Εισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ
|
|
- Πόντος Αντωνόπουλος
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Εισαγωγή στην επιστήμη των υπολογιστών Πράξεις με μπιτ 1
2 Πράξεις με μπιτ 2
3 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση 3
4 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο Πλήθος μονάδων Αποτέλεσμα Καμία 0 Μία 1 Κρατούμενο Δύο 0 1 Τρεις 1 1 Προσθέτουμε δύο μπιτ και μεταφέρουμε το κρατούμενο στην επόμενη στήλη. Αν υπάρχει κάποιο τελικό κρατούμενο μετά την πρόσθεση στην πιο αριστερή στήλη, το αγνοούμε. 4
5 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο Προσθέστε δύο αριθμούς σε αναπαράσταση συμπληρώματος ως προς δύο, με μήκος μπιτ 8 : (+17) + (+22) (+39) 5
6 Πως μετατρέπουμε έναν θετικό αριθμό σε δυαδική μορφή σε μορφή συμπληρώματος ως προς 2; 6
7 n Ο αριθμός μετατρέπεται στο δυαδικό σύστημα. n Αν το πλήθος των μπιτ είναι μικρότερο από Ν, προστίθενται μηδενικά στα αριστερά του αριθμού ώστε να υπάρχει ένα σύνολο από Ν μπιτ. n Αν το πρόσημο είναι θετικό, δε χρειάζεται καμία άλλη ενέργεια. 7
8 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο Προσθέστε δύο αριθμούς σε αναπαράσταση συμπληρώματος ως προς δύο, με μήκος μπιτ 8: (+17) + (+22) (+39) Λύση Κρατούμενο Αποτέλεσμα Το αποτέλεσμα είναι 39 στο δεκαδικό σύστημα. 8
9 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο Προσθέστε το 24 και το 17 αφού πρώτα τους μετατρέψετε σε δυαδικούς αριθμούς σε μορφή συμπληρώματος ως προς δύο, με μήκος μπιτ 8. (+24) + ( 17) (+7) 9
10 Πως μετατρέπουμε έναν αρνητικό αριθμό σε δυαδική μορφή σε μορφή συμπληρώματος ως προς 2; 10
11 n n n Ο αριθμός μετατρέπεται στο δυαδικό σύστημα, το πρόσημο αγνοείται. Αν το πλήθος των μπιτ είναι μικρότερο από Ν, προστίθενται μηδενικά στα αριστερά του αριθμού ώστε να υπάρχει ένα σύνολο από Ν μπιτ. Αν το πρόσημο είναι αρνητικό, μένουν ως έχουν όλα τα δεξιότερα 0 και το πρώτο 1. Τα υπόλοιπα μπιτ αντικαθίστανται από το συμπλήρωμά τους. 11
12 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο Προσθέστε το 24 και το 17 αφού πρώτα τους μετατρέψετε σε δυαδικούς αριθμούς σε μορφή συμπληρώματος ως προς δύο, με μήκος μπιτ 8 Λύση (+24) + ( 17) (+7) Κρατούμενο Αποτέλεσμα Προσέξτε ότι το αποτέλεσμα είναι +7 και ότι το τελευταίο κρατούμενο (από την πιο αριστερή στήλη) αγνοείται 12
13 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο Προσθέστε το 35 και το 20 αφού πρώτα τους μετατρέψετε σε δυαδικούς αριθμούς σε μορφή συμπληρώματος ως προς δύο ( 35) + (+20) ( 15) 13
14 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο Προσθέστε το 35 και το 20 αφού πρώτα τους μετατρέψετε σε δυαδικούς αριθμούς σε μορφή συμπληρώματος ως προς δύο, με μήκος 8 μπιτ. Λύση ( 35) + (+20) ( 15) Κρατούμενο Αποτέλεσμα Προσέξτε ότι το αποτέλεσμα είναι 15 (το συμπλήρωμα ως προς δύο του αποτελέσματος είναι το 15). 14
15 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο Προσθέστε το 127 και το 3 αφού τους μετατρέψετε σε μορφή συμπληρώματος ως προς δύο, με μήκος μπιτ 8. (+127) + (+3) (+130) 15
16 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο Προσθέστε το 127 και το 3, αφού πρώτα τους μετατρέψετε σε δυαδικούς αριθμούς σε μορφή συμπληρώματος ως προς δύο, με μήκος μπιτ 8. (+127) + (+3) (+130) Λύση Κρατούμενο Αποτέλεσμα
17 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο Εδώ αμέσως παρατηρούμε ένα σφάλμα. n Το πιο αριστερό μπιτ του αποτελέσματος είναι το 1, πράγμα που σημαίνει ότι ο αριθμός είναι αρνητικός (εμείς περιμέναμε θετικό αριθμό) n Ποιος είναι αυτός ο αριθμός στο δεκαδικό σύστημα; 17
18 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο Εδώ αμέσως παρατηρούμε ένα σφάλμα. n Το πιο αριστερό μπιτ του αποτελέσματος είναι το 1, πράγμα που σημαίνει ότι ο αριθμός είναι αρνητικός (εμείς περιμέναμε θετικό αριθμό) n Ποιος είναι αυτός ο αριθμός στο δεκαδικό σύστημα; w => το συμπλήρωμά του ως προς δύο είναι => 126 w Άρα ο αριθμός είναι το 126 (και όχι το 130). w Το αποτέλεσμα αυτό οφείλεται στην υπερχείλιση 18
19 Υπερχείλιση Υπερχείλιση (overflow) ονομάζεται το σφάλμα που παρουσιάζεται όταν προσπαθούμε να αποθηκεύσουμε έναν αριθμό ο οποίος δεν είναι στο διάστημα τιμών που ορίζεται από τη δέσμευση Διάστημα τιμών αριθμών στην αναπαράσταση συμπληρώματος ως προς δύο: 2 N-1 0 (2 N-1 1) 19
20 Υπερχείλιση 127+1=-128!!! 127+3= =127!!! 20
21 Αφαίρεση στη μορφή συμπληρώματος ως προς δύο Αριθμός 1 Αριθμός 2 Είναι ισοδύναμο με Αριθμός 1 + ( Αριθμός 2) Αφαιρέστε το 62 από το 101 σε μορφή συμπληρώματος ως προς δύο (+101) (+62) Û (+101) + ( 62) (+39) 21
22 Αφαίρεση στη μορφή συμπληρώματος ως προς δύο (+101) (+62) Û (+101) + ( 62) (+39) Λύση Κρατούμενο Αποτέλεσμα Το αποτέλεσμα είναι +39. Παρατηρήστε ότι το πιο αριστερό κρατούμενο αγνοείται. 22
23 Λογικές Πράξεις Η τιμή ενός μπιτ μπορεί να είναι είτε 0 είτε 1. Θεωρούμε ότι n n το 0 αντιπροσωπεύει τη λογική τιμή ψευδής (false) και το 1 αντιπροσωπεύει τη λογική τιμή αληθής (true) Έτσι, μπορούμε για τον χειρισμό των δεδομένων να εφαρμόζουμε τις πράξεις που ορίζονται στην Άλγεβρα Boole Η Άλγεβρα Boole κατατάσσεται σ ένα ειδικό πεδίο των μαθηματικών που ονομάζεται Λογική 23
24 Λογικές Πράξεις 24
25 Πίνακες Αλήθειας 25
26 Μονομελής Τελεστής 26
27 Ο Διμελής Τελεστής ΑΝD 27
28 Ο Διμελής Τελεστής OR 28
29 Ο Διμελής Τελεστής XOR 29
30 Εφαρμογές Οι τρεις λογικές διμελείς πράξεις χρησιμοποιούνται για την τροποποίηση σχημάτων μπιτ. Μπορούν n n n να ενεργοποιούν, να απενεργοποιούν, ή να αντιστρέφουν συγκεκριμένα μπιτ Το σχήμα μπιτ προς τροποποίηση έρχεται n n n Σε σύζευξη (AND), Σε διάζευξη (OR), ή Σε αποκλειστική διάζευξη (XOR) με το δεύτερο σχήμα μπιτ, το οποίο ονομάζεται μάσκα 30
31 Εφαρμογές - Μάσκες Οι μάσκες χρησιμοποιούνται για την τροποποίηση άλλων σχημάτων μπιτ 31
32 Εφαρμογή του τελεστή ΑΝD: Απενεργοποίηση συγκεκριμένων μπιτ Μια εφαρμογή του τελεστή AND είναι η απενεργοποίηση συγκεκριμένων μπιτ ενός σχήματος n Πως; n Δηλ. η επιβολή της τιμής 0 σε αυτά Με μια μάσκα απενεργοποίησης με το ίδιο πλήθος μπιτ, και με τιμή 0 στα μπιτ που αντιστοιχούν σε αυτά που θέλουμε να απενεργοποιήσουμε. 32
33 Κανόνες κατασκευής μάσκας απενεργοποίησης συγκεκριμένων μπιτ Για να απενεργοποιηθεί ένα μπιτ στο σχήμα προορισμού, το αντίστοιχο μπιτ στη μάσκα πρέπει να είναι 0. Για να μείνει ένα μπιτ στο σχήμα προορισμού ως έχει, το αντίστοιχο μπιτ της μάσκας πρέπει να είναι 1. 33
34 Παράδειγμα Χρησιμοποιείστε μια μάσκα για να απενεργοποιήσετε το 1 o και 3 o από αριστερά και το δύο πρώτα μπιτ από δεξιά ενός σχήματος μπιτ μήκους 8. 34
35 Παράδειγμα Χρησιμοποιείστε μια μάσκα για να απενεργοποιήσετε το 1 o και 3 o από αριστερά και το δύο πρώτα μπιτ από δεξιά ενός σχήματος μπιτ μήκους 8. Λύση: η μάσκα είναι και ο τελεστής AND 35
36 Εφαρμογή του τελεστή ΟR: Eνεργοποίηση συγκεκριμένων μπιτ Μια εφαρμογή του τελεστή OR είναι η ενεργοποίηση συγκεκριμένων μπιτ ενός σχήματος n Πως; δηλ. η επιβολή της τιμής 1 σε αυτά n Με μια μάσκα ενεργοποίησης με το ίδιο πλήθος μπιτ και με τιμή 1 στα μπιτ που αντιστοιχούν σε αυτά που θέλουμε να ενεργοποιήσουμε 36
37 Κανόνες κατασκευής μάσκας ενεργοποίησης συγκεκριμένων μπιτ Για να ενεργοποιηθεί ένα μπιτ στο σχήμα προορισμού, το αντίστοιχο μπιτ στη μάσκα πρέπει να είναι 1. Για να μείνει ένα μπιτ στο σχήμα προορισμού ως έχει, το αντίστοιχο μπιτ της μάσκας πρέπει να είναι 0. 37
38 Παράδειγμα Χρησιμοποιείστε μια μάσκα για να ενεργοποιήσετε τα 4 αριστερά μπιτ και το πρώτο δεξί μπιτ ενός σχήματος μπιτ μήκους 8. 38
39 Παράδειγμα Χρησιμοποιείστε μια μάσκα για να ενεργοποιήσετε τα 4 αριστερά μπιτ και το πρώτο δεξί μπιτ ενός σχήματος μπιτ μήκους 8. Λύση: η μάσκα είναι και ο τελεστής που θα χρησιμοποιηθεί είναι ο OR 39
40 Εφαρμογή του τελεστή XΟR: Aντιστροφή συγκεκριμένων μπιτ Μια εφαρμογή του τελεστή ΧΟR είναι η αντιστροφή συγκεκριμένων μπιτ ενός σχήματος n δηλ. η αλλαγή της τιμής από 0 σε 1 και το αντίστροφο Για να γίνει αυτό χρησιμοποιείται μια μάσκα αντιστροφής με το ίδιο πλήθος μπιτ και με τιμή 1 στα μπιτ που αντιστοιχούν σε αυτά που θέλουμε να αντιστρέψουμε. 40
41 Πίνακες Αλήθειας 41
42 Κανόνες κατασκευής μάσκας αντιστροφής συγκεκριμένων μπιτ Για να αντιστραφεί ένα μπιτ στο σχήμα προορισμού, το αντίστοιχο μπιτ στη μάσκα πρέπει να είναι 1. Για να μείνει ένα μπιτ ως έχει στο σχήμα προορισμού, το αντίστοιχο μπιτ της μάσκας πρέπει να είναι 0. 42
43 Παράδειγμα Χρησιμοποιείστε μια μάσκα για να αντιστρέψετε τα 5 αριστερά μπιτ του σχήματος
44 Παράδειγμα Χρησιμοποιείστε μια μάσκα για να αντιστρέψετε τα 5 αριστερά μπιτ του σχήματος Λύση Η μάσκα είναι
45 Πράξεις Ολίσθησης / Μετατόπισης Μετακινούν τα bits ενός σχήματος bit αριστερά ή δεξιά. Έτσι, αλλάζει η θέση των bits Δύο είδη πράξεων ολίσθησης Λογικές πράξεις ολίσθησης και Αριθμητικές πράξεις ολίσθησης 4.45
46 Λογικές Πράξεις Ολίσθησης Εφαρμόζονται σε σχήματα bit που αναπαριστούν μη προσημασμένους αριθμούς για να μην αλλάζει το πρόσημο. Δύο είδη: Λογική Μετατόπιση Κυκλική Μετατόπιση 4.46
47 Δεξιά και Αριστερή Ολίσθηση Η δεξιά ολίσθηση καταργεί το δεξιότερο μπιτ, μετακινεί κάθε μπιτ μία θέση προς τα δεξιά, και προσθέτει ένα 0 ως το πιο αριστερό μπιτ. Η αριστερή ολίσθηση καταργεί το πιο αριστερό μπιτ, μετακινεί κάθε μπιτ μία θέση προς τα αριστερά, και προσθέτει ένα 0 ως το δεξιότερο μπιτ 47
48 Δεξιά και Αριστερή Ολίσθηση 48
49 Παράδειγμα Χρησιμοποιείστε αριστερή μετατόπιση στο σχήμα bit ΛΥΣΗ Discarded Added
50 Κυκλική Μετατόπιση/Ολίσθηση
51 Παράδειγμα Χρησιμοποιείστε αριστερή κυκλική μετατόπιση στο σχήμα bit ΛΥΣΗ: Το αριστερότερο bit μετατοπίζεται κυκλικά και γίνεται το δεξιότερο.
52 Πράξεις Ολίσθησης/Μετατόπισης Πώς μπορει να διαιρεθεί ή να πολλαπλασιαστεί ένας αριθμός με το 2 με τη βοήθεια των πράξεων ολίσθησης; Λύση n Όταν ένα σχήμα μπιτ αναπαριστά κάποιον μη προσημασμένο αριθμό, η δεξιά ολίσθηση διαιρεί τον αριθμό αυτό με το 2 (ακέραια διαίρεση). w Το σχήμα αντιπροσωπεύει τον αριθμό 59. Αν ολισθήσουμε τον αριθμό προς τα δεξιά, παίρνουμε , το οποίο ισούται με 29. w Αν πάλι ολισθήσουμε τον αρχικό αριθμό (59) προς τα αριστερά, παίρνουμε , το οποίο ισούται με
53 Αριθμητικές Πράξεις Μετατόπισης Υποθέτουν ότι το σχήμα bit είναι ένας προσημασμένος ακέραιος σε συμπλήρωμα ως προς 2. Η δεξιά ολίσθηση χρησιμοποιείται για τη διαίρεση ενός ακεραίου με το 2 (ακέραια διαίρεση), ενώ η αριστερή ολίσθηση για τον πολλαπλασιασμό του ακεραίου με το 2.
54 Παράδειγμα Χρησιμοποιείστε δεξιά μετατόπιση στο που είναι ακέραιος συμπληρώματος ως προς 2. ΛΥΣΗ Το αριστερότερο bit διατηρείται και επίσης αντιγράφεται στο διπλανό δεξί bit. Ο αρχικός αριθμός ήταν 103. Ο νέος είναι το 52, δηλ. το αποτέλεσμα της διαίρεσης του 103 με το 2 με περικοπή στον μικρότερο ακέραιο
55 Παράδειγμα Χρησιμοποιείστε αριστερή μετατόπιση στο που είναι ακέραιος συμπληρώματος ως προς 2. ΛΥΣΗ Το αριστερότερο bit χάνεται και επίσης προστίθεται ένα 0 ως δεξιότερο bit. Ο αρχικός αριθμός ήταν 39. Ο νέος είναι το 78, δηλ. το αποτέλεσμα του πολλαπλασιασμού με το 2. Η πράξη είναι έγκυρη αφού δεν προέκυψε υπερχείλιση.
56 Παράδειγμα Χρησιμοποιείστε αριστερή μετατόπιση στο που είναι ακέραιος συμπληρώματος ως προς 2. ΛΥΣΗ Το αριστερότερο bit χάνεται και επίσης προστίθεται ένα 0 ως δεξιότερο bit. Ο αρχικός αριθμός ήταν 127 και νέος είναι το 2, οπότε δεν έχουμε έγκυρο αποτέλεσμα λόγω υπερχείλισης. Αυτό συνέβη γιατί το 254 (127x2) δεν μπορεί να αποθηκευθεί σε σχήμα μήκους 8 bit.
57 Παράδειγμα Ο συνδυασμός λογικών πράξεων και λογικών πράξεων μετατόπισης μας παρέχει εργαλεία για χειρισμό σχημάτων bit. Π.χ. αν έχουμε ένα σχήμα bit και πρέπει να χρησιμοποιήσουμε το τρίτο bit από δεξιά, πρέπει να ξέρουμε αν αυτό είναι 0 or 1. Το διαπιστώνουμε ως εξής: Μετατοπίζουμε το σχήμα δύο bit προς τα δεξιά Εφαρμόζουμε στο αποτέλεσμα τον τελεστή AND με μιά μάσκα όπου δεξιά έχει 1 Ελέγχουμε το αποτέλεσμα
58 Ερωτήσεις; 58
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Διαβάστε περισσότεραΕισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ
Εισαγωγή στην επιστήµη των υπολογιστών Πράξεις µε µπιτ 1 Πράξεις µε µπιτ 2 Αριθµητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασµός, Διαίρεση 3 Πρόσθεση στη µορφή συµπληρώµατος ως προς δύο
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Διαβάστε περισσότεραΕισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ
Εισαγωγή στην επιστήµη των υπολογιστών Πράξεις µε µπιτ 1 Πράξεις µε µπιτ 2 Αριθµητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασµός, Διαίρεση Ο πολλαπλασιασµός και η διαίρεση στο επίπεδο του
Διαβάστε περισσότεραΤμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών
Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού
Διαβάστε περισσότεραΤμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 4 : Πράξεις με bits Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής
Διαβάστε περισσότεραΕισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Λογικές πράξεις, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλικρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα που αφορούν
Διαβάστε περισσότεραΕλίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Διαβάστε περισσότεραΠΛΗ21 Κεφάλαιο 2. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: Παράσταση Προσημασμένων Αριθμών Συμπληρώματα
Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 2 2.3.4 Παράσταση Προσημασμένων Αριθμών Συμπληρώματα Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι ένας Συμπλήρωμα ενός αριθμού πρακτικά Τι είναι Συμπλήρωμα ως
Διαβάστε περισσότεραΤμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών
Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη των υπολογιστών
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα
Διαβάστε περισσότεραΣύστημα Πλεονάσματος. Αναπαράσταση Πραγματικών Αριθμών. Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής
Σύστημα Πλεονάσματος Αναπαράσταση Πραγματικών Αριθμών Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής Σύστημα Πλεονάσματος (Excess System) - 1 Είναι μια άλλη μια μορφή αναπαράστασης για αποθήκευση
Διαβάστε περισσότεραΛύσεις Ασκήσεων ΣΕΙΡΑ 1 η. Πρόσημο και μέγεθος
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΑΜΗΝΟ: 1 ο /2015-16 ΤΜΗΜΑ: ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ Καθηγητής: Θ. Τσιλιγκιρίδης Άσκηση 1η Περιεχόμενα μνήμης Λύσεις
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση
Διαβάστε περισσότεραΣυστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1
Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:
Διαβάστε περισσότεραΣύστημα Πλεονάσματος και Αναπαράσταση Αριθμών Κινητής Υποδιαστολής
Σύστημα Πλεονάσματος και Αναπαράσταση Αριθμών Κινητής Υποδιαστολής Σύστημα Πλεονάσματος (Excess System) - 1 Είναι μια άλλη μια μορφή αναπαράστασης για αποθήκευση θετικών και αρνητικών ακεραίων σε έναν
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 3. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Β Παράσταση Προσημασμένων
Διαβάστε περισσότεραΑριθμητική Υπολογιστών (Κεφάλαιο 3)
ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 9 Αριθμητική Υπολογιστών (Κεφάλαιο 3) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Αριθμητική για υπολογιστές
Διαβάστε περισσότεραΤμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης
Διαβάστε περισσότεραΕισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών
Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος
Διαβάστε περισσότεραΕισαγωγή στην επιστήµη των υπολογιστών. Αναπαράσταση Αριθµών
Εισαγωγή στην επιστήµη των υπολογιστών Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος είναι το 10 αναπτύχθηκε τον 8
Διαβάστε περισσότεραΕισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,
Διαβάστε περισσότεραΑριθμητικά Συστήματα
Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1
Διαβάστε περισσότερα! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς
Διαβάστε περισσότεραΕισαγωγή στους Ηλεκτρονικούς Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Κωδικοποίηση & Αποκωδικοποίηση
Διαβάστε περισσότεραΠράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς
Διαβάστε περισσότεραΛογική Σχεδίαση Ψηφιακών Συστημάτων
Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδικοί Αριθμοί Η γενική αναπαράσταση ενός οποιουδήποτε
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ
Διαβάστε περισσότεραΑριθμητικά Συστήματα
Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά
Διαβάστε περισσότεραΕισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα
Διαβάστε περισσότεραΔυαδικη παρασταση αριθμων και συμβολων
Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a
Διαβάστε περισσότεραΕισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 3 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΕισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η
Διαβάστε περισσότεραΠληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης
Διαβάστε περισσότεραΠράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων
Διαβάστε περισσότερα1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ. α i. (α i β i ) (1.3) όπου: η= το πλήθος ακεραίων ψηφίων του αριθμού Ν. n-1
1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Εισαγωγή Το δεκαδικό σύστημα (Decimal System) αρίθμησης χρησιμοποιείται από τον άνθρωπο και είναι κατάλληλο βέβαια γι αυτόν, είναι όμως εντελώς ακατάλληλο για τις ηλεκτρονικές
Διαβάστε περισσότεραΕισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα
Διαβάστε περισσότεραΑναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική
Αναπαράσταση Δεδομένων ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση δεδομένων Κατάλληλη συμβολική αναπαράσταση δεδομένων, για απλοποίηση βασικών πράξεων, όπως πρόσθεση Πόσο εύκολο είναι
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6
ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Bits & Bytes Bit: η μικρότερη μονάδα πληροφορίας μία από δύο πιθανές καταστάσεις (ναι / όχι, αληθές / ψευδές, n / ff) κωδικοποίηση σε 0 ή 1 δυαδικό σύστημα
Διαβάστε περισσότεραΔιαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 4 η Τελεστές Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή Σωτήρης
Διαβάστε περισσότεραΑριθµητική υπολογιστών
Αριθµητική υπολογιστών Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #03 1 εκαδικό σύστηµα αρίθµησης Βάση το 10. 10 ψηφία: 0 1 2 3 4 5 6 7 8 9 1 δεκαδικό ψηφίο εκφράζει 1 από 10 πιθανές επιλογές
Διαβάστε περισσότεραLab 6: Signed Add/Subtract, FF (U.Crete, CS-120) 14-10-28 17:28 διαίρεσης, δηλαδή αριστερά 28-24 = 4 bits της διεύθυνσης) μετατρέποντας στο δεκαδικό, βλέπουμε ότι όντως πρόκειται γιά τη θέση 256+128+16
Διαβάστε περισσότεραΚεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ. Εφ. Πληροφορικής Κεφ. 2 Καραμαούνας Πολύκαρπος 1
Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ Καραμαούνας Πολύκαρπος 1 2.1Η έννοια της πληροφορίας Δεδομένα Πληροφορία Καραμαούνας Πολύκαρπος 2 2.2 ΗΥ Το βασικό εργαλείο επεξεργασίας και
Διαβάστε περισσότεραΣυστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version
Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε
Διαβάστε περισσότεραΔυαδικό Σύστημα Αρίθμησης
Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,
Διαβάστε περισσότεραΚεφάλαιο 2 Κωδικοποίηση & Αποκωδικοποίηση
Κεφάλαιο 2 Κωδικοποίηση & Αποκωδικοποίηση Αριθµών & Χαρακτήρων Αποκωδικοποίηση Κωδικοποίηση Συστήµατα Αρίθµησης το υαδικό Μετατροπή από το ένα σύστηµα στο άλλο Η πρόσθεση & η αφαίρεση στο υαδικό H αφαίρεση
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχιτεκτονική-Ι Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΒασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος 2012-13 Κων/νος Φλώρος Απλοί τύποι δεδομένων Οι τύποι δεδομένων προσδιορίζουν τον τρόπο παράστασης των
Διαβάστε περισσότεραΑρχιτεκτονική Υπολογιστών. Data. Κείμενο. Βίντεο. Αριθμοί Εικόνες. Ήχοι
Data Κείμενο Βίντεο Αριθμοί Εικόνες Ήχοι 1 Τα δεδομένα στους ηλεκτρονικούς υπολογιστές αναπαρίστανται σαν αριθμοί Οι αριθμοί αποθηκεύονται σε bits (δυαδικό σύστημα). Θέματα: Πως αναπαριστώνται οι αρνητικοί
Διαβάστε περισσότεραΚατ οίκον Εργασία ΚE5
Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Χειμερινό Εξάμηνο ΗΜΥ Εισαγωγή στην Τεχνολογία Διδάσκων: Δρ. Στέλιος Τιμοθέου Κατ οίκον Εργασία ΚE5 Ασκήσεις Ασκήσεις:. Μετατρέψτε
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής
Διαβάστε περισσότεραΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας
Διαβάστε περισσότερα1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί
Διαβάστε περισσότεραΑνασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΕΡΓΑΣΙΑ 1: Ονοματεπώνυμο: Εξάμηνο: Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Α.Μ: Έτος: 1. Το δεκαδικό σύστημα Είναι φανερό ότι οι χιλιάδες, εκατοντάδες, δεκάδες, μονάδες και τα δεκαδικά ψηφία είναι δυνάμεις
Διαβάστε περισσότεραΨηφιακά Συστήματα. 1. Συστήματα Αριθμών
Ψηφιακά Συστήματα 1. Συστήματα Αριθμών Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L.,
Διαβάστε περισσότεραΚ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις
Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ
Διαβάστε περισσότεραΓενικά Στοιχεία Ηλεκτρονικού Υπολογιστή
Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω
Διαβάστε περισσότεραΠανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Αριθμητικά Συστήματα Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αριθμητικά Συστήματα Δεκαδικό Σύστημα: Βάση το 10, ψηφία 10 και συντελεστές
Διαβάστε περισσότεραΑριθμητικά Συστήματα Κώδικες
Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και
Διαβάστε περισσότεραΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Συστήματα αρίθμησης Δυαδικό αριθμητικό
Διαβάστε περισσότεραΟργάνωση Υπολογιστών
Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό
Διαβάστε περισσότεραa = 10; a = k; int a,b,c; a = b = c = 10;
C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 4 ο Τελεστές Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Ο τελεστής εκχώρησης = Ο τελεστής = χρησιµοποιείται για την απόδοση τιµής (ή αλλιώς ανάθεση τιµής) σε µία µεταβλητή Π.χ.
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών
Εισαγωγή στην επιστήμη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών 1 Αριθμητικό Σύστημα Ορίζει τον τρόπο αναπαράστασης ενός αριθμού με διακεκριμένα σύμβολα Ένας αριθμός αναπαρίσταται διαφορετικά
Διαβάστε περισσότεραΚεφάλαιο 4. Λογική Σχεδίαση
Κεφάλαιο 4 Λογική Σχεδίαση 4.1 Εισαγωγή Λογικές συναρτήσεις ονομάζουμε εκείνες για τις οποίες μπορούμε να αποφασίσουμε αν είναι αληθείς ή όχι. Χειριζόμαστε τις λογικές προτάσεις στην συγγραφή λογισμικού
Διαβάστε περισσότεραΕισαγωγή. Πληροφορική
Πληροφορική Διδάσκων:Μ.Χατζόπουλος, Παραδόσεις:Τρίτη 4-6, Τετάρτη 1-3; (Αμφιθέατρο Α15) Πληροφορίες στην ιστοσελίδα του μαθήματος http://www.di.uoa.gr/~organosi/ Η δομή του μαθήματος Εισαγωγή στην Επιστήμη
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα
Διαβάστε περισσότεραΕισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,
Διαβάστε περισσότεραΕκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 24-5 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης ; Ποιες κατηγορίες
Διαβάστε περισσότεραΑνάπτυξη και Σχεδίαση Λογισμικού
Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Εκφράσεις και Λίγες Εντολές Οι εκφράσεις της C Τελεστές Απλές και σύνθετες εντολές Εντολές ελέγχου (επιλογής) Εισαγωγή σε
Διαβάστε περισσότερα3.1 εκαδικό και υαδικό
Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και εδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 3.1 εκαδικό και υαδικό εκαδικό σύστηµα 2 1 εκαδικό και υαδικό υαδικό Σύστηµα 3 3.2 Μετατροπή Για τη µετατροπή
Διαβάστε περισσότερα1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα
1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 25/10/07
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 25/10/07 Αριθμητική στο δυαδικό σύστημα (γενικά) Συμπληρωματικά για δυαδικό σύστημα Η πρόσθεση στηρίζεται στους κανόνες: 0 + 0 = 0, 0 + 1 = 1, 1
Διαβάστε περισσότεραΕισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας
Διαβάστε περισσότεραΠρογραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 2: Αναπαράσταση Δεδομένων Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΕισαγωγή στους Ηλεκτρονικούς Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο
Διαβάστε περισσότεραΠραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ
Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch t / / h 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών
Διαβάστε περισσότεραΠερίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.
ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη
Διαβάστε περισσότεραΚεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή
Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5
Διαβάστε περισσότεραµπιτ Λύση: Κάθε οµάδα των τεσσάρων µπιτ µεταφράζεται σε ένα δεκαεξαδικό ψηφίο 1100 C 1110 E Άρα το δεκαεξαδικό ισοδύναµο είναι CE2
! Βρείτε το δεκαεξαδικό ισοδύναµο του σχήµατος µπιτ 110011100010 Λύση: Κάθε οµάδα των τεσσάρων µπιτ µεταφράζεται σε ένα δεκαεξαδικό ψηφίο 1100 C 1110 E 0010 2 Άρα το δεκαεξαδικό ισοδύναµο είναι CE2 2 !
Διαβάστε περισσότεραΑρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 01 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και
Διαβάστε περισσότεραΑθροιστές. Ημιαθροιστής
Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που
Διαβάστε περισσότεραΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ
Η ΓΛΩΣΣΑ PASCAL ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ Απλοί ή στοιχειώδης Τ.Δ. Ακέραιος τύπος Πραγματικός τύπος Λογικός τύπος Χαρακτήρας Σύνθετοι Τ.Δ. Αλφαριθμητικός 1. Ακέραιος (integer) Εύρος: -32768 έως 32767 Δήλωση
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL
8.1. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PACAL Πως προέκυψε η γλώσσα προγραμματισμού Pascal και ποια είναι τα γενικά της χαρακτηριστικά; Σχεδιάστηκε από τον Ελβετό επιστήμονα της Πληροφορικής Nicklaus Wirth to
Διαβάστε περισσότερα2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης
Διαβάστε περισσότεραΕθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότερα3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting)
Εργαστήριο 3: 3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting) Η C++, όπως όλες οι γλώσσες προγραμματισμού, χρησιμοποιεί τελεστές για να εκτελέσει τις αριθμητικές και λογικές λειτουργίες.
Διαβάστε περισσότεραΕισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 3: Δυαδικά Συστήματα Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΠρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση
Διαβάστε περισσότεραΑριθμητικά Συστήματα = 3 x x x x 10 0
Δεκαδικό Όταν αναφερόμαστε σε μία αριθμητική τιμή, απεικονίζουμε μία ποσότητα με ένα σύμβολο ή έναν συνδυασμό από σύμβολα. Το αριθμητικό σύστημα που χρησιμοποιούμε είναι το δεκαδικό. Αποτελείται από δέκα
Διαβάστε περισσότερα4.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 2. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Α 2 Τεχνολογία
Διαβάστε περισσότεραΤα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας
ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (2/2) 1.1 Τα bits και ο τρόπος που αποθηκεύονται 1.2 Κύρια µνήµη 1.3 Αποθηκευτικά µέσα 1.4 Αναπαράσταση πληροφοριών ως σχηµάτων bits
Διαβάστε περισσότεραΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών πράξεων
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 9 Ο. Διαχείριση αλφαριθμητικών και πράξεις σε επίπεδο bit ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΙΝΑΤΚΑΣ Ι.
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 9 Ο Διαχείριση αλφαριθμητικών και πράξεις σε επίπεδο bit 1 Εισαγωγή Τα αλφαριθμητικά δεδομένα καταλαμβάνουν σημαντικότατη θέση στον προγραμματισμό, ιδιαίτερα σε εφαρμογές εμπορικές
Διαβάστε περισσότεραΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.3 : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών Στόχοι Μαθήματος: Να γνωρίσετε τις βασικές αρχές αριθμητικής των Η/Υ. Ποια είναι τα κυκλώματα
Διαβάστε περισσότεραChapter 3. Αριθμητική Υπολογιστών. Έβδομη (7 η ) δίωρη διάλεξη. Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L.
Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L. Hennessy Chapter 3 Αριθμητική Υπολογιστών Έβδομη (7 η ) δίωρη διάλεξη. Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση),
Διαβάστε περισσότερα