Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών
|
|
- Λάχεσις Μοσχοβάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Αναπαράσταση Αριθμών
2 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα
3 Δεκαδικό και Δυαδικό
4 Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού με το βάρος του και το αποτέλεσμα θα είναι είτε 0 είτε η τιμή του βάρους. Κατόπιν προσθέτουμε τα αποτελέσματα
5 Μετατροπή Μετατρέψτε τον δυαδικό αριθμό στο δεκαδικό σύστημα Λύση Γράφουμε τα μπιτ και τα βάρη τους. Πολλαπλασιάζουμε κάθε μπιτ με το αντίστοιχο βάρος και σημειώνουμε το αποτέλεσμα. προσθέτουμε τα αποτελέσματα για να πάρουμε τον δεκαδικό αριθμό. Δυαδικός Βάρη Δεκαδικός 19
6 Μετατροπή Για να μετατρέψουμε έναν δεκαδικό αριθμό σε δυαδικό, πρέπει να χρησιμοποιήσουμε συνεχείς διαιρέσεις. Ο αρχικός αριθμός του παραδείγματος, ο 45, διαιρείται με το 2. Το υπόλοιπο (1) αποτελεί το πρώτο δυαδικό ψηφίο, Το δεύτερο ψηφίο προσδιορίζεται από τη διαίρεση του πηλίκου (22) με το 2. Το υπόλοιπο (0) αποτελεί το δεύτερο δυαδικό ψηφίο Το πηλίκο διαιρείται με το 2 για να βρεθεί η επόμενη θέση. Η διαδικασία συνεχίζεται μέχριτοπηλίκοναγίνει0.
7 Μετατροπή Μετατρέψτε τον δεκαδικό αριθμό 35 στο δυαδικό σύστημα Λύση Γράφουμε τον αριθμό στη δεξιά γωνία. Διαιρούμε συνεχώς τον αριθμό με το 2 και σημειώνουμε το πηλίκο και το υπόλοιπο. Τα πηλίκα προχωρούν προς τα αριστερά, ενώ το υπόλοιπο σημειώνεται κάτω από την αντίστοιχη πράξη. Σταματάμε όταν το πηλίκο γίνει (Δεκαδικός) Δυαδικός
8 Αναπαράσταση Ακεραίων Δεν υπάρχει υπολογιστής που να μπορεί να αποθηκεύσει όλους τους ακέραιους σε αυτό το διάστημα τιμών
9 Μη Προσημασμένοι Ακέραιοι Ένας μη προσημασμένος ακέραιος είναι ένας ακέραιος χωρίς πρόσημο που μπορεί να πάρει τιμές από το 0 μέχριτοθετικόάπειρο Επειδή δεν υπάρχει υπολογιστής που να μπορεί να αναπαραστήσει όλους τους ακέραιους σε αυτό το διάστημα τιμών, ορίζεται μια σταθερά που ονομάζεται μέγιστος μη προσημασμένος ακέραιος και έτσι ένας μη προσημασμένος ακέραιος μπορεί να πάρει τιμές από το 0 μέχρι αυτή τη σταθερά Ο μέγιστος μη προσημασμένος ακέραιος εξαρτάται από τον αριθμό των μπιτ Ν που χρησιμοποιεί ο υπολογιστής για την αναπαράσταση ενός μη προσημασμένου ακέραιου Διάστημα τιμών: 0 (2 N 1)
10 Μη Προσημασμένοι Ακέραιοι Αριθμός μπιτ Διάστημα τιμών Η αποθήκευση μη προσημασμένων ακέραιων είναι μια απλή διαδικασία η οποία περιγράφεται με τα επόμενα βήματα: Ο αριθμός μετατρέπεται στο δυαδικό σύστημα. Αν το πλήθος των μπιτ είναι μικρότερο από Ν, τότε προστίθενται μηδενικά στα αριστερά του δυαδικού αριθμού ώστε να υπάρχουν συνολικά Ν μπιτ.
11 Μη Προσημασμένοι Ακέραιοι Αποθηκεύστε τον αριθμό 7 σε μια θέση μνήμης 8 μπιτ Λύση Πρώτα μετατρέπουμε τον αριθμό στο δυαδικό σύστημα (111). Προσθέτουμε πέντε μηδενικά ώστε να έχουμε ένα σύνολο από Ν (8) μπιτ ( ). Ο αριθμός κατόπιν αποθηκεύεται στη θέση μνήμης.
12 Μη Προσημασμένοι Ακέραιοι Αποθηκεύστε τον αριθμό 258 σε μια θέση μνήμης 16 μπιτ Λύση Πρώτα μετατρέπουμε τον αριθμό στο δυαδικό σύστημα ( ). Προσθέτουμε επτά μηδενικά ώστε να έχουμε ένα σύνολο από Ν (16) μπιτ ( ) Τέλος, ο αριθμός αποθηκεύεται στη θέση μνήμης
13 Μη Προσημασμένοι Ακέραιοι Αν ο ακέραιος προς αποθήκευση είναι μεγαλύτερος από το μέγιστο μη προσημασμένο τότε έχουμε μια κατάσταση που ονομάζεται υπερχείλιση Δεκαδικός Δέσμευση 8 μπιτ Δέσμευση 16 μπιτ Υπερχείλιση Υπερχείλιση Υπερχείλιση Υπερχείλιση Αποθήκευση μη προσημασμένων ακεραίων σε δύο διαφορετικούς υπολογιστές με δέσμευση 8 και 16 μπιτ αντίστοιχα
14 Μη Προσημασμένοι Ακέραιοι Ερμηνεύστε τον αριθμό στο δεκαδικό σύστημα, έχοντας ως δεδομένο ότι ο αριθμός έχει αποθηκευτεί ως μη προσημασμένος ακέραιος Λύση Εφαρμόζοντας τη διαδικασία μετατροπής από δυαδικό σε δεκαδικό που παρουσιάστηκε προηγουμένως, βρίσκουμε ότι ο αριθμός στο δεκαδικό σύστημα είναι ο 43
15 Μη Προσημασμένοι Ακέραιοι Εφαρμογές (σε οποιαδήποτε περίπτωση δεν χρειάζονται αρνητικοί αριθμοί) Καταμέτρηση. Διευθυνσιοδότηση.
16 Πρόσημου και Μεγέθους Η αποθήκευση ενός ακεραίου σε μορφή πρόσημου και μεγέθους (sign and magnitude) απαιτεί ένα μπιτ για την αναπαράσταση του πρόσημου (0 για θετικό αριθμό, 1 για αρνητικό αριθμό) Σε μια δέσμευση 8 μπιτ, μόνο τα 7 από αυτά μπορούν να χρησιμοποιηθούν για την αναπαράσταση της απόλυτης τιμής του αριθμού (δηλαδή του αριθμού χωρίς το πρόσημο). Έτσι, η μέγιστη θετική τιμή είναι το μισό της μη προσημασμένης τιμής. Διάστημα τιμών: (2 N-1 1) + (2 N-1 1)
17 Πρόσημου και Μεγέθους Στην αναπαράσταση πρόσημου και μεγέθους, το τελευταίο αριστερά μπιτ καθορίζει το πρόσημο του αριθμού. Αν είναι 0, ο αριθμόςείναι θετικός. Αν είναι 1, ο αριθμός είναι αρνητικός. Υπάρχουν δύο μηδενικά: ένα θετικό και ένα αρνητικό. Η μορφήτους σε μια δέσμευση 8 μπιτ είναι η εξής: Πλήθος μπιτ Διάστημα τιμών
18 Πρόσημου και Μεγέθους Η αποθήκευση ακεραίων πρόσημου και μεγέθους είναι απλή διαδικασία: Ο αριθμός μετατρέπεται στο δυαδικό σύστημα, το πρόσημο αγνοείται. Αν το πλήθος των μπιτ είναι μικρότερο από Ν 1, προστίθενται μηδενικά στα αριστερά του αριθμού ώστε να υπάρχει ένα σύνολο από Ν 1 μπιτ. Αν ο αριθμός είναι θετικός, προστίθεται στα αριστερά ένα μηδενικό (ώστε να έχουμε σύνολο Ν μπιτ). Αν ο αριθμός είναι αρνητικός, προστίθεται στα αριστερά η μονάδα (ώστεκαιπάλιτοσύνολοναείναι Ν μπιτ).
19 Πρόσημου και Μεγέθους Αποθηκεύστε τον αριθμό +7 σε μια θέση μνήμης 8 μπιτ με την αναπαράσταση πρόσημου και μεγέθους. Λύση Πρώτα μετατρέπουμε τον αριθμό στο δυαδικό ισοδύναμό του (111). Προσθέτουμε τέσσερα 0 ώστε να έχουμε σύνολο Ν 1 (7) μπιτ ( ) Επειδή ο αριθμός είναι θετικός, προσθέτουμε ένα επιπλέον 0, το οποίο εδώ φαίνεται με έντονη γραφή. Το αποτέλεσμα είναι
20 Πρόσημου και Μεγέθους Αποθηκεύστε τον αριθμό -258 σε μια θέση μνήμης 16 μπιτ με την αναπαράσταση πρόσημου και μεγέθους Λύση Πρώτα μετατρέπουμε τον αριθμό στο δυαδικό σύστημα ( ). Προσθέτουμε έξι 0 ώστε να έχουμε σύνολο Ν-1 (15) μπιτ ( ) Επειδή ο αριθμός είναι αρνητικός, προσθέτουμε ένα 1, το οποίο φαίνεται με έντονη γραφή. Το αποτέλεσμα είναι
21 Πρόσημου και Μεγέθους Δεκαδικός Δέσμευση 8 μπιτ Δέσμευση 16 μπιτ Υπερχείλιση Υπερχείλιση Αποθήκευση ακεραίων πρόσημου και μεγέθους σε δύο διαφορετικούς υπολογιστές
22 Πρόσημου και Μεγέθους Η διαδικασία της ερμηνείας μιας δυαδικής αναπαράστασης πρόσημου και μεγέθους στο δεκαδικό σύστημα είναι απλή. Αγνοούμε το πρώτο (το τελευταίο αριστερά) μπιτ. Μετατρέπουμε τα Ν-1 μπιτ από το δυαδικό στο δεκαδικό με τον τρόπο που δείξαμε στην αρχή του κεφαλαίου. Προσθέτουμε ένα σύμβολο + ή στον αριθμό, ανάλογα με το τελευταίο αριστερά μπιτ.
23 Πρόσημου και Μεγέθους Ερμηνεύστε τον αριθμό στο δεκαδικό σύστημα, έχοντας ως δεδομένο ότι ο αριθμός έχει αποθηκευτεί ως ακέραιος πρόσημου και μεγέθους Λύση Αν αγνοήσουμε το τελευταίο αριστερά μπιτ, το υπόλοιπο είναι Αυτός ο αριθμός αντιστοιχεί με στον αριθμό 59 του δεκαδικού συστήματος. Το αριστερό μπιτ είναι το 1, άρα ο αριθμός είναι ο 59.
24 Πρόσημου και Μεγέθους Εφαρμογές (η μετατροπή από το δεκαδικό στο δυαδικό, και το αντίστροφο, είναι πολύ εύκολη και έτσι η αναπαράσταση είναι βολική για εφαρμογές στις οποίες δεν είναι απαραίτητες οι πράξεις με αριθμούς) Μετατροπή αναλογικών σημάτων σε ψηφιακά. Αφού ληφθεί δείγμα τουαναλογικούσήματος, του αντιστοιχίζεται ένας θετικός ή αρνητικός αριθμός ο οποίος μετατρέπεται στο δυαδικό σύστημα και στέλνεται μέσω των καναλιών επικοινωνίας.
25 ΣυμπληρώματοςωςπροςΈνα Για την αναπαράσταση ενός θετικού αριθμού χρησιμοποιείται η σύμβαση των μη προσημασμένων ακεραίων Για την αναπαράσταση ενός αρνητικού αριθμού χρησιμοποιείται το συμπλήρωμα του θετικού αριθμού. Το +7 αναπαρίσταται όπως και ένας μη προσημασμένος ακέραιος, ενώ το 7 αναπαρίσταται ως το συμπλήρωμα του +7. Το συμπλήρωμα είναι ο αριθμός που προκύπτει αν όλα τα 0 μετατραπούν σε 1 και όλα τα 1 μετατραπούν σε 0. Το τελευταίο αριστερά μπιτ καθορίζει το πρόσημο του αριθμού. Αν είναι 0, ο αριθμός είναι θετικός. Αν είναι 1, οαριθμόςείναι αρνητικός Διάστημα τιμών: (2 N-1 1) + (2 N-1 1)
26 ΣυμπληρώματοςωςπροςΈνα Στην αναπαράσταση συμπληρώματος ως προς ένα υπάρχουν δύο μηδενικά: ένα θετικό και ένα αρνητικό. Σε μια δέσμευση 8 μπιτ αυτό έχει ως εξής: Πλήθος μπιτ Διάστημα τιμών
27 ΣυμπληρώματοςωςπροςΈνα Η αποθήκευση ακεραίων συμπληρώματος ως προς ένα απαιτεί την ακόλουθη διαδικασία: Ο αριθμός μετατρέπεται στο δυαδικό σύστημα, το πρόσημο αγνοείται. Προστίθενται μηδενικά στα αριστερά του αριθμού ώστε να υπάρχει ένα σύνολο από Ν μπιτ. Αν ο αριθμός είναι θετικός, δε χρειάζεται άλλη ενέργεια. Αν ο αριθμός είναι αρνητικός, κάθε μπιτ αντικαθίσταται από το συμπλήρωμά του (τα 0 γίνονται 1 και τα 1 γίνονται 0).
28 ΣυμπληρώματοςωςπροςΈνα Αποθηκεύστε τον αριθμό +7 σε μια θέση μνήμης 8 μπιτ με την αναπαράσταση συμπληρώματος ως προς ένα Λύση Πρώτα μετατρέπουμε τον αριθμό στο δυαδικό ισοδύναμό του (111). Προσθέτουμε πέντε 0 ώστε να έχουμε σύνολο Ν (8) μπιτ ( ). Ο αριθμός είναι θετικός, οπότε δε χρειάζεται καμία άλλη ενέργεια
29 ΣυμπληρώματοςωςπροςΈνα Αποθηκεύστε τον αριθμό 258 σε μια θέση μνήμης 16 μπιτ με τηναναπαράστασησυμπληρώματοςωςπροςένα Λύση Πρώτα μετατρέπουμε τον αριθμό στο δυαδικό σύστημα ( ). Προσθέτουμε επτά 0 ώστε να έχουμε σύνολο Ν (16) μπιτ ( ). Ο αριθμός είναι αρνητικός, οπότεαντικαθιστούμεκάθεμπιτμετο συμπλήρωμά του. Το αποτέλεσμα είναι
30 ΣυμπληρώματοςωςπροςΈνα Δεκαδικός Δέσμευση 8 μπιτ Δέσμευση 16 μπιτ ,760 Υπερχείλιση ,760 Υπερχείλιση Αποθήκευση ακεραίων συμπληρώματος ως προς ένα σε δύο διαφορετικούς υπολογιστές
31 ΣυμπληρώματοςωςπροςΈνα Η διαδικασία για την ερμηνεία μιας δυαδικής αναπαράστασης συμπληρώματος ως προς ένα στο δεκαδικό σύστημα είναι τα ακόλουθα: Αν το τελευταίο αριστερά μπιτ είναι 0 (θετικός αριθμός), Μετατρέπουμε ολόκληρο τον αριθμό από το δυαδικό στο δεκαδικό σύστημα. Τοποθετούμε θετικό πρόσημο (+) μπροστά από τον αριθμό. Αν το τελευταίο αριστερά μπιτ είναι 1 (αρνητικός αριθμός), Αντικαθιστούμε τον αριθμό με το συμπλήρωμά του (αλλάζουμε όλα τα 0 σε 1, και το αντίστροφο). Μετατρέπουμε ολόκληρο τον αριθμό από το δυαδικό στο δεκαδικό σύστημα. Τοποθετούμε μπροστά από τον αριθμό αρνητικό πρόσημο ( ).
32 ΣυμπληρώματοςωςπροςΈνα Ερμηνεύστε τον αριθμό στο δεκαδικό σύστημα, έχοντας ως δεδομένο ότι ο αριθμός έχει αποθηκευτεί ως ακέραιοςσυμπληρώματοςωςπροςένα Λύση Το τελευταίο αριστερά μπιτ είναι το 1, άρα ο αριθμός είναι αρνητικός. Πρώτα βρίσκουμε το συμπλήρωμά του. Το αποτέλεσμα είναι , το οποίο στο δεκαδικό είναι ο αριθμός 9. Επομένως ο αρχικός αριθμός είναι το 9.
33 ΣυμπληρώματοςωςπροςΈνα Εφαρμογές Επικοινωνία Δεδομένων Ανίχνευση και διόρθωση σφαλμάτων
34 ΣυμπληρώματοςωςπροςΔύο Η αναπαράσταση συμπληρώματος ως προς ένα έχει δύο μηδέν (+0 και 0), γεγονός που μπορεί να προκαλέσει σύγχυση σε υπολογισμούς Αν προσθέσουμε έναν αριθμό με το συμπλήρωμά του (π.χ. +4 και 4) σε αυτή την αναπαράσταση, παίρνουμε ως αποτέλεσμα αρνητικό μηδέν ( 0) αντί για θετικό (+0) Η αναπαράσταση συμπληρώματος ως προς δύο λύνει όλα αυτά τα προβλήματα
35 ΣυμπληρώματοςωςπροςΔύο Το συμπλήρωμα ως προς δύο αποτελεί σήμερα τον πιο συνηθισμένο, τον πιο σημαντικό, και τον πιο ευρέως χρησιμοποιούμενο τρόπο αναπαράστασης ακεραίων. Διάστημα τιμών: (2 N-1 ) + (2 N-1 1) Πλήθος μπιτ Διάστημα τιμών
36 ΣυμπληρώματοςωςπροςΔύο Η αποθήκευση αριθμών συμπληρώματος ως προς δύο απαιτεί τα ακόλουθα βήματα: Ο αριθμός μετατρέπεται στο δυαδικό σύστημα, το πρόσημο αγνοείται. Αν το πλήθος των μπιτ είναι μικρότερο από Ν, προστίθενται μηδενικά στα αριστερά του αριθμού ώστε να υπάρχει ένα σύνολο από Ν μπιτ. Αν το πρόσημο είναι θετικό, δε χρειάζεται καμία άλλη ενέργεια. Αν το πρόσημο είναι αρνητικό, μένουν ως έχουν όλα τα δεξιότερα 0 και το πρώτο 1.Τα υπόλοιπα μπιτ αντικαθίστανται από το συμπλήρωμά τους. Στην αναπαράσταση συμπληρώματος ως προς δύο, το τελευταίο αριστερά μπιτ καθορίζει το πρόσημο του αριθμού. Αν είναι 0, ο αριθμός είναι θετικός. Αν είναι 1, ο αριθμός είναι αρνητικός.
37 ΣυμπληρώματοςωςπροςΔύο Αποθηκεύστε τον αριθμό +7 σε μια θέση μνήμης 8 μπιτ με την αναπαράσταση συμπληρώματος ως προς δύο Λύση Πρώτα μετατρέπουμε τον αριθμό στο δυαδικό σύστημα (111). Προσθέτουμε πέντε 0 ώστε να έχουμε σύνολο Ν (8) μπιτ ( ). Ο αριθμός είναι θετικός, οπότε δε χρειάζεται καμία άλλη ενέργεια
38 ΣυμπληρώματοςωςπροςΔύο Αποθηκεύστε τον αριθμό 40 σε μια θέση μνήμης 16 μπιτ με την αναπαράσταση συμπληρώματος ως προς δύο Λύση Πρώτα μετατρέπουμε τον αριθμό στο δυαδικό σύστημα (101000). Προσθέτουμε δέκα 0 ώστε να έχουμε σύνολο Ν (16) μπιτ ( ). Ο αριθμός είναι αρνητικός, οπότε αφήνουμε τα δεξιότερα 0 μέχρι το πρώτο 1 (και το 1) ως έχουν, και αντικαθιστούμε τα υπόλοιπα μπιτ με το συμπλήρωμά τους. Το αποτέλεσμα είναι
39 ΣυμπληρώματοςωςπροςΔύο Δεκαδικός Δέσμευση 8 μπιτ Δέσμευση 16 μπιτ Υπερχείλιση Υπερχείλιση Παράδειγμα αναπαράστασης συμπληρώματος ως προς δύο σε δύο υπολογιστές
40 ΣυμπληρώματοςωςπροςΔύο Τα βήματα για την ερμηνεία μιας δυαδικής αναπαράστασης συμπληρώματος ως προς δύο στο δεκαδικό σύστημα είναι τα εξής: Αν το τελευταίο αριστερά μπιτ είναι 0 (θετικός αριθμός) Μετατρέπουμε ολόκληρο τον αριθμό από το δυαδικό στο δεκαδικό σύστημα. Τοποθετούμε θετικό πρόσημο (+) μπροστά από τον αριθμό. Αν το τελευταίο αριστερά μπιτ είναι 1 (αρνητικός αριθμός) Αφήνουμε τα δεξιότερα μπιτ μέχρι το πρώτο 1 (μαζί με αυτό) ως έχουν. Αντικαθιστούμε τα υπόλοιπα μπιτ με το συμπλήρωμά τους. Μετατρέπουμε ολόκληρο τον αριθμό από το δυαδικό στο δεκαδικό σύστημα. Τοποθετούμε μπροστά από τον αριθμό αρνητικό πρόσημο ( ).
41 ΣυμπληρώματοςωςπροςΔύο Ερμηνεύστε τον αριθμό στοδεκαδικόσύστημα, έχοντας ως δεδομένο ότι ο αριθμός έχει αποθηκευτεί ως ακέραιοςσυμπληρώματοςωςπροςδύο Λύση Το τελευταίο αριστερά μπιτ είναι το 1, άρα ο αριθμός είναι αρνητικός. Αφήνουμε τα δεξιότερα μπιτ (10) ως έχουν, και βρίσκουμε το συμπλήρωμα των υπολοίπων. Το αποτέλεσμα είναι Ο αριθμός του συμπληρώματος ως προς δύο είναι το 10. Επομένως ο αρχικός αριθμός ήταν το 10.
42 ΣυμπληρώματοςωςπροςΔύο Εφαρμογές Η αναπαράσταση συμπληρώματος ως προς δύο αποτελεί τον τυπικό τρόπο αναπαράστασης για την αποθήκευση ακέραιων στους σύγχρονους υπολογιστές.
43 Πλεόνασμα Άλλη μια μορφή αναπαράστασης που επιτρέπει την αποθήκευση τόσο θετικών όσο και αρνητικών αριθμών σε έναν υπολογιστή είναι το σύστημα πλεονάσματος (Excess system) Για να γίνει μια μετατροπή πλεονάσματος χρησιμοποιείται ένας θετικός αριθμός, ο οποίοςονομάζεται"μαγικός". Ο μαγικός αριθμός συνήθως είναι ο (2 Ν-1 ) ή ο (2 Ν-1 1), όπου Ν ηδέσμευσημπιτ. Για παράδειγμα, αν το Ν είναι 8, ο μαγικός αριθμός είναι είτε ο 128 είτε ο 127. Στην πρώτη περίπτωση ονομάζουμε την αναπαράσταση πλεόνασμα του 128 (Excess_128), και στη δεύτερη περίπτωση πλεόνασμα του 127 (Excess_127).
44 Πλεόνασμα Για την αναπαράσταση ενός αριθμού στο σύστημα πλεονάσματος χρησιμοποιείται η ακόλουθη διαδικασία: Ο μαγικός αριθμός προστίθεται στον ακέραιο. Το αποτέλεσμα μετατρέπεται στο δυαδικό και προστίθενται μηδενικά ώστε να υπάρχουν συνολικά Ν μπιτ.
45 Πλεόνασμα Αναπαραστήστε το 25 σε σύστημα πλεονάσματος 127 με δέσμευση 8 μπιτ Λύση Πρώτα προσθέτουμε στο 25 το 127, και παίρνουμε αποτέλεσμα 102. Στο δυαδικό σύστημα αυτός ο αριθμός είναι ο Προσθέτουμε ένα μπιτ για να κάνουμε το μήκος 8 μπιτ. Η αναπαράσταση είναι
46 Πλεόνασμα Για να ερμηνεύσουμε έναν αριθμό στο σύστημα πλεονάσματος, χρησιμοποιούμε την ακόλουθη διαδικασία: Μετατρέπουμε τον αριθμό στο δεκαδικό σύστημα. Αφαιρούμε τον μαγικό αριθμό από τον ακέραιο.
47 Πλεόνασμα Ερμηνεύστε τον αριθμό , με δεδομένο ότι η αναπαράσταση είναι σε σύστημα πλεονάσματος 127 Λύση Πρώτα μετατρέπουμε τον αριθμό στο δεκαδικό σύστημα. Είναι ο 254. Κατόπιν αφαιρούμε το 127 από τον αριθμό. Το αποτέλεσμα στο δεκαδικό είναι 127.
48 Ερωτήσεις - Απορίες???
Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών
Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού
Εισαγωγή στην επιστήμη των υπολογιστών
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα
Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών
Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος
Εισαγωγή στην επιστήµη των υπολογιστών. Αναπαράσταση Αριθµών
Εισαγωγή στην επιστήµη των υπολογιστών Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος είναι το 10 αναπτύχθηκε τον 8
Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,
3.1 εκαδικό και υαδικό
Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και εδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 3.1 εκαδικό και υαδικό εκαδικό σύστηµα 2 1 εκαδικό και υαδικό υαδικό Σύστηµα 3 3.2 Μετατροπή Για τη µετατροπή
Σύστημα Πλεονάσματος και Αναπαράσταση Αριθμών Κινητής Υποδιαστολής
Σύστημα Πλεονάσματος και Αναπαράσταση Αριθμών Κινητής Υποδιαστολής Σύστημα Πλεονάσματος (Excess System) - 1 Είναι μια άλλη μια μορφή αναπαράστασης για αποθήκευση θετικών και αρνητικών ακεραίων σε έναν
Σύστημα Πλεονάσματος. Αναπαράσταση Πραγματικών Αριθμών. Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής
Σύστημα Πλεονάσματος Αναπαράσταση Πραγματικών Αριθμών Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής Σύστημα Πλεονάσματος (Excess System) - 1 Είναι μια άλλη μια μορφή αναπαράστασης για αποθήκευση
ΠΛΗ21 Κεφάλαιο 2. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: Παράσταση Προσημασμένων Αριθμών Συμπληρώματα
Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 2 2.3.4 Παράσταση Προσημασμένων Αριθμών Συμπληρώματα Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι ένας Συμπλήρωμα ενός αριθμού πρακτικά Τι είναι Συμπλήρωμα ως
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης
Εισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση 3 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο
Λύσεις Ασκήσεων ΣΕΙΡΑ 1 η. Πρόσημο και μέγεθος
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΑΜΗΝΟ: 1 ο /2015-16 ΤΜΗΜΑ: ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ Καθηγητής: Θ. Τσιλιγκιρίδης Άσκηση 1η Περιεχόμενα μνήμης Λύσεις
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα
Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1
Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής
Αριθμητικά Συστήματα
Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1
Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ
Εισαγωγή στην επιστήµη των υπολογιστών Πράξεις µε µπιτ 1 Πράξεις µε µπιτ 2 Αριθµητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασµός, Διαίρεση 3 Πρόσθεση στη µορφή συµπληρώµατος ως προς δύο
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Εισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα
Αριθµητική υπολογιστών
Αριθµητική υπολογιστών Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #03 1 εκαδικό σύστηµα αρίθµησης Βάση το 10. 10 ψηφία: 0 1 2 3 4 5 6 7 8 9 1 δεκαδικό ψηφίο εκφράζει 1 από 10 πιθανές επιλογές
Δυαδικό Σύστημα Αρίθμησης
Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,
Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις
Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή
Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5
Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις
Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό
1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ. α i. (α i β i ) (1.3) όπου: η= το πλήθος ακεραίων ψηφίων του αριθμού Ν. n-1
1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Εισαγωγή Το δεκαδικό σύστημα (Decimal System) αρίθμησης χρησιμοποιείται από τον άνθρωπο και είναι κατάλληλο βέβαια γι αυτόν, είναι όμως εντελώς ακατάλληλο για τις ηλεκτρονικές
Λογική Σχεδίαση Ψηφιακών Συστημάτων
Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδικοί Αριθμοί Η γενική αναπαράσταση ενός οποιουδήποτε
Αριθμητικά Συστήματα = 3 x x x x 10 0
Δεκαδικό Όταν αναφερόμαστε σε μία αριθμητική τιμή, απεικονίζουμε μία ποσότητα με ένα σύμβολο ή έναν συνδυασμό από σύμβολα. Το αριθμητικό σύστημα που χρησιμοποιούμε είναι το δεκαδικό. Αποτελείται από δέκα
Ψηφιακά Συστήματα. 1. Συστήματα Αριθμών
Ψηφιακά Συστήματα 1. Συστήματα Αριθμών Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L.,
Εισαγωγή στην επιστήµη των υπολογιστών. Πράξεις µε µπιτ
Εισαγωγή στην επιστήµη των υπολογιστών Πράξεις µε µπιτ 1 Πράξεις µε µπιτ 2 Αριθµητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασµός, Διαίρεση Ο πολλαπλασιασµός και η διαίρεση στο επίπεδο του
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας
ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6
ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Bits & Bytes Bit: η μικρότερη μονάδα πληροφορίας μία από δύο πιθανές καταστάσεις (ναι / όχι, αληθές / ψευδές, n / ff) κωδικοποίηση σε 0 ή 1 δυαδικό σύστημα
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 3. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Β Παράσταση Προσημασμένων
Δυαδικη παρασταση αριθμων και συμβολων
Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a
Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ
Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0
ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ
1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Συστήματα αρίθμησης Δυαδικό αριθμητικό
Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική
Αναπαράσταση Δεδομένων ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση δεδομένων Κατάλληλη συμβολική αναπαράσταση δεδομένων, για απλοποίηση βασικών πράξεων, όπως πρόσθεση Πόσο εύκολο είναι
! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς
Αριθμητικά Συστήματα Κώδικες
Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και
Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς
10-δικό δικό
Προγραμματισμός Η/Υ - Ι Εαρινό Εξάμηνο 2018-2019 Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Αριθμητικά Συστήματα 1. Εισαγωγή Όπως γνωρίζουμε, οι υπολογιστές χρησιμοποιούν το δυαδικό σύστημα για την αναπαράσταση
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Αριθμητικά Συστήματα Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αριθμητικά Συστήματα Δεκαδικό Σύστημα: Βάση το 10, ψηφία 10 και συντελεστές
µπιτ Λύση: Κάθε οµάδα των τεσσάρων µπιτ µεταφράζεται σε ένα δεκαεξαδικό ψηφίο 1100 C 1110 E Άρα το δεκαεξαδικό ισοδύναµο είναι CE2
! Βρείτε το δεκαεξαδικό ισοδύναµο του σχήµατος µπιτ 110011100010 Λύση: Κάθε οµάδα των τεσσάρων µπιτ µεταφράζεται σε ένα δεκαεξαδικό ψηφίο 1100 C 1110 E 0010 2 Άρα το δεκαεξαδικό ισοδύναµο είναι CE2 2 !
Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών
Εισαγωγή στην επιστήμη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών 1 Αριθμητικό Σύστημα Ορίζει τον τρόπο αναπαράστασης ενός αριθμού με διακεκριμένα σύμβολα Ένας αριθμός αναπαρίσταται διαφορετικά
Οργάνωση Υπολογιστών
Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό
Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:
Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται
Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version
Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 2. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Α 2 Τεχνολογία
Περιοδικοί δεκαδικοί αριθμοί. Περίοδος περιοδικού δεκαδικού αριθμού. Γραφή των περιοδικών δεκαδικών αριθμών. Δεκαδική μορφή ρητού :
Περιοδικοί δεκαδικοί αριθμοί Κάθε δεκαδικός αριθμός, ο οποίος έχει άπειρα δεκαδικά ψηφία τα οποία από ένα σημείο και μετά επαναλαμβάνονται ακριβώς τα ίδια, ονομάζεται περιοδικός δεκαδικός αριθμός. Πx.
1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα
1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2
Lab 6: Signed Add/Subtract, FF (U.Crete, CS-120) 14-10-28 17:28 διαίρεσης, δηλαδή αριστερά 28-24 = 4 bits της διεύθυνσης) μετατρέποντας στο δεκαδικό, βλέπουμε ότι όντως πρόκειται γιά τη θέση 256+128+16
11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Ψηφιακά Κυκλώματα Ι. Μάθημα 1: Δυαδικά συστήματα - Κώδικες. Λευτέρης Καπετανάκης
ΤΛ2002 Ψηφιακά Κυκλώματα Ι Μάθημα 1: Δυαδικά συστήματα - Κώδικες Λευτέρης Καπετανάκης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2011 ΤΛ-2002: L1 Slide 1 Ψηφιακά Συστήματα ΤΛ-2002:
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,
Εισαγωγή. Πληροφορική
Πληροφορική Διδάσκων:Μ.Χατζόπουλος, Παραδόσεις:Τρίτη 4-6, Τετάρτη 1-3; (Αμφιθέατρο Α15) Πληροφορίες στην ιστοσελίδα του μαθήματος http://www.di.uoa.gr/~organosi/ Η δομή του μαθήματος Εισαγωγή στην Επιστήμη
Προγραμματισμός Υπολογιστών
Προγραμματισμός Υπολογιστών Αναπαράσταση Πληροφορίας Κ. Βασιλάκης, ΣΤΕΦ, ΤΕΙ Κρήτης Δεδομένα και πληροφορία Δεδομένα είναι ένα σύνολο διακριτών στοιχείων σχετικά με ένα συμβάν ή μια διαδικασία χωρίς κάποια
Αριθμητική Υπολογιστών (Κεφάλαιο 3)
ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 9 Αριθμητική Υπολογιστών (Κεφάλαιο 3) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Αριθμητική για υπολογιστές
ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Συστήματα Αρίθμησης ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.2.1 : Συστήματα Αρίθμησης ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ. Στο δυαδικό σύστημα αρίθμησης, αντί για δεκάδες, εκατοντάδες με τις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην
Εισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 3: Δυαδικά Συστήματα Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας
ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ ΔΙΑΡΚΕΙΑ: 1 περιόδους 22/1/2010 10:11 καθ. Τεχνολογίας 22/1/2010 10:12 Παραδείγματα Τι ονομάζουμε αριθμητικό σύστημα? Το σύνολο από ψηφία (αριθμοί & χαρακτήρες). Που χρησιμεύουν
Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ
Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων
Αριθμητικά Συστήματα
Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 4 : Πράξεις με bits Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων 1 2.1 Τύποι Δεδομένων Τα δεδομένα σήμερα συναντώνται σε διάφορες μορφές, στις οποίες περιλαμβάνονται αριθμοί,
Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Οργάνωση και διαχείριση της Πληροφορίας στον Υπολογιστή Δεδομένα και Εντολές πληροφορία δεδομένα εντολές αριθμητικά δδ δεδομένα κείμενο εικόνα Επιλογή Αναπαράστασης
Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης
Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Τι θα μάθουμε σήμερα: Να αναφέρουμε τον τρόπο αναπαράστασης των δεδομένων (δυαδικό σύστημα) Να αναγνωρίζουμε πώς γράμματα και σύμβολα από
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 2: Αναπαράσταση Δεδομένων Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ψηφιακοί Υπολογιστές
1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία
ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf)
ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf) Για να λύνετε εύκολα ασκήσεις στα συστήματα αρίθμησης θα πρέπει να απομνημονεύσετε τα πρώτα 17 βάρη του δυαδικού συστήματος από 2 0 μέχρι 2
Αρχιτεκτονική Υπολογιστών
Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 4: Πολλαπλασιασμός (MUL,IMUL). Διαίρεση (DIV,IDIV). Εμφάνιση αλφαριθμητικού. Εμφάνιση χαρακτήρα.
Αρχιτεκτονική Υπολογιστών. Data. Κείμενο. Βίντεο. Αριθμοί Εικόνες. Ήχοι
Data Κείμενο Βίντεο Αριθμοί Εικόνες Ήχοι 1 Τα δεδομένα στους ηλεκτρονικούς υπολογιστές αναπαρίστανται σαν αριθμοί Οι αριθμοί αποθηκεύονται σε bits (δυαδικό σύστημα). Θέματα: Πως αναπαριστώνται οι αρνητικοί
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Εισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 7 και 8: Αναπαραστάσεις. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής
Γιώργος Δημητρίου Μάθημα 7 και 8: Αναπαραστάσεις Αναπαράσταση Πληροφορίας Η/Υ Αριθμητικά δεδομένα Σταθερής υποδιαστολής Κινητής υποδιαστολής Μη αριθμητικά δεδομένα Χαρακτήρες Ειδικοί κώδικες Εντολές Γλώσσα
Πράξεις με πραγματικούς αριθμούς (επαναλήψεις - συμπληρώσεις )
ΜΑΘΗΜΑΤΙΚΑ α x +β
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχιτεκτονική-Ι Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:
Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται
Κατ οίκον Εργασία ΚE5
Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Χειμερινό Εξάμηνο ΗΜΥ Εισαγωγή στην Τεχνολογία Διδάσκων: Δρ. Στέλιος Τιμοθέου Κατ οίκον Εργασία ΚE5 Ασκήσεις Ασκήσεις:. Μετατρέψτε
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Κωδικοποίηση & Αποκωδικοποίηση
Σ ή. : υαδικά. Ε ό. ή Ενότητα
1η Θεµατική Θ ή Ενότητα Ε ό : υαδικά δ ά Συστήµατα Σ ή Μονάδα Ελέγχου Ψηφιακοί Υπολογιστές Αριθµητική Μονάδα Κρυφή Μνήµη Μονάδα Μνήµης ιαχείριση Μονάδων Ι/Ο ίσκοι Οθόνες ικτυακές Μονάδες Πληκτρολόγιο,
ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch t / / h 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 25/10/07
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 25/10/07 Αριθμητική στο δυαδικό σύστημα (γενικά) Συμπληρωματικά για δυαδικό σύστημα Η πρόσθεση στηρίζεται στους κανόνες: 0 + 0 = 0, 0 + 1 = 1, 1
γρηγορότερα. Αν θέλουμε να μηδενίσουμε όλα τα υπόλοιπα bit μπορούμε να χρησιμοποιήσουμε την εντολή:
A. Tips 1. Τοποθέτηση σημαίας ή bit ενός καταχωρητή ή μεταβλητής... 2 2. Καθάρισμα σημαίας ή bit ενός καταχωρητή ή μεταβλητής... 2 3. Σύγκριση μονοδιάστατων πινάκων (στο παράδειγμα 5 στοιχείων)... 2 4.
Κεφάλαιο 1. Συστήματα αρίθμησης και αναπαράστασης
Κεφάλαιο 1 Συστήματα αρίθμησης και αναπαράστασης 1.1 Εισαγωγή Οι υπολογιστές αναπαριστούν όλα τα είδη πληροφορίας ως δυαδικά δεδομένα. Έτσι, για την ευκολότερη και ταχύτερη επεξεργασία των διαφόρων πληροφοριών,
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 3 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.
ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η
0,00620 = 6, ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ. Γενικοί Κανόνες για τα Σημαντικά Ψηφία
ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ Είναι απαραίτητο να πούμε μερικά πράγματα για μια επαναλαμβανόμενη πηγή προβλημάτων και δυσκολιών: τα σημαντικά ψηφία. Τα μαθηματικά είναι μια επιστήμη όπου οι αριθμοί και οι σχέσεις μπορούν
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Ακαδημαϊκό Έτος 2010-2011 Επιμέλεια Ξενοφών Βασιλάκος Περιεχόμενα Φροντιστηρίου 1. Κωδικοποίηση και Δυαδική Αναπαράσταση 2. Κωδικοποίηση ASCII Κωδικοποίηση Unicode Εισαγωγή