPS Δύο καταχωρητές των 32 bit για το γινόμενο HI: τα περισσότερο σημαντικά 32 bit LO: τα λιγότερο σημαντικά 32 bit Εντολές mult rs, rt / multu rs, rt γινόμενο των 64 bit στους HI/LO mfhi rd / mflo rd Μεταφορά από (move from) του HI/LO στον rd Μπορούμε να ελέγξουμε τη τιμή του HI για να δούμε αν το γινόμενο ξεπερνά τα 32 bit mul rd, rs, rt Τα λιγότερο σημαντικά 32 bit του γινομένου > rd Κεφάλαιο 3 Αριθμητική για υπολογιστές 10
11 Διαίρεση διαιρέτης πηλίκο διαιρετέος υπόλοιπο τελεστέοι των n bit δίνουν πηλίκο και υπόλοιπο των n bit Έλεγχος για μηδενικό διαιρέτη Διαίρεση μεγάλου μήκους Αν διαιρέτης από τα bit του διαιρετέου 1 bit στο πηλίκο, αφαίρεση Αλλιώς 0 bit στο πηλίκο, κατέβασμα του επόμενου bit του διαιρετέου Διαίρεση με επαναφορά (restoring division) Κάνε την αφαίρεση και αν το υπόλοιπο γίνει < 0, πρόσθεσε πίσω το διαιρέτη Προσημασμένη διαίρεση Κάνε τη διαίρεση με τις απόλυτες τιμές Ρύθμισε το πρόσημο του πηλίκου και του υπολοίπου όπως απαιτείται 3.4 Διαίρεση Κεφάλαιο 3 Αριθμητική για υπολογιστές 11
12 Υλικό διαίρεσης Αρχικά ο διαιρέτης στο αριστερό μισό Αρχικά περιέχει το διαιρετέο Κεφάλαιο 3 Αριθμητική για υπολογιστές 12
13 Βελτιστοποιημένος διαιρέτης Ένας κύκλος για κάθε αφαίρεση μερικού υπολοίπου Μοιάζει πολύ με πολλαπλασιαστή! Το ίδιο υλικό μπορεί να χρησιμοποιηθεί και για τις δύο πράξεις Κεφάλαιο 3 Αριθμητική για υπολογιστές 13
14 Ταχύτερη διαίρεση Δεν μπορεί να χρησιμοποιηθεί παράλληλο υλικό όπως στον πολλαπλασιαστή Η αφαίρεση εκτελείται υπό συνθήκη, ανάλογα με το πρόσημο του υπολοίπου Ταχύτεροι διαιρέτες (π.χ. διαίρεση SRT) δημιουργούν πολλά bit του πηλίκου σε κάθε βήμα Και πάλι απαιτούνται πολλά βήματα Κεφάλαιο 3 Αριθμητική για υπολογιστές 14
15 Διαίρεση στο MIPS Χρήση των καταχωρητών HI/LO για το αποτέλεσμα HI: υπόλοιπο 32 bit LO: πηλίκο 32 bit Εντολές div rs, rt / divu rs, rt Όχι έλεγχος για υπερχείλιση ή διαίρεση με το 0 Το λογισμικό πρέπει να εκτελεί τους ελέγχους αν αυτό απαιτείται Χρήση των mfhi, mflo για προσπέλαση του αποτελέσματος Κεφάλαιο 3 Αριθμητική για υπολογιστές 15
16 Κινητή υποδιαστολή Αναπαράσταση για μη ακεραίους αριθμούς Περιλαμβάνει και πολύ μικρούς και πολύ μεγάλους αριθμούς Όπως η επιστημονική σημειογραφία (scientific notation) Σε δυαδικό ±1.xxxxxxx 2 2 yyyy κανονικοποιημένος μη κανονικοποιημένος Οι τύποι float και double της C 3.5 Κινητή υποδιαστολή Κεφάλαιο 3 Αριθμητική για υπολογιστές 16
17 Πρότυπο κινητής υποδιαστολής Ορίζεται από το IEEE Std Αναπτύχθηκε ως λύση στην απόκλιση των αναπαραστάσεων Ζητήματα φορητότητας (portability) για τον κώδικα επιστημονικών εφαρμογών Πλέον είναι σχεδόν οικουμενικά αποδεκτό Δύο αναπαραστάσεις κινητής υποδιαστολής (floating point) Απλή ακρίβεια single precision (32 bit) Διπλή ακρίβεια double precision (64 bit) Κεφάλαιο 3 Αριθμητική για υπολογιστές 17
18 Μορφή κινητής υποδιαστολής IEEE single: 8 bit double: 11 bit single: 23 bit double: 52 bit S Εκθέτης Κλάσμα x = (- 1) S (1 + Κλάσμα) 2 (Εκθέτης - Πόλωση) Εκθέτης (exponent) Κλάσμα (fraction) S: bit προσήμου (0 μη αρνητικός, 1 αρνητικός) Κανονικοποίηση του σημαντικού (significand): 1.0 significand < 2.0 Έχει πάντα ένα αρχικό bit 1 πριν την υποδιαστολή, και συνεπώς δε χρειάζεται ρητή αναπαράστασή του («κρυμμένο» bit) Το σημαντικό (significand) είναι το κλάσμα (fraction) μαζί με το κρυμμένο 1 Εκθέτης: αναπαράσταση «με υπέρβαση» (excess): πραγματικός εκθέτης + πόλωση (bias) Εγγυάται ότι ο εκθέτης είναι απρόσημος Απλή ακρίβεια: Πόλωση = 127 Διπλή ακρίβεια: Πόλωση = 1023 Κεφάλαιο 3 Αριθμητική για υπολογιστές 18
19 Εύρος απλής ακρίβειας Οι εκθέτες και δεσμεύονται Μικρότερη τιμή Εκθέτης: πραγματικός εκθέτης = = 126 Κλάσμα: σημαντικό = 1.0 ± ± Μεγαλύτερη τιμή Εκθέτης: πραγματικός εκθέτης = = +127 Κλάσμα: σημαντικό 2.0 ± ± Κεφάλαιο 3 Αριθμητική για υπολογιστές 19
20 Εύρος διπλής ακρίβειας Οι εκθέτες και δεσμεύονται Μικρότερη τιμή Εκθέτης: πραγματικός = = 1022 Κλάσμα: σημαντικό = 1.0 ± ± Μεγαλύτερη τιμή Εκθέτης: πραγματικός εκθέτης = = Κλάσμα: σημαντικό 2.0 ± ± Κεφάλαιο 3 Αριθμητική για υπολογιστές 20
21 Ακρίβεια κινητής υποδιαστολής Σχετική ακρίβεια Όλα τα bit του κλάσματος είναι σημαντικά Απλή: περίπου 2 23 Ισοδύναμο με 23 log δεκαδικά ψηφία ακρίβειας Διπλή: περίπου 2 52 Ισοδύναμο με 52 log δεκαδικά ψηφία ακρίβειας Κεφάλαιο 3 Αριθμητική για υπολογιστές 21
22 Παράδειγμα κινητής υποδιαστολής Αναπαράσταση του = ( 1) S = 1 Κλάσμα = Εκθέτης = 1 + Πόλωση Απλή: = 126 = Διπλή: = 1022 = Απλή: Διπλή: Κεφάλαιο 3 Αριθμητική για υπολογιστές 22
23 Παράδειγμα κινητής υποδιαστολής Ποιος αριθμός αναπαρίσταται από τον απλής ακρίβειας κινητής υποδιαστολής αριθμό; S = 1 Κλάσμα = Εκθέτης = = 129 x = ( 1) 1 ( ) 2 ( ) = ( 1) = 5.0 Κεφάλαιο 3 Αριθμητική για υπολογιστές 23
24 Μη κανονικοποιημένοι (denormals) Εκθέτης = το «κρυμμένο» bit είναι 0 x = (- 1) S (0 + Κλάσμα) 2 Μικρότεροι από τους κανονικοποιημένους επιτρέπουν βαθμιαία ανεπάρκεια (gradual underflow), με μειούμενη ακρίβεια Denormal με κλάσμα = x = (- 1) S (0 + 0) 2 Δύο αναπαραστάσεις του 0.0! - Πόλωση+1 = - Πόλωση Κεφάλαιο 3 Αριθμητική για υπολογιστές 24
25 Άπειρα και όχι αριθμοί (NaN) Εκθέτης = , Κλάσμα = ±Άπειρο Μπορεί να χρησιμοποιηθεί σε επόμενους υπολογισμούς, για αποφυγή της ανάγκης του ελέγχου υπερχείλισης Εκθέτης = , Κλάσμα Όχι αριθμός (Not-a-Number NaN) Δείχνει ένα άκυρο ή απροσδιόριστο αποτέλεσμα π.χ., 0.0 / 0.0 Μπορεί να χρησιμοποιηθεί σε επόμενους υπολογισμούς Κεφάλαιο 3 Αριθμητική για υπολογιστές 25
26 Πρόσθεση κινητής υποδιαστολής Ένα δεκαδικό παράδειγμα με 4 ψηφία Ευθυγράμμιση υποδιαστολών Ολίσθηση αριθμού με το μικρότερο εκθέτη Πρόσθεση σημαντικών = Κανονικοποίηση αποτελέσματος & έλεγχος υπερχείλισης/ανεπάρκειας Στρογγυλοποίηση και επανακανονικοποιήση αν είναι απαραίτητο Κεφάλαιο 3 Αριθμητική για υπολογιστές 26
27 Πρόσθεση κινητής υποδιαστολής Τώρα ένα δυαδικό παράδειγμα με 4 ψηφία ( ) 1. Ευθυγράμμιση υποδιαστολών Ολίσθηση αριθμού με το μικρότερο εκθέτη Πρόσθεση σημαντικών = Κανονικοποίηση αποτελέσματος και έλεγχος υπερχείλισης/ανεπάρκειας , χωρίς υπερχείλιση/ανεπάρκεια 4. Στρογγυλοποίηση και επανακανονικοποιήση αν είναι απαραίτητο (καμία αλλαγή) = Κεφάλαιο 3 Αριθμητική για υπολογιστές 27
28 Υλικό αθροιστή κιν. υποδ. Πολύ πιο πολύπλοκο από του ακέραιου αθροιστή Για να γίνει σε έναν κύκλο πρέπει να έχει πολύ μεγάλη διάρκεια Πολύ μεγαλύτερη από τις ακέραιες λειτουργίες Το πιο αργό ρολόι θα επιβάρυνε όλες τις εντολές Ο αθροιστής κινητής υποδιαστολής συνήθως παίρνει πολλούς κύκλους Μπορεί να υπολοποιηθεί με διοχέτευση Κεφάλαιο 3 Αριθμητική για υπολογιστές 28
29 Υλικό αθροιστή κιν.υποδ. Βήμα 1 Βήμα 2 Βήμα 3 Βήμα 4 Κεφάλαιο 3 Αριθμητική για υπολογιστές 29
30 Υλικό αριθμητικής κιν. υποδ. Ο πολλαπλασιαστής ΚΥ έχει παρόμοια πολυπλοκότητα με τον αθροιστή ΚΥ Αλλά χρησιμοποιεί πολλαπλασιαστή για τα σημαντικά αντί για αθροιστή Το υλικό αριθμητικής κιν. υποδ. συνήθως εκτελεί Πρόσθεση, αφαίρεση, πολλαπλασιασμό, διαίρεση, αντίστροφο, τετραγωνική ρίζα Μετατροπή ΚΥ ακέραιο Οι λειτουργίες συνήθως διαρκούν πολλούς κύκλους Μπορούν να υπολοποιηθούν με διοχέτευση Κεφάλαιο 3 Αριθμητική για υπολογιστές 32
31 Εντολές ΚΥ στο MIPS Το υλικό ΚΥ είναι ο συνεπεξεργαστής (coprocessor) 1 Επιπρόσθετος επεξεργαστής που επεκτείνει την αρχιτεκτονική συνόλου εντολών Ξεχωριστοί καταχωρητές ΚΥ 32 απλής ακρίβειας: $f0, $f1, $f31 Ζευγάρια για διπλή ακρίβεια: $f0/$f1, $f2/$f3, Η έκδοση 2 του συνόλου εντολών MIPS υποστηρίζει bit καταχωρητές ΚΥ Εντολές ΚΥ επενεργούν μόνο σε καταχωρητές ΚΥ Γενικά τα προγράμματα δεν εκτελούν ακέραιες πράξεις σε δεδομένα ΚΥ, ή αντίστροφα Περισσότεροι καταχωρητές με ελάχιστη επίδραση στο μέγεθος του κώδικα Εντολές φόρτωσης και αποθήκευσης ΚΥ lwc1, ldc1, swc1, sdc1 π.χ., ldc1 $f8, 32($sp) Κεφάλαιο 3 Αριθμητική για υπολογιστές 33
32 Εντολές ΚΥ στον MIPS Αριθμητική απλής ακρίβειας add.s, sub.s, mul.s, div.s π.χ., add.s $f0, $f1, $f6 Αριθμητική διπλής ακρίβειας add.d, sub.d, mul.d, div.d π.χ., mul.d $f4, $f4, $f6 Σύγκριση απλής και διπλής ακρίβειας c.xx.s, c.xx.d (xx είναι eq, lt, le, ) Δίνει τη τιμή 1 ή 0 σε bit κωδικών συνθήκης ΚΥ (FP conditioncode bit) π.χ. c.lt.s $f3, $f4 Διακλάδωση σε αληθή ή ψευδή κωδικό συνθήκης ΚΥ bc1t, bc1f π.χ., bc1t TargetLabel Κεφάλαιο 3 Αριθμητική για υπολογιστές 34
33 Παραδειγμα ΚΥ: βαθμοί F σε C Κώδικας C: float f2c (float fahr) { return ((5.0/9.0)*(fahr )); } fahr στον $f12, αποτέλεσμα στον $f0, οι σταθερές στο χώρο της καθολικής μνήμης Μεταγλωττισμένος κώδικας MIPS: f2c: lwc1 $f16, const5($gp) lwc2 $f18, const9($gp) div.s $f16, $f16, $f18 lwc1 $f18, const32($gp) sub.s $f18, $f12, $f18 mul.s $f0, $f16, $f18 jr $ra Κεφάλαιο 3 Αριθμητική για υπολογιστές 35
34 Ακριβής αριθμητική Το IEEE Std 754 καθορίζει πρόσθετο έλεγχο της στρογγυλοποίησης Επιπλέον bit ακρίβειας (guard, round, sticky) Επιλογή τρόπων στρογγυλοποίησης (rounding modes) Επιτρέπει στον προγραμματιστή να ρυθμίσει με λεπτομέρεια την αριθμητική συμπεριφορά ενός υπολογισμού Δεν υλοποιούν όλες τις επιλογές όλες οι μονάδες ΚΥ Οι περισσότερες γλώσσες προγραμματισμού και βιβλιοθήκες ΚΥ χρησιμοποιούν απλώς τις προκαθορισμένες λειτουργίες Συμβιβασμός μεταξύ πολυπλοκότητας του υλικού, απόδοσης, και απαιτήσεων της αγοράς Κεφάλαιο 3 Αριθμητική για υπολογιστές 36
35 Διερμηνεία των δεδομένων ΓΕΝΙΚΗ εικόνα Τα bit δεν έχουν έμφυτη σημασία Η διερμηνεία εξαρτάται από τις εντολές που εφαρμόζονται Αναπαράσταση των αριθμών στους υπολογιστές Πεπερασμένο εύρος και ακρίβεια Πρέπει να λαμβάνονται υπόψη στα προγράμματα Κεφάλαιο 3 Αριθμητική για υπολογιστές 37
36 Δεξιά ολίσθηση και διαίρεση Η αριστερή ολίσθηση κατά i θέσεις πολλαπλασιάζει έναν ακέραιο με 2 i Η δεξιά ολίσθηση διαιρεί με το 2 i ; Μόνο σε απρόσημους ακεραίους Για προσημασμένους ακεραίους Αριθμητική δεξιά ολίσθηση: επανάληψη του προσήμου π.χ., 5 / >> 2 = = 2 Στρογγυλοποιεί προς το σύγκριση >>> 2 = = Πλάνες και παγίδες Κεφάλαιο 3 Αριθμητική για υπολογιστές 38
37 Ποιος νοιάζεται για την ακρίβεια ΚΥ; Σημαντική για επιστημονικό κώδικα Αλλά για καθημερινή χρήση; Το υπόλοιπό μου στη τράπεζα διαφέρει κατά σεντ! Το σφάλμα της διαίρεσης ΚΥ του Intel Pentium (FDIV bug) Η αγορά αναμένει ακρίβεια Δείτε Colwell, The Pentium Chronicles Κεφάλαιο 3 Αριθμητική για υπολογιστές 39
38 Συμπερασματικές παρατηρήσεις Οι αρχιτεκτονικές συνόλου εντολών υποστηρίζουν αριθμητική Προσημασμένων και απρόσημων ακεραίων Προσεγγίσεων κινητής υποδιαστολής για τους πραγματικούς Πεπερασμένο εύρος και ακρίβεια Οι λειτουργίες μπορεί να οδηγήσουν σε υπερχείλιση (overflow) και ανεπάρκεια (underflow) Αρχιτεκτονική συνόλου εντολών MIPS Εντολές πυρήνα: οι 54 πιο συχνά χρησιμοποιούμενες 100% του SPECINT, 97% του SPECFP Άλλες εντολές: λιγότερο συχνές 3.9 Συμπερασματικές παρατηρήσεις Κεφάλαιο 3 Αριθμητική για υπολογιστές 40
Κεφάλαιο 3. Αριθμητική για υπολογιστές
Κεφάλαιο 3 Αριθμητική για υπολογιστές Αριθμητική για υπολογιστές Λειτουργίες (πράξεις) σε ακεραίους Πρόσθεση και αφαίρεση Πολλαπλασιασμός και διαίρεση Χειρισμός της υπερχείλισης Πραγματικοί αριθμοί κινητής
Διαβάστε περισσότεραΑριθμητική για υπολογιστές
Αριθμητική για υπολογιστές Λειτουργίες (πράξεις) σε ακεραίους Πρόσθεση και αφαίρεση Πολλαπλασιασμός και διαίρεση Χειρισμός της υπερχείλισης Πραγματικοί αριθμοί κινητής υποδιαστολής (floating-point) Αναπαράσταση
Διαβάστε περισσότεραΑριθμητική Υπολογιστών. Αρχιτεκτονική Υπολογιστών. 5ο εξάμηνο ΣΗΜΜΥ ακ. έτος: Νεκ. Κοζύρης
Αρχιτεκτονική Υπολογιστών 5ο εξάμηνο ΣΗΜΜΥ ακ. έτος: 2014-2015 Νεκ. Κοζύρης nkoziris@cslab.ece.ntua.gr Αριθμητική Υπολογιστών http://www.cslab.ece.ntua.gr/courses/comparch/ Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραChapter 3. Αριθμητική Υπολογιστών. (συνέχεια)
Chapter 3 Αριθμητική Υπολογιστών (συνέχεια) Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση), μετάφραση: Καθ. Εφαρμογών Νικόλαος Πετράκης, Τμήματος Ηλεκτρονικών Μηχανικών του Τ.Ε.Ι.
Διαβάστε περισσότεραΚεφάλαιο 3. Αριθµητική για υπολογιστές. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση
Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 3 Αριθµητική για υπολογιστές ιαφάνειες διδασκαλίας του πρωτότυπου βιβλίου µεταφρασµένες στα ελληνικά και εµπλουτισµένες
Διαβάστε περισσότεραChapter 3. Αριθμητική Υπολογιστών. (συνέχεια)
Chapter 3 Αριθμητική Υπολογιστών (συνέχεια) Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση), μετάφραση: Καθ. Εφαρμογών Νικόλαος Πετράκης, Τμήματος Ηλεκτρονικών Μηχανικών του Τ.Ε.Ι.
Διαβάστε περισσότεραChapter 3. Αριθμητική Υπολογιστών. Έβδομη (7 η ) δίωρη διάλεξη. Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L.
Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L. Hennessy Chapter 3 Αριθμητική Υπολογιστών Έβδομη (7 η ) δίωρη διάλεξη. Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση),
Διαβάστε περισσότεραChapter 3 Αριθμητική Υπολογιστών
Chapter 3 Αριθμητική Υπολογιστών Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση), μετάφραση: Καθ. Εφαρμογών Νικόλαος Πετράκης, Τμήματος Ηλεκτρονικών Μηχανικών του Τ.Ε.Ι. Κρήτης. Τελευταία
Διαβάστε περισσότεραChapter 3. Αριθμητική Υπολογιστών. Όγδοη (8 η ) δίωρη διάλεξη. Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L.
Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L. Hennessy Chapter 3 Αριθμητική Υπολογιστών Όγδοη (8 η ) δίωρη διάλεξη. Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση),
Διαβάστε περισσότεραΑριθμητική Υπολογιστών
ΗΥ 232 Οργάνωση και Σχεδίαση Υπολογιστών Διάλεξη 6 Αριθμητική Υπολογιστών Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Παράδειγμα: 7 + 6 Πρόσθεση ακεραίων Παράδειγμα με πολλαπλούς ακεραίους:
Διαβάστε περισσότεραΑριθμητική Κινητής Υποδιαστολής Πρόσθεση Αριθμών Κινητής Υποδιαστολής
ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 11 Αριθμητική Κινητής Υποδιαστολής Πρόσθεση Αριθμών Κινητής Υποδιαστολής Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων
Διαβάστε περισσότεραΚεφάλαιο 3 Αριθμητική Υπολογιστών (Arithmetic for Computers)
Κεφάλαιο 3 Αριθμητική Υπολογιστών (Arithmetic for Computers) 1 Αριθμοί και Υπολογιστές Μια λέξη μηχανής (computer word) αποτελείται από ένα αριθμό δυαδικών ψηφίων (bits) η λέξη αναπαρίσταται ως ένας δυαδικός
Διαβάστε περισσότεραΑρχιτεκτονικές Υπολογιστών
ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών Αναπαράσταση εδοµένων ιδάσκων: Αναπλ. Καθ. Κ. Λαµπρινουδάκης clam@unipi.gr Αρχιτεκτονικές Υπολογιστών Aναπλ. Καθ. Κ. Λαµπρινουδάκης 1 εδοµένα
Διαβάστε περισσότεραΠολλαπλασιασμός και Διαίρεση Ακεραίων
ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 1 Πολλαπλασιασμός και Διαίρεση Ακεραίων Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Πολλαπλασιασμός Ακεραίων
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch t / / h 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών
Διαβάστε περισσότεραΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών πράξεων
Διαβάστε περισσότεραΕθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΑριθμητική Υπολογιστών (Κεφάλαιο 3)
ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 9 Αριθμητική Υπολογιστών (Κεφάλαιο 3) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Αριθμητική για υπολογιστές
Διαβάστε περισσότερα1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΟΙ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ (ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ) Γ Τσιατούχας Παράρτηµα Β ιάρθρωση 1 Το σύστημα κινητής υποδιαστολής 2 Αναπαράσταση πραγματικών δυαδικών αριθμών 3 Το πρότυπο
Διαβάστε περισσότεραΚΑΝΕΝΑ ΑΡΙΘΜΗΤΙΚΟ ΣΥΣΤΗΜΑ ΕΝ ΜΠΟΡΕΙ ΝΑ ΑΠΕΙΚΟΝΙΣΕΙ ΟΛΟΥΣ ΤΟΥΣ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ, ΙΟΤΙ ΕΧΟΥΜΕ ΠΕΡΙΟΡΙΣΜΕΝΟ ΕΥΡΟΣ ΑΚΡΙΒΕΙΑΣ.
VLSI REAL ARITHMETIC Floating- Point Numbers ΚΑΝΕΝΑ ΑΡΙΘΜΗΤΙΚΟ ΣΥΣΤΗΜΑ ΕΝ ΜΠΟΡΕΙ ΝΑ ΑΠΕΙΚΟΝΙΣΕΙ ΟΛΟΥΣ ΤΟΥΣ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ, ΙΟΤΙ ΕΧΟΥΜΕ ΠΕΡΙΟΡΙΣΜΕΝΟ ΕΥΡΟΣ ΑΚΡΙΒΕΙΑΣ. ΥΠΑΡΧΟΥΝ ΙΑΦΟΡΑ ΣΥΣΤΗΜΑΤΑ ΠΟΥ
Διαβάστε περισσότεραΣύστημα Πλεονάσματος και Αναπαράσταση Αριθμών Κινητής Υποδιαστολής
Σύστημα Πλεονάσματος και Αναπαράσταση Αριθμών Κινητής Υποδιαστολής Σύστημα Πλεονάσματος (Excess System) - 1 Είναι μια άλλη μια μορφή αναπαράστασης για αποθήκευση θετικών και αρνητικών ακεραίων σε έναν
Διαβάστε περισσότεραΠραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ
Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0
Διαβάστε περισσότεραΣύστημα Πλεονάσματος. Αναπαράσταση Πραγματικών Αριθμών. Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής
Σύστημα Πλεονάσματος Αναπαράσταση Πραγματικών Αριθμών Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής Σύστημα Πλεονάσματος (Excess System) - 1 Είναι μια άλλη μια μορφή αναπαράστασης για αποθήκευση
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη των υπολογιστών
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα
Διαβάστε περισσότεραΕνδιάμεση Β205. Κεφ. 1-2, Παράρτημα Α Εργαστήρια Εργασίες Ενδιάμεση του 2014 Όχι διάλεξη την Τρίτη (Προετοιμασία)
Ενδιάμεση 19.10 Β205 Κεφ. 1-2, Παράρτημα Α Εργαστήρια Εργασίες Ενδιάμεση του 2014 Όχι διάλεξη την Τρίτη (Προετοιμασία) 1 Παράρτημα Β και Κεφάλαιο 3 Αριθμητική Υπολογιστών Review signed numbers, 2 s complement,
Διαβάστε περισσότεραΤμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης
Διαβάστε περισσότεραΟργάνωση Η/Υ. Γιώργος Δημητρίου. Μάθημα 2 ο Σύντομη Επανάληψη. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής
Γιώργος Δημητρίου Μάθημα 2 ο Σύντομη Επανάληψη Από την Εισαγωγή στους Η/Υ Γλώσσες Μηχανής Πεδία εντολής Μέθοδοι διευθυνσιοδότησης Αρχιτεκτονικές συνόλου εντολών Κύκλος εντολής Αλγόριθμοι/Υλικό Αριθμητικών
Διαβάστε περισσότεραΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας
Διαβάστε περισσότεραΕισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 11 ο και 12 ο
Γιώργος Δημητρίου Μάθημα 11 ο και 12 ο Μονάδες ράξεων Αριθμητική/Λογική Μονάδα (ΑΛΜ - ALU): Βασικές αριθμητικές πράξεις ρόσθεση/αφαίρεση Λογικές πράξεις Μονάδες πολύπλοκων αριθμητικών πράξεων σταθερής
Διαβάστε περισσότερα1 η Ενδιάμεση Εξέταση Απαντήσεις/Λύσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) HMΜY 212 Οργάνωση Η/Υ και Μικροεπεξεργαστές Εαρινό Εξάμηνο, 2007 1 η Ενδιάμεση Εξέταση Απαντήσεις/Λύσεις Άσκηση 1: Σωστό/Λάθος
Διαβάστε περισσότερα3. Πρόσθεση Πολλαπλασιασμός 4. Πρόσθεση στο πρότυπο ΙΕΕΕ Πολλαπλασιασμός στο πρότυπο ΙΕΕΕ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΙΠΕ Ο ΨΗΦΙΑΚΗΣ ΛΟΓΙΚΗΣ - ΙΙ Γ. Τσιατούχας 3 ο Κεφάλαιο 1. Γενική δομή CPU ιάρθρωση 2. Αριθμητική και λογική μονάδα 3. Πρόσθεση Πολλαπλασιασμός
Διαβάστε περισσότεραΤμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί
Διαβάστε περισσότερα! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς
Διαβάστε περισσότεραΠράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Διαβάστε περισσότεραΟργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές
Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 3 Αριθµητική για υπολογιστές Ασκήσεις Η αρίθµηση των ασκήσεων είναι από την 4 η έκδοση του «Οργάνωση και Σχεδίαση
Διαβάστε περισσότεραΠανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής. Οργάνωση Η/Υ. Γιώργος ηµητρίου. Μάθηµα 2 ο Σύντοµη Επανάληψη
Γιώργος ηµητρίου Μάθηµα 2 ο Σύντοµη Επανάληψη Από την Εισαγωγή στους Η/Υ Γλώσσες Μηχανής n Πεδία εντολής n Μέθοδοι διευθυνσιοδότησης n Αρχιτεκτονικές συνόλου εντολών n Κύκλος εντολής Αλγόριθµοι/Υλικό Αριθµητικών
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Διαβάστε περισσότεραΟργάνωση Υπολογιστών
Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό
Διαβάστε περισσότεραΕισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας
Διαβάστε περισσότεραΚεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Οργάνωση και διαχείριση της Πληροφορίας στον Υπολογιστή Δεδομένα και Εντολές πληροφορία δεδομένα εντολές αριθμητικά δδ δεδομένα κείμενο εικόνα Επιλογή Αναπαράστασης
Διαβάστε περισσότεραΔύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:
Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται
Διαβάστε περισσότεραΠρογραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 9ο Aντώνης Σπυρόπουλος Σφάλματα στρογγυλοποίησης
Διαβάστε περισσότεραΑναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική
Αναπαράσταση Δεδομένων ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση δεδομένων Κατάλληλη συμβολική αναπαράσταση δεδομένων, για απλοποίηση βασικών πράξεων, όπως πρόσθεση Πόσο εύκολο είναι
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 3. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Β Παράσταση Προσημασμένων
Διαβάστε περισσότεραΚεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Μονάδα Επεξεργασίας Δεδομένων Μονάδα
Διαβάστε περισσότεραΚεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή
Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5
Διαβάστε περισσότεραΟργάνωση Η/Υ. Γιώργος ηµητρίου. Μάθηµα 3 ο. Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων
Γιώργος ηµητρίου Μάθηµα 3 ο Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων Μονάδα Επεξεργασίας εδοµένων Υποµονάδες πράξεων n Αριθµητική/Λογική Μονάδα (ΑΛΜ - ALU): Βασικές αριθµητικές
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση 3 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο
Διαβάστε περισσότεραΑρχιτεκτονική Υπολογιστών. Data. Κείμενο. Βίντεο. Αριθμοί Εικόνες. Ήχοι
Data Κείμενο Βίντεο Αριθμοί Εικόνες Ήχοι 1 Τα δεδομένα στους ηλεκτρονικούς υπολογιστές αναπαρίστανται σαν αριθμοί Οι αριθμοί αποθηκεύονται σε bits (δυαδικό σύστημα). Θέματα: Πως αναπαριστώνται οι αρνητικοί
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6
ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Bits & Bytes Bit: η μικρότερη μονάδα πληροφορίας μία από δύο πιθανές καταστάσεις (ναι / όχι, αληθές / ψευδές, n / ff) κωδικοποίηση σε 0 ή 1 δυαδικό σύστημα
Διαβάστε περισσότεραΣυστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1
Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:
Διαβάστε περισσότεραΛύσεις Ασκήσεων ΣΕΙΡΑ 1 η. Πρόσημο και μέγεθος
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΑΜΗΝΟ: 1 ο /2015-16 ΤΜΗΜΑ: ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ Καθηγητής: Θ. Τσιλιγκιρίδης Άσκηση 1η Περιεχόμενα μνήμης Λύσεις
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση
Διαβάστε περισσότεραΤμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών
Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού
Διαβάστε περισσότεραΔύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:
Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται
Διαβάστε περισσότεραΚεφάλαιο 3 Η Αριθμητική των Υπολογιστών
Κεφάλαιο 3 Η Αριθμητική των Υπολογιστών (Arithmetic for Computers) 1 Αριθμοί και Υπολογιστές Computer words are composed of bits words are represented as binary numbers Binary numbers (base 2) 0000 0001
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής
Διαβάστε περισσότερα1.4 Αριθμητική υπολογιστών και σφάλματα
Γ. Γεωργίου, Αριθμητική Ανάλυση 1.4 Αριθμητική υπολογιστών και σφάλματα Στην παράγραφο αυτή καλύπτουμε πρώτα γενικά το θέμα της αριθμητικής υπολογιστών και στην συνέχεια διαπραγματευόμαστε την έννοια του
Διαβάστε περισσότεραΔυαδικό Σύστημα Αρίθμησης
Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,
Διαβάστε περισσότεραΕισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα
Διαβάστε περισσότεραΟργάνωση επεξεργαστή (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική
Οργάνωση επεξεργαστή (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Κώδικας μηχανής (E) Ο επεξεργαστής μπορεί να εκτελέσει το αρχιτεκτονικό σύνολο εντολών (instruction set architecture) Οι
Διαβάστε περισσότεραΕισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 3: Δυαδικά Συστήματα Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής
Γιώργος Δημητρίου Μάθημα 2 ο Σύνολα Εντολών Οι εντολές που εκτελεί ο κάθε επεξεργαστής (ή οικογένεια επεξεργαστών) MIPS ARM SPARC PowerPC IA-32 Αρχιτεκτονικές συνόλου εντολών Βασικές Έννοιες Εντολές μηχανής
Διαβάστε περισσότεραΣύγχρονες Αρχιτεκτονικές Υπολογιστών
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ Σύγχρονες Αρχιτεκτονικές Υπολογιστών ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Αρχιτεκτονική Συνόλου Εντολών (Instruction Set Architecture-ISA) 1 Ένας υπολογιστής
Διαβάστε περισσότεραΕντολές γλώσσας μηχανής
Εντολές γλώσσας μηχανής Στον υπολογιστή MIPS η εντολή πρόσθεσε τα περιεχόμενα των καταχωρητών 17 και 20 και τοποθέτησε το αποτέλεσμα στον καταχωρητή 9 έχει την μορφή: 00000010001101000100100000100000 Πεδία
Διαβάστε περισσότεραΔυαδικη παρασταση αριθμων και συμβολων
Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a
Διαβάστε περισσότεραΗΥ 134. Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι. Διάλεξη 1. Εισαγωγή. Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων
ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 1 Εισαγωγή Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Οργανωτικά Θέματα Διδάσκων: Νίκος Μπέλλας, Κτήριο Γκλαβάνη,
Διαβάστε περισσότεραΔοκιμασίες πολλαπλών επιλογών
Δοκιμασίες πολλαπλών επιλογών ) Η απόλυτη τιμή θετικού αριθμού είναι: Α. Ο αντίθετός του Β. Ο ίδιος ο αριθμός Γ. Ο αντίστροφός του 2) Αν x =3, τότε Α. x=3 Β. x 0 Γ. x=-3 Δ. x=3 ή x=-3 3) Με το -x συμβολίζουμε
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότεραΟργάνωση Η/Υ. Γιώργος ηµητρίου. Μάθηµα 2 ο. Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων
Γιώργος ηµητρίου Μάθηµα 2 ο Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων Αναπαράσταση Πληροφορίας Η/Υ Αριθµητικά δεδοµένα n Σταθερής υποδιαστολής n Κινητής υποδιαστολής Μη αριθµητικά
Διαβάστε περισσότερα1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης
1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα
Διαβάστε περισσότεραΣφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα
Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα Πηγές σφαλμάτων ανακριβής θεωρία ανακριβείς μετρήσεις παραμέτρων μεταβλητότητα παραμέτρων ανακριβής μέθοδος υπολογισμού (σφάλματα
Διαβάστε περισσότεραΕισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα
Διαβάστε περισσότεραΑρχιτεκτονική Υπολογιστών Ι
Αρχιτεκτονική Υπολογιστών Ι Επιλεγμένες εντολές και συναρτήσεις assembly Από το βιβλίο Αρχιτεκτονική Υπολογιστών & Προγραμματισμός Assembly (Συγγραφέας / Εκδότης : Παναγιώτης Παπάζογλου) Δρ. Παναγιώτης
Διαβάστε περισσότεραChapter 2. Εντολές : Η γλώσσα του υπολογιστή. Τρίτη (3 η ) δίωρη διάλεξη. Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L.
Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L. Hennessy Chapter 2 Εντολές : Η γλώσσα του υπολογιστή Τρίτη (3 η ) δίωρη διάλεξη. Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο
Διαβάστε περισσότεραΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ
ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ Γιώργος Δημητρίου Μάθημα 4 ο ΜΣ Εφαρμοσμένη ληροφορική ΜΟΝΑΔΑ ΕΕΞΕΡΓΑΣΙΑΣ ΔΕΔΟΜΕΝΩΝ Υπομονάδες πράξεων Αριθμητική/Λογική Μονάδα (ΑΛΜ - ALU): Βασικές αριθμητικές πράξεις Λογικές
Διαβάστε περισσότεραChapter 2. Εντολές : Η γλώσσα του υπολογιστή. (συνέχεια) Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L.
Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L. Hennessy Chapter 2 Εντολές : Η γλώσσα του υπολογιστή (συνέχεια) Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση), μετάφραση:
Διαβάστε περισσότεραΚεφάλαιο 8. Αριθμητική Λογική μονάδα
Κεφάλαιο 8 Αριθμητική Λογική μονάδα 8.1 Εισαγωγή Στη μηχανική υπολογιστών η αριθμητική/λογική μονάδα (ALU) είναι ένα ψηφιακό κύκλωμα το οποίο εκτελεί αριθμητικούς και λογικούς υπολογισμούς. Η ALU είναι
Διαβάστε περισσότεραΨηφιακά Συστήματα. 1. Συστήματα Αριθμών
Ψηφιακά Συστήματα 1. Συστήματα Αριθμών Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L.,
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
Διαβάστε περισσότερα3.1 εκαδικό και υαδικό
Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και εδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 3.1 εκαδικό και υαδικό εκαδικό σύστηµα 2 1 εκαδικό και υαδικό υαδικό Σύστηµα 3 3.2 Μετατροπή Για τη µετατροπή
Διαβάστε περισσότεραΑριθμητικά Συστήματα = 3 x x x x 10 0
Δεκαδικό Όταν αναφερόμαστε σε μία αριθμητική τιμή, απεικονίζουμε μία ποσότητα με ένα σύμβολο ή έναν συνδυασμό από σύμβολα. Το αριθμητικό σύστημα που χρησιμοποιούμε είναι το δεκαδικό. Αποτελείται από δέκα
Διαβάστε περισσότερα1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;
1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΠράξεις με πραγματικούς αριθμούς (επαναλήψεις - συμπληρώσεις )
ΜΑΘΗΜΑΤΙΚΑ α x +β
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχιτεκτονική-Ι Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραChapter 2. Εντολές : Η γλώσσα του υπολογιστή. (συνέχεια) Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L.
Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L. Hennessy Chapter 2 Εντολές : Η γλώσσα του υπολογιστή (συνέχεια) Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση), μετάφραση:
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 2. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Α 2 Τεχνολογία
Διαβάστε περισσότεραΑριθμητικά Συστήματα
Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά
Διαβάστε περισσότερα1.1. Με τι ασχολείται η Αριθμητική Ανάλυση
Κεφάλαιο 1 Εισαγωγικά 1.1. Με τι ασχολείται η Αριθμητική Ανάλυση Πολλοί επιστημονικοί κλάδοι, στην προσπάθειά τους να επιλύσουν πρακτικά προβλήματα κάνουν χρήση μεθόδων Αριθμητικής Ανάλυσης. Οι μέθοδοι
Διαβάστε περισσότεραΑριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Διαβάστε περισσότερα1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ. α i. (α i β i ) (1.3) όπου: η= το πλήθος ακεραίων ψηφίων του αριθμού Ν. n-1
1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Εισαγωγή Το δεκαδικό σύστημα (Decimal System) αρίθμησης χρησιμοποιείται από τον άνθρωπο και είναι κατάλληλο βέβαια γι αυτόν, είναι όμως εντελώς ακατάλληλο για τις ηλεκτρονικές
Διαβάστε περισσότεραΕισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ
Εισαγωγή στην επιστήµη των υπολογιστών Πράξεις µε µπιτ 1 Πράξεις µε µπιτ 2 Αριθµητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασµός, Διαίρεση 3 Πρόσθεση στη µορφή συµπληρώµατος ως προς δύο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότερα1 η Άσκηση Στην Αρχιτεκτονική Υπολογιστών
η Άσκηση Στην Αρχιτεκτονική Υπολογιστών Ακ. Έτος 203 204, 5 ο Εξάμηνο, Σχολή ΗΜ&ΜΥ Τμήμα Λ - Ω Ημερομηνία Παράδοσης: 20/2/203 Απορίες στο: ca203-204t2@cslab.ece.ntua.gr Μέρος Α Δίνονται τα παρακάτω δύο
Διαβάστε περισσότεραΤμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών
Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού
Διαβάστε περισσότεραΜελέτη και σχεδίαση αριθμητικής και λογικής μονάδας, στα 32 μπιτ, συμπεριλαμβάνοντας πράξεις κινητής υποδιαστολής απλής ακρίβειας.
Τ.Ε.Ι. ΚΡΗΤΗΣ Σχολή Εφαρμοσμένων Επιστημών Μελέτη και σχεδίαση αριθμητικής και λογικής μονάδας, στα 32 μπιτ, συμπεριλαμβάνοντας πράξεις κινητής υποδιαστολής απλής ακρίβειας. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ του Ντογκρασβίλι
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
Διαβάστε περισσότεραΗΥ 232. Οργάνωση και Σχεδίαση Υπολογιστών. Διάλεξη 1. Εισαγωγή στο μάθημα. Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων
ΗΥ 232 Διάλεξη 1 Εισαγωγή στο μάθημα Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Διδάσκων: Οργανωτικά Θέματα Νίκος Μπέλλας, Κτήριο Γκλαβάνη, Γραφείο Β3.7, 2 ος όροφος Προσωπική ιστοσελίδα:
Διαβάστε περισσότερα