Ο ΡΟΛΟΣ ΤΗΣ ΣΤΑΘΜΙΣΗΣ ΣΤΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ*

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ο ΡΟΛΟΣ ΤΗΣ ΣΤΑΘΜΙΣΗΣ ΣΤΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ*"

Transcript

1 Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 21 ου Πανελληνίου Συνεδρίου Στατιστικής (2008), σελ Ο ΡΟΛΟΣ ΤΗΣ ΣΤΑΘΜΙΣΗΣ ΣΤΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ* Χ. ΔΑΜΙΑΝΟΥ 1, Ε. ΣΙΟΛΟΥ 2 Μαθηματικό Τμήμα Πανεπιστημίου Αθηνών 1 cdaman@math.uoa.gr, 2 esolou@yahoo.gr ΠΕΡΙΛΗΨΗ Ο ρόλος των δειγματικών βαρών στις δειγματοληπτικές έρευνες καθώς και ο τρόπος καθορισμού τους είναι ένα θέμα το οποίο απασχολεί τους στατιστικούς τα τελευταία χρόνια. Στην παρούσα εργασία γίνεται μια αναφορά στους λόγους οι οποίοι μας οδηγούν στη χρήση των δειγματικών βαρών, στις βασικές μεθόδους στάθμισης και εκτιμήτριες. Δίνεται επίσης μια εφαρμογή για την εξέταση της επίδρασης των δειγματοληπτικών σχεδίων χωρίς στάθμιση και με στάθμιση χρησιμοποιώντας εκ των υστέρων στρωματοποίηση και την τεχνική Bootstrap. 1. ΕΙΣΑΓΩΓΗ Ένα σημαντικό πρόβλημα στη στατιστική είναι η επιλογή δειγμάτων από πληθυσμούς με σκοπό την εκτίμηση παραμέτρων των πληθυσμών. Υπάρχουν πολλές μέθοδοι συλλογής δειγμάτων. Σκοπός κάθε μεθόδου είναι η επιλογή δείγματος που να α- ντιπροσωπεύει τον πληθυσμό με τον καλύτερο δυνατό τρόπο. Μια από τις σημαντικότερες προϋποθέσεις για το σχεδιασμό μιας δειγματοληπτικής έρευνας είναι ο όσο το δυνατό πληρέστερος καθορισμός του πληθυσμού στόχου (target populaton) και στη συνέχεια του δειγματοληπτικού πλαισίου (samplng frame) στον οποίο θα βασιστεί η δειγματοληψία. Ο ακριβής προσδιορισμός του πλαισίου παίζει σημαντικό ρόλο στο σχεδιασμό μιας έρευνας διότι: Καθορίζει πόσο καλά καλύπτεται ο πληθυσμός. Επηρεάζει τη μέθοδο συλλογής της πληροφορίας. Επιδρά στην αποτελεσματικότητα επιλογής του δείγματος. Σύμφωνα με τους Lessler and Kalsbeek (1992, pp.48-51), υπάρχουν τέσσερις κατηγορίες λαθών σ ένα πλαίσιο: Undercoverage: υπάρχουν ελλείπουσες μονάδες. Overcoverage: συμπεριλαμβάνονται μονάδες που δεν ανήκουν στον πληθυσμόστόχο. Υπάρχουν διπλοεγγεγραμμένοι ή περισσότερες φορές. Υπάρχουν λάθη σε βασικές πληροφορίες των μονάδων π.χ. στο φύλο, μόρφωση, περιοχή κ.τ.λ * Εργασία με υποστήριξη του ΕΛΚΕ του Πανεπιστημίου Αθηνών με Κ.Α. 70/4/

2 Είναι συνηθισμένο κατά την ολοκλήρωση μιας έρευνας να διαπιστώνουμε για το δείγμα που έχουμε συγκεντρώσει ότι δεν έχει την ίδια κατανομή με τον πληθυσμό για τον οποίο διενεργήσαμε την έρευνα. Είναι λοιπόν πιθανό οι εκτιμήσεις που θα κάνουμε να ενέχουν κάποιο είδος μεροληψίας το οποίο θα μπορούσαμε να αποφύγουμε σταθμίζοντας κατάλληλα το δείγμα, διότι με τη στάθμιση των δεδομένων μας καταφέρνουμε να μεγεθύνουμε το δείγμα στο μέγεθος του πληθυσμού και να το προσαρμόσουμε στην κατανομή του πληθυσμού. Για τη διόρθωση της μεροληψίας που πιθανό να ενέχουν διάφορες εκτιμήσεις και για τη βελτίωση της αποτελεσματικότητας των εκτιμητριών σε δειγματοληπτικές έ- ρευνες, συνήθεις πρακτικές είναι (μεταξύ άλλων): Η στάθμιση. Η εκ των υστέρων στρωματοποίηση. Οι σταθμισμένες εκτιμήτριες είναι συνήθως ασυμπτωτικά αμερόληπτες και έχουν μεγαλύτερη διασπορά ενώ οι μη-σταθμισμένες εκτιμήτριες είναι συνήθως μεροληπτικές αλλά έχουν μικρότερη διασπορά. Σύμφωνα με τους Korn and Graubard (1995), γενικά υπάρχει ένα «σημείο ανταλλαγής» (trade off) μεταξύ της (δυνητικής) μεροληψίας και της διασποράς που εμφανίζονται λόγω της στάθμισης. Πόσο, δηλαδή, είμαστε διατεθειμένοι να «θυσιάσουμε» αμεροληψία για να «κερδίσουμε» διασπορά. Συχνά οδηγούμαστε στο να σταθμίζουμε τα δεδομένα μας για τους παρακάτω λόγους: Εξ αιτίας της μεθόδου που χρησιμοποιήθηκε για τη συλλογή του δείγματος. Λόγω της μη-απόκρισης και της ελλιπούς κάλυψης του πληθυσμού. Για άλλους λόγους. 2. ΔΙΕΝΕΞΕΙΣ ΣΤΑΤΙΣΤΙΚΩΝ Ο Andre Gelman καθηγητής στατιστικής και πολιτικών επιστημών του Πανεπιστημίου Κολούμπια σε ένα πρόσφατο άρθρο του που δημοσιεύθηκε στο Statstcal Scence, 22(2), pp και με τίτλο «Struggles th Survey Weghtng and Regresson Modelng» ξεκινά γράφοντας ότι το «survey eghtng s a mess» και στη συνέχεια παρουσιάζει την πολυπλοκότητα του προβλήματος. Αναφέρει δηλαδή ότι η στάθμιση είναι ένα αδιέξοδο διότι τα δειγματικά βάρη δεν είναι πάντα ξεκάθαρο πως πρέπει να χρησιμοποιούνται για την εκτίμηση οτιδήποτε πιο περίπλοκου από το δειγματικό μέσο. Σε αντίθεση με ότι υιοθετείται από πολλούς στατιστικούς, τα δειγματικά βάρη, γενικά, δεν είναι ίσα με τον αντίστροφο της πιθανότητας επιλογής στο δείγμα, αλλά συνήθως είναι βασισμένα σε ένα συνδυασμό του υπολογισμού των πιθανοτήτων και της προσαρμογής ως προς τη μη απόκριση. Σε αντίστοιχα σχόλιά τους επί του άρθρου διάφοροι ερευνητές υποστηρίζουν ή διαφωνούν με τις θέσεις του Gelman, για παράδειγμα:

3 Οι Bell, R. μέλος του στατιστικού τμήματος ερευνών (AT&T Labs-Research, Ne ersey) και Cohen, M. υποστηρίζουν ότι η στάθμιση προσφέρει πολλά πρακτικά οφέλη όπως η δυνατότητα χρήσης καθιερωμένων λογισμικών, η αποφυγή της χρήσης μοντέλων με πολλές αλληλεπιδράσεις κάθε φορά που χρειάζεται να εκτιμηθεί και το πιο απλό μοντέλο παλινδρόμησης, κ.α. Ο Pfeffermann, D. (καθηγητής του τμήματος στατιστικής της Ιερουσαλήμ και στο Πανεπιστήμιο του Southampton) παρατηρεί ότι ο τρόπος με τον οποίο πρέπει να σταθμίζουμε τα δεδομένα μας ώστε να εκτιμήσουμε μετρήσιμες πληθυσμιακές ποσότητες που μας ενδιαφέρουν όπως είναι οι μέσοι είναι ένα πολύ βασικό πρόβλημα των δειγματοληπτικών ερευνών. Ο Lttle, R. (καθηγητής του τμήματος βιοστατιστικής του Πανεπιστημίου Μίσιγκαν) εκφράζει την άποψη ότι τα δειγματικά βάρη που ορίζονται ως ο αντίστροφος της πιθανότητας επιλογής μιας μονάδας στο δείγμα, παίζουν σπουδαίο ρόλο στην εξαγωγή συμπερασμάτων. Τα δειγματικά βάρη εμφανίζονται στο πλαίσιο συγκεκριμένων μοντέλων πρόβλεψης, οπότε οι προσεγγίσεις μπορούν να διασταυρωθούν. Ο Lohr, S. (καθηγητής στατιστικής του Πανεπιστημίου της Αριζόνα) παρουσιάζει ορισμένες ιδιότητες που επιθυμούμε να έχουν τα δειγματικά βάρη, όπως για παράδειγμα: Να μειώνουν το μέσο τετραγωνικό σφάλμα των εκτιμητριών. Η ιδιότητα διόρθωσης των μετρήσεων. Και προτείνει κάθε φορά που σκοπεύουμε να χρησιμοποιήσουμε βάρη να προσδιορίζουμε εκ των προτέρων ποια ιδιότητα θέλουμε να έχουν και να χρησιμοποιούμε την αντίστοιχη μέθοδο για την δημιουργία τους. Οι Bredt,. (καθηγητής στατιστικής του Πανεπιστημίου Κολοράντο) και Opsomer,. (καθηγητής στατιστικής του Πανεπιστημίου Ioa) επιχειρηματολογούν ότι οι αναλύσεις που χρησιμοποιούν σταθμίσεις προσφέρουν κάποια σαφή πλεονεκτήματα και μπορούν στην πραγματικότητα να μειώσουν την πολυπλοκότητα της ανάλυσης, σε ορισμένες περιπτώσεις, τουλάχιστον. Τέλος, προτρέπουν τους στατιστικούς ερευνητές που δημιουργούν τα δειγματικά βάρη να το κάνουν με διαφανή τρόπο ώστε να μην αφήνουν περιθώρια στους στατιστικούς αναλυτές να τα αμφισβητούν. 3. ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΘΟΡΙΣΜΟΥ ΔΕΙΓΜΑΤΙΚΩΝ ΒΑΡΩΝ Εξ ορισμού το δειγματικό βάρος d (όπου το d αναφέρεται στο δείγμα) για μία δειγματοληπτική μονάδα είναι ο αριθμός των μονάδων του πληθυσμού που αντιπροσωπεύει κάθε μονάδα του δείγματος και ισούται με το αντίστροφο της πιθανότητας επιλογής, p, αυτής της μονάδας στο δείγμα. Πρέπει να τονίσουμε πως όταν πρόκειται για πολυσταδιακά ή πολυφασικά δειγματοληπτικά σχέδια η πιθανότητα εκλογής στο δείγμα μιας μονάδας του πληθυσμού είναι το γινόμενο των επιμέρους πιθανοτήτων επιλογής σε κάθε στάδιο ή φάση, μιας μονάδας, στο δείγμα. Έτσι, για ένα δείγμα το οποίο συλλέγεται με δισταδιακή δειγματοληψία όπου p 1 : είναι η πιθανότητα επιλογής μιας μονάδας στο δείγμα στο πρώτο στάδιο και

4 p 2 : είναι η πιθανότητα επιλογής μιας μονάδας στο δείγμα στο δεύτερο στάδιο τότε το δειγματικό βάρος για τις μονάδες του δείγματος είναι ίσο με: (1/ p ) (1/ p ) d 1 2 Όταν τα δειγματικά βάρη είναι ίδια για όλες τις μονάδες του δείγματος, τα δειγματοληπτικά σχέδια, ονομάζονται αυτοσταθμιζόμενα (self-eghtng). Για παράδειγμα: Τα δειγματοληπτικά σχέδια με ατδ, ατδε και συστηματική δειγματοληψία είναι αυτοσταθμιζόμενα, διότι κάθε μονάδα του πληθυσμού (μεγέθους Ν) έχει πιθανότητα επιλογής στο δείγμα n / N. Στη δισταδιακή κατά συστάδες δειγματοληψία με πιθανότητες επιλογής ανάλογες των μεγεθών ( M ) των συστάδων, όταν κατά το πρώτο στάδιο επιλέγονται n συστάδες και στη συνέχεια σταθερό πλήθος β m / n στοιχείων με ατδ (ή συστηματική) από κάθε συστάδα όπου m το τελικό μέγεθος δείγματος τότε η πιθανότητα επιλογής στο δείγμα οποιασδήποτε μονάδας του πληθυσμού είναι nm ( / M)( / M) n / M m/ M=σταθερό, δηλαδή αυτοσταθμιζόμενη. 4. ΣΤΑΘΜΙΣΗ ΚΑΤΑ ΤΟ ΣΧΕΔΙΑΣΜΟ ΚΑΙ ΕΚ ΤΩΝ ΥΣΤΕΡΩΝ ΣΤΡΩΜΑΤΟΠΟΙΗΣΗ Στις περισσότερες εφαρμογές στάθμισης σε δειγματοληπτικές έρευνες χρησιμοποιούνται δύο είδη στάθμισης (Lu and Gelman (2003)). Βάρη ανάλογα της αντίστροφης πιθανότητας: Τα βάρη είναι γνωστά πριν τη διεξαγωγή της έρευνας (κατά τον σχεδιασμό της έρευνας) Χρησιμοποιούνται για τη διόρθωση άνισων πιθανοτήτων επιλογής Ενίοτε καθορίζονται από τον ερευνητή π.χ. σε σχήματα με πιθανότητα ανάλογη του μεγέθους Εκ των υστέρων στρωματοποίηση: Τα βάρη καθορίζονται μετά τη διεξαγωγή της έρευνας (μετά τη συλλογή των δεδομένων) Χρησιμοποιούνται για τη διόρθωση γνωστών διαφορών μεταξύ πληθυσμού και δείγματος. Το δειγματικό βάρος που προσαρμόζει τα δεδομένα μας ως προς τη μη-απόκριση στα αυτοσταθμιζόμενα δειγματοληπτικά σχέδια είναι : ( n/ n ) nr d r όπου n : είναι το μέγεθος του δείγματος και n r : είναι ο αριθμός των ατόμων του δείγματος που αποκρίθηκαν στην έρευνα. Το δειγματικό βάρος που προσαρμόζει τα δεδομένα μας όταν χρησιμοποιούμε την εκ των υστέρων στρωματοποίηση είναι :

5 ( N / N ) pst όπου Ν: είναι ο αριθμός των μονάδων του πληθυσμού στο εκ των υστέρων στρώμα και N : είναι ο εκτιμώμενος αριθμός των μονάδων του πληθυσμού στο εκ των υστέρων στρώμα. 5. ΕΚΤΙΜΗΣΗ ΔΙΑΣΠΟΡΑΣ ΣΤΑΘΜΙΚΩΝ ΕΚΤΙΜΗΤΡΙΩΝ Παρόλο που οι παραπάνω μέθοδοι στάθμισης χρησιμοποιούνται ευρέως, είναι δύ- Γενικά οι διασπορές αυτών των εκτιμητριών εξαρτώνται από τη μέθοδο που χρησι- σκολο να υπολογιστούν οι δειγματικές διασπορές για τις σταθμισμένες εκτιμήτριες. μοποιείται για τη στάθμιση των δεδομένων και όχι από την αριθμητική τιμή των δειγματικών βαρών. Για παράδειγμα: Έστω ότι ένας πληθυσμός ο οποίος χωρίζεται σε στρώματα χρησιμοποιώντας εκ των προτέρων ή εκ των υστέρων στρωματοποίηση με N στοιχεία σε κάθε στρώμα στον πληθυσμού, 1,2,..., και με n στοιχεία στο κάθε στρώμα στο δείγμα, 1,2,..., Έστω επίσης ότι οι τιμές ενός χαρα κτηριστικού y συμβολίζονται με Y στον πληθυ- Όπου N N και 1 n. 1 n σμό 1,2,..., N και y στο δείγμα, πληθυσμιακός μέσος, όπου W N N. / nr 1,..., n και έστω Y 1 Y W Y ο N 1 1 Έστω p η πιθανότητα ε πιλογής κάθε μονάδας του πληθυσμού στο στρώμα, να επιλεγεί στο δείγμα. Η πιθανότητα αυτή μπορεί να είναι γνωστή (κατά το σχεδιασμό της έρευνας) ή άγνωστη όταν έχουμε μη-ανταπόκριση οπότε πρέπει να εκτιμηθεί. Ενδιαφερόμαστε για εκτιμήτριες της μορφής Εάν Y y y, τότε Y W 1 Y και τα βάρη W εξαρτώνται μόνο από τα n και N και όχι από τα n n / Y y W y y όπου / ( ) W() n είναι το βάρος των στοιχείων/μονάδων στο στρώμα

6 Στην περίπτωση της αντίστροφης-πιθανότητας n / p W για 1,2,..., και n / p 1 1 1/ p n / p για 1,2,..., n. Στην περίπτωση της εκ των υστέρων στρωματοποίησης W N / N για 1,2,..., και N / Nn ( ) για 1,2,..., n. () Επειδή στην εκ των υστέρων στρωματοποίηση τα n είναι τυχαίες μεταβλητές, εμφανίζεται το πρόβλημα της εκτίμησης της διασπορ άς της y. Επειδή (βλ. Holt and Smth (1979), Δαμιανού (2007 p. 182)), ι 2 S ω ι ω 2 V ( y E W V WY ) E[ V ( y n ] V[ E( y n )] = ε + = 1 n κε ϊ κλ ϊϋ λ= 1 ϋ και αναπτύσσοντας κατά Taylor, έχουμε 1 f 2 1 f 2 V ( y) W S (1 W ) S 2 n n όπου f = n/ N και S η διασπορά στο στρώμα. Για την εκτίμηση τ ης διασποράς V y ) έχουν προταθεί πολλές τεχνικές μεταξύ ( των οποίων και οι παρακάτω: Υποθέτοντας ότι η επιλογή του δείγματος γίνεται με α.τ.δ. και ότι το άθροισμα των δειγματικών βαρών ισούται με τη μονάδα ( = 1), τότε η εκτιμήτρια της διασποράς V ( y ) γίνεται (βλ. Lu and Gelman ((2003), p. 139) ζ n φζ n φ 2 2 V( y )» ( y- y ) ηε χηε θ ψθ ψ χ = 1 = 1 Υποθέτοντας τα βάρη να είναι αντίστροφα της πιθανότητας επιλογής, τότε n ε = 1 n 2 2 = HT = ε - = 1 V( y ) V ( y ) ( y y ) Χρησιμοποιώντας τη μέθοδο (αλγόριθμο) BWO (Wthout Replacement Bootstrap), του Stter (1992) B 1 * * 2 V Bo ot ( y) = ε ( yb - y) - 1 B b=

7 όπου * * * 1, y2,..., yb y τα αντίγραφα bootstrap, 1 B * = ε και Β ο αριθμός των B b = 1 y y b επαναλήψεων. 6. ΕΦΑΡΜΟΓΗ Δημιουργήσαμε με τη βοήθεια ενός προγράμματος που φτιάξαμε στο stata, ένα προσομοιωμένο σύνολο δεδομένων χρησιμοποιώντας τη λογαριθμοκανονική κατανομή με μέσο 10 και διασπορά 100. Ο πληθυσμός τον οποίο δημιουργήσαμε αποτελείται από 1000 παρατηρήσεις τις οποίες αφού τις ταξινομήσαμε σε αύξουσα σειρά τις χωρίσαμε σε 5 στρώματα έτσι ώστε τα δεδομένα να είναι όσο το δυνατόν πιο ομοιογενή σε κάθε στρώμα. Οπότε το πρώτο στρώμα αποτελείται από 180 παρατηρήσεις, το δεύτερο από 210, το τρίτο από 250, το τέταρτο από 160 και το πέμπτο και τελευταίο στρώμα από 200 παρατηρήσεις. Από τον συνολικό πληθυσμό μεγέθους Ν=1000 έχουμε πάρει δείγματα μεγέθους n=50 (5%), n=100 (10%) και n=200 (20%) και για καθένα από αυτά πήραμε Β=100 και Β=200 αντίγραφα bootstrap. Οι εκτιμήσεις της πληθυσμιακής μέσης τιμής και τα αντίστοιχα τυπικά σφάλματα χρησιμοποιώντας σταθμισμένη και μη σταθμισμένη ανάλυση δίνονται στον παρακάτω Πίνακα 1. Έπειτα για κάθε δείγμα υπολογίσαμε την επίδραση του σχεδίου με το σταθμισμένο μέσο έναντι του σχεδίου με το μη σταθμισμένο μέσο (deff1) και την επίδραση του σχεδίου (deff2) όπως δίνονται από τους τύπους: deff 1 = V ( y )/ Var( y), deff 2 = V ( y )/ Var ( y). Στον πίνακα δίνονται οι μέσες τιμές των deff1 για τα αντίστοιχα αντίγραφα bootstrap. Υπολογίσαμε επίσης το δεσμευμένο μέσο τετραγωνικό σφάλμα της σταθμισμένης εκτιμήτριας του μέσου όπως δίνεται από τον παρακάτω τύπο (βλ. Δαμιανού (2006), σ.186 ): n n s N n MSE( y n) ( ) (1 ) { y ( )} n N n 1 N n 2 όπου n το μέγεθος του δείγματος, s η δειγματική διασπορά και μέσος του στρώματος, αντίστοιχα, =1, 2, 3, 4, 5. y ο δειγματικός Όπως παρατηρούμε από τον πίνακα, οι εκτιμήσεις της πραγματικής μέσης τιμής (9,92) είναι ελάχιστα καλύτερες στη σταθμισμένη εκτίμηση και για Β=200 αντίγραφα bootstrap. Tα τυπικά σφάλματα μειώνονται όσο το μέγεθος δείγματος μεγαλώνει. Το τυπικό σφάλμα της εκτιμήτριας με σταθμισμένη μέθοδο χρησιμοποιώντας Β=200 αντίγραφα bootstraps ελαττώνεται σημαντικά σε αντίθεση με τα Β=100 αντίγραφα. Οι επιδράσεις των δειγματοληπτικών σχεδίων με τους σταθμισμένους μέσους έναντι

8 του μη σταθμισμένου μέσου παραμένει περίπου η ίδια για τα διάφορα δείγματα που έχουν επιλεγεί. για διά- Πίνακας 1. Εκτίμηση πληθυσμιακού μέσου και τυπικού σφάλματος φορα n και Β με στάθμιση ( y) και χωρίς στάθμιση ( y ). Μη Σταθμισμένη ανάλυση Σταθμισμένη Εκ των υστέρων Μέθοδος ανάλυση στρωματοποίηση Bootstrap n B y S.E. ( SE..) y SE. ( y ) SE. ( y ) M SE E(deff1) deff ,74 1,310 9,84 0,719 0, ,74 0,29 0, ,01 0,992 9,87 0,556 0, ,09 0,31 0, ,06 0,728 9,96 0,405 0, ,76 0,31 0, ,87 1,380 9,97 0,818 0, ,77 0,33 0, ,94 1,005 9,95 0,592 0,538 3,87 0,34 0, ,97 0,724 9,93 0,409 0,493 53,24 0,31 0,34 ABSTRACT The role of eghts n samplng research as ell as the ay of ther applcaton s a subect hch occupes statstcans over the last years. In the present ork e menton the reasons hch lead us to the use of eghts n the basc methods of evaluaton and estmaton. An applcaton of re-eghtng procedures usng post-stratfcaton and the Wthout Replacement Bootstrap algorthm s also gven. ΑΝΑΦΟΡΕΣ Δαμιανού, Χ. (2007). Μεθοδολογία δειγματοληψίας τεχνικές και εφαρμογές. Εκδόσεις σοφία, Θεσσαλονίκη. Gelman, A. (2007) Struggles th survey eghtng and regresson modelng, Statstcal Scence, (th dscusson), 22 (2), pp Holt, D. and Smth, T.M.F. (1979). Post stratfcaton. ournal of the Royal Stat. Soc. Ser. A-Stat. Soc., 142, pp Korn, E. and Graubard, B. (1995) Examples of dfferng eghted and uneghted estmates from a sample survey. Amercan Statstcan, 49(3), pp Lessler,.T. and Kalsbeek, W.D. (1992). Nonsamplng errors n surveys. ohn Wley & Sons, Ne York. Lu, H. and Gelman, A. (2003). A method for estmatng samplng varances for surveys th eghtng, poststratfcaton, and rakng. ournal of Offcal Statstcs 19, (2). pp Stter, R.R.(1992). Comparng three Bootstrap methods for survey data. The Canadan ournal of Statstcs, 20 (2), pp

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη Σημειακή εκτίμηση και εκτίμηση με διάστημα 11 η Διάλεξη Εκτιμήτρια Κάθε στατιστική συνάρτηση που χρησιμοποιείται για την εκτίμηση μιας παραμέτρου ενός πληθυσμού (π.χ. ο δειγματικός μέσος) Σημειακή εκτίμηση

Διαβάστε περισσότερα

Στατιστική. Εκτιμητική

Στατιστική. Εκτιμητική Στατιστική Εκτιμητική Χατζόπουλος Σταύρος 28/2/2018 και 01 /03/2018 Εισαγωγή Το αντικείμενο της Στατιστικής είναι η εξαγωγή συμπερασμάτων που αφορούν τον πληθυσμό ή το φαινόμενο που μελετάμε, με τη βοήθεια

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Δειγµατοληψια. Καθηγητής Α. Καρασαββόγλου Επίκουρος Καθηγητής Π. Δελιάς

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Δειγµατοληψια. Καθηγητής Α. Καρασαββόγλου Επίκουρος Καθηγητής Π. Δελιάς ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Δειγµατοληψια Καθηγητής Α. Καρασαββόγλου Επίκουρος Καθηγητής Π. Δελιάς ΔΕΙΓΜΑΤΟΛΗΨΙΑ Η διαδικασία επιλογής παρατηρήσεων Ποια δηµοσκόπηση πιστεύετε πως θα είναι πιο ακριβής: Αυτή που

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Δειγματοληψία στην Ερευνα. Ετος

Δειγματοληψία στην Ερευνα. Ετος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)

Διαβάστε περισσότερα

Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής

Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής Chapter 1 Student Lecture Notes 1-1 Ανάλυση Δεδομένων και Στατιστική για Διοικήση Επιχειρήσεων [Basic Business Statistics (8 th Edition)] Κεφάλαιο 1 Εισαγωγή και Συλλογή Δεδομένων Περιεχόμενα Γιατί ένας

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling)

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) 6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) Από την θεωρία που αναπτύχθηκε στα προηγούμενα κεφάλαια, φαίνεται ότι μια αλλαγή στον σχεδιασμό της δειγματοληψίας και, κατά συνέπεια, στην μέθοδο εκτίμησης

Διαβάστε περισσότερα

Εισαγωγή στην κοινωνική έρευνα. Earl Babbie. Κεφάλαιο 6. Δειγματοληψία 6-1

Εισαγωγή στην κοινωνική έρευνα. Earl Babbie. Κεφάλαιο 6. Δειγματοληψία 6-1 Εισαγωγή στην κοινωνική έρευνα Earl Babbie Κεφάλαιο 6 Δειγματοληψία 6-1 Σύνοψη κεφαλαίου Σύντομη ιστορία της δειγματοληψίας Μη πιθανοτική δειγματοληψία Θεωρία και λογική της πιθανοτικής Δειγματοληψίας

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ Ενότητα # 7: Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Μεθοδολογία της έρευνας και Ιατρική στατιστική

Μεθοδολογία της έρευνας και Ιατρική στατιστική ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική Ενότητα 1: Πληθυσμός και δείγμα - Δειγματοληπτικές μέθοδοι και δειγματοληπτικό σφάλμα Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Συλλογή

Διαβάστε περισσότερα

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου 4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.

Διαβάστε περισσότερα

Δειγματοληπτική μονάδα Μονάδα έρευνας είναι το ιδιωτικό νοικοκυριό και όλα τα μέλη του.

Δειγματοληπτική μονάδα Μονάδα έρευνας είναι το ιδιωτικό νοικοκυριό και όλα τα μέλη του. Έρευνα Ποιοτικών Χαρακτηριστικών Ημεδαπών Τουριστών 207 ΕΙΔΟΣ: Δειγματοληπτική έρευνα Πλαίσιο Δειγματοληψίας Η Έρευνα Ποιοτικών Χαρακτηριστικών Ημεδαπών Τουριστών είναι μια ετήσια δειγματοληπτική έρευνα

Διαβάστε περισσότερα

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου 4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.

Διαβάστε περισσότερα

5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling)

5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling) 5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling) Συχνά, είναι ταχύτερη και ευκολότερη η επιλογή των μονάδων του πληθυσμού, αν αυτή γίνεται από κάποιο κατάλογο ξεκινώντας από κάποιο τυχαίο αρχικό σημείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας ΙΕΚ ΞΑΝΘΗΣ Μάθημα : Στατιστική Ι Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας Επαμεινώνδας Διαμαντόπουλος Ιστοσελίδα : http://users.sch.gr/epdiaman/ Email : epdiamantopoulos@yahoo.gr 1 Στόχοι της υποενότητας

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ... ΚΕΦΑΛΑΙΟ 0 Ένα Πρόβλημα Δεδομένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Απλή Γραμμική Παλινδρόμηση Μωυσιάδης Χρόνης 6 o Εξάμηνο Μαθηματικών Έχει σχέση το με το ; Ειδικότερα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 7-8 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Ενότητα 1: Πληθυσμός και δείγμα Είδη Μεταβλητών - Περιγραφική στατιστική

Ενότητα 1: Πληθυσμός και δείγμα Είδη Μεταβλητών - Περιγραφική στατιστική ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 1: Πληθυσμός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΟΛΗΨΙΑ. Ματσάγκος Ιωάννης-Μαθηματικός

ΔΕΙΓΜΑΤΟΛΗΨΙΑ. Ματσάγκος Ιωάννης-Μαθηματικός 1 ΔΕΙΓΜΑΤΟΛΗΨΙΑ -Είναι γνωστό, ότι στη Στατιστική, όταν χρησιμοποιούμε τον όρο πληθυσμός, δηλώνουμε, το σύνολο των ατόμων ή αντικειμένων, στα οποία αναφέρονται οι παρατηρήσεις μας Τα στοιχεία του συνόλου

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή. ΤΕΙ Στερεάς Ελλάδας. Τμήμα Φυσικοθεραπείας. Προπτυχιακό Πρόγραμμα. Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο )

Ενότητα 1: Εισαγωγή. ΤΕΙ Στερεάς Ελλάδας. Τμήμα Φυσικοθεραπείας. Προπτυχιακό Πρόγραμμα. Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 1: Εισαγωγή Δρ. Χρήστος Γενιτσαρόπουλος Λαμία, 2017 1.1. Σκοπός και

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου Σχηματική παρουσίαση της ερευνητικής διαδικασίας ΣΚΟΠΟΣ-ΣΤΟΧΟΣ ΘΕΩΡΙΑ ΥΠΟΘΕΣΕΙΣ ΕΡΓΑΣΙΑΣ Ερευνητικά

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Στατιστική είναι ο κλάδος των μαθηματικών που εμβαθύνει σε μεθόδους συλλογής δεδομένων, οργάνωσης, παρουσίασης των δεδομένων και εξαγωγής συμπερασμάτων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Παραμέτρων

Διαβάστε περισσότερα

HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme. Επιλογή δείγματος. Κατερίνα Δημάκη

HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme. Επιλογή δείγματος. Κατερίνα Δημάκη HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Επιλογή δείγματος Κατερίνα Δημάκη Αν. Καθηγήτρια Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 1 Τρόποι Συλλογής Δεδομένων Απογραφική

Διαβάστε περισσότερα

Δειγματοληψία στην εκπαιδευτική έρευνα. Είδη δειγματοληψίας

Δειγματοληψία στην εκπαιδευτική έρευνα. Είδη δειγματοληψίας Δειγματοληψία στην εκπαιδευτική έρευνα Είδη δειγματοληψίας Γνωρίζουμε ότι: Με τη στατιστική τα δεδομένα γίνονται πληροφορίες Στατιστική Δεδομένα Πληροφορία Αλλά από πού προέρχονται τα δεδομένα; Πώς τα

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. 3 η ΠΑΡΟΥΣΙΑΣΗ. Ι. Δημόπουλος Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών. ΤΕΙ Πελοποννήσου

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. 3 η ΠΑΡΟΥΣΙΑΣΗ. Ι. Δημόπουλος Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών. ΤΕΙ Πελοποννήσου ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ 3 η ΠΑΡΟΥΣΙΑΣΗ Ι. Δημόπουλος Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών. ΤΕΙ Πελοποννήσου Συλλογή δεδομένων Πρωτογενή δεδομένα Εργαστηριακές μετρήσεις Παρατήρηση Παρατήρηση με συμμετοχή,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων Γρεβενά Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Ιδιότητες εκτιμώμενης ευθείας παλινδρόμησης με τη μέθοδο των ελαχίστων

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Διάλεξη 6 η : Μέθοδοι Δειγματοληψίας

Μεθοδολογία Έρευνας Διάλεξη 6 η : Μέθοδοι Δειγματοληψίας Μεθοδολογία Έρευνας Διάλεξη 6 η : Μέθοδοι Δειγματοληψίας Δρ. Αλέξανδρος Αποστολάκης Email: aapostolakis@staff.teicrete.gr Τηλ.: 2810379603 E-class μαθήματος: https://eclass.teicrete.gr/courses/pgrad_omm104/

Διαβάστε περισσότερα

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ Μέτρα Περιγραφικής Στατιστικής Πληθυσμιακοί παράμετροι: τα αριθμητικά μεγέθη που εκφράζουν τις στατιστικές ιδιότητες ενός πληθυσμού (που προσδιορίζουν / περιγράφουν τη φυσιογνωμία και τη δομή του) Στατιστικά

Διαβάστε περισσότερα

Δείγμα & Δειγματοληψία στην Έρευνα ΤΕΧΝΙΚΕΣ ΕΡΕΥΝΑΣ (#252) Θυμηθείτε. Γιατί δειγματοληψία; Δειγματοληψία

Δείγμα & Δειγματοληψία στην Έρευνα ΤΕΧΝΙΚΕΣ ΕΡΕΥΝΑΣ (#252) Θυμηθείτε. Γιατί δειγματοληψία; Δειγματοληψία Θυμηθείτε εισήγηση 7η Δείγμα & Δειγματοληψία στην Έρευνα ΤΕΧΝΙΚΕΣ ΕΡΕΥΝΑΣ (#252) Η Στατιστική είναι ένας μηχανισμός που από τα δεδομένα παράγει πληροφόρηση: Δεδομένα Στατιστική Πληροφορίες Αλλά από πού

Διαβάστε περισσότερα

4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ

4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ 4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑ (STRATIFIED RANDOM SAMPLING) Στην τυχαία δειγµατοληψία κατά στρώµατα ο πληθυσµός των Ν µονάδων (πρόκειται για τον στατιστικό πληθυσµό και τις στατιστικές µονάδες)

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 14 Μαρτίου 018 1/34 Διαστήματα Εμπιστοσύνης. Εχουμε δει εκτενώς μέχρι τώρα τρόπους εκτίμησης

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ B ΕΚΔΟΣΗ ΑΘΗΝΑ 2004 ΠΡΟΛΟΓΟΣ Η συλλογή και επεξεργασία δεδομένων από πεπερασμένους πληθυσμούς

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

X = = 81 9 = 9

X = = 81 9 = 9 Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη

Διαβάστε περισσότερα

Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις και σημειακή εκτίμηση παραμέτρων Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή συμπερασμάτων για το σ

Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις και σημειακή εκτίμηση παραμέτρων Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή συμπερασμάτων για το σ 10ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 10ο Μάθημα

Διαβάστε περισσότερα

Ερευνητική υπόθεση. Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές.

Ερευνητική υπόθεση. Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές. Ερευνητική υπόθεση Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές. Στα πειραματικά ερευνητικά σχέδια, η ερευνητική υπόθεση αναφέρεται

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #3: Εκτιμητική Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 10: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Β μέρος: Ετεροσκεδαστικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr

Διαβάστε περισσότερα

ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική

ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική Ενότητα 3: Έλεγχοι υποθέσεων - Διαστήματα εμπιστοσύνης Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Οι ερευνητικές υποθέσεις Στην έρευνα ελέγχουμε

Διαβάστε περισσότερα

PIAAC GREECE Σχέδιο δειγµατοληψίας Κύριας Έρευνας (MS)

PIAAC GREECE Σχέδιο δειγµατοληψίας Κύριας Έρευνας (MS) PIAAC GREECE Σχέδιο δειγµατοληψίας Κύριας Έρευνας (MS) ΙωάννηςΝικολαΐδης, Ελληνική Στατιστική Αρχή Προϊστάµενος του Τµήµατος Μεθοδολογίας, Ανάλυσης και Μελετών e-mail: giannikol@statistics.gr 1. Ερευνώµενος

Διαβάστε περισσότερα

Κεφάλαιο 7 - ΕΚΤΙΜΗΤΕΣ ΛΟΓΟΥ ΚΑΙ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

Κεφάλαιο 7 - ΕΚΤΙΜΗΤΕΣ ΛΟΓΟΥ ΚΑΙ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Κεφάλαιο 7 - ΕΚΤΙΜΗΤΕΣ ΛΟΓΟΥ ΚΑΙ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Σύνοψη Οι εκτιμητές λόγου και παλινδρόμησης (ratio and regression estimators) μιας πληθυσμιακής παραμέτρου (,, ) έχουν ως κύριο γνώρισμα ότι βασίζονται σε

Διαβάστε περισσότερα

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III 0 TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III Νοέμβριος Eστω,,, τυχαίο δείγμα από κατανομή f( x; ), όπου συμβολίζει άγνωστη παράμετρο (a) Να ορισθεί η έννοια του επαρκούς στατιστικού

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Πειραματικό σχέδιο και ANOVA Η βασική διαφορά μεταξύ των πειραματικών σχεδίων είναι ο τρόπος με τον οποίο ταξινομούνται ή κατατάσσονται οι πειραματικές μονάδες (πειραματικά τεμάχια) Σε όλα τα σχέδια

Διαβάστε περισσότερα

Σκοπός του μαθήματος

Σκοπός του μαθήματος Σκοπός του μαθήματος Στο μάθημα αυτό γίνεται εφαρμογή, με τη βοήθεια του υπολογιστή και τη χρήση του στατιστικού προγράμματος S.P.S.S., της στατιστικής θεωρίας που αναπτύχθηκε στα μαθήματα «Εισαγωγή στη

Διαβάστε περισσότερα

Θεματολογία. Δεδομένα και αβεβαιότητα. Αντικείμενο της Στατιστικής. Βασικές έννοιες. Δεδομένα και αβεβαιότητα. Στατιστική Ι

Θεματολογία. Δεδομένα και αβεβαιότητα. Αντικείμενο της Στατιστικής. Βασικές έννοιες. Δεδομένα και αβεβαιότητα. Στατιστική Ι Ενότητα η : Εισαγωγή στη Στατιστική Θεματολογία Στατιστική Ι Ενότητα : Εισαγωγή Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Αντικείμενο της Στατιστικής : μεταβλητές,πληθυσμός,

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης Εξόρυξη Δεδομένων Δειγματοληψία Πίνακες συνάφειας Καμπύλες ROC και AUC Σύγκριση Μεθόδων Εξόρυξης Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr LOGO Συμπερισματολογία - Τι σημαίνει ; Πληθυσμός

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

x y max(x))

x y max(x)) ΚΕΦΑΛΑΙΟ 0 Απλή Γραµµική Παλινδρόµηση Μωυσιάδης Χρόνης 6 o Εξάµηνο Μαθηµατικών Ένα Πρόβληµα εδοµένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 y 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Έχει σχέση το yµε το ; Ειδικότερα

Διαβάστε περισσότερα

Ενότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης

Ενότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 2: Έλεγχοι Υποθέσεων

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ ΠΕΡΙΕΧOΜΕΝΑ Πρόλογος στη δεύτερη έκδοση Πρόλογος στην πρώτη έκδοση Εισαγωγή Τι είναι η μεθοδολογία έρευνας Οι μέθοδοι έρευνας ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ ΚΕΦΑΛΑΙO 1: Γενικά για την επιστημονική

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1. Περιεχόμενα της Ενότητας Στατιστική ΙI Ενότητα 1: Δειγματοληψία και Κατανομές Δειγματοληψίας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 1. ειγµατοληψία Πιθανοτικές

Διαβάστε περισσότερα

Μαθησιακοί στόχοι κεφαλαίου

Μαθησιακοί στόχοι κεφαλαίου Δειγματοληψία Μαθησιακοί στόχοι κεφαλαίου Να κατανοήσετε τις διάφορες τεχνικές δειγματοληψίας και την ανάγκη να τις συνδυάζετε στα πλαίσια ενός ερευνητικού έργου Να επιλέγετε τις κατάλληλες τεχνικές δειγματοληψίας

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 5 : Εκτιμήσεις Ι. Αντωνίου, Χ. Μπράτσας Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

Δασική Δειγματοληψία

Δασική Δειγματοληψία Δασική Δειγματοληψία Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Δασολογίας και Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων 5 ο εξάμηνο ΚΙΤΙΚΙΔΟΥ ΚΥΡΙΑΚΗ Εισαγωγή Δειγματοληψία Επιλογή ενός μέρους από ένα σύνολο

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΕΞΟΡΥΞΗ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ ΣΤΟΙΧΕΙΩΝ ΑΠΟ ΤΟ ΔΙΑΔΙΚΤΥΟ

ΕΞΟΡΥΞΗ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ ΣΤΟΙΧΕΙΩΝ ΑΠΟ ΤΟ ΔΙΑΔΙΚΤΥΟ ΕΞΟΡΥΞΗ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ ΣΤΟΙΧΕΙΩΝ ΑΠΟ ΤΟ ΔΙΑΔΙΚΤΥΟ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΚΑΡΑΓΙΑΝΝΗ ΧΡΥΣΟΥΛΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΦΑΡΜΑΚΗΣ ΝΙΚΟΛΑΟΣ ΘΕΣΣΑΛΟΝΙΚΗ Δεκέμβριος 2013 1 Ευχαριστίες Οφείλω να ευχαριστήσω θερμά για

Διαβάστε περισσότερα