0, αλλιώς. Σεραφείµ Καραµπογιάς. Παράδειγµα 1 Η πηγή X(t) είναι στατική Gaussian µε µέση τιµή µηδέν και φασµατική πυκνότητα ισχύος.
|
|
- Ἀστάρτη Μιαούλης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Παράδειγµα Η πηγή X(t) είναι στατική Gussin µε µέση τιµή µηδέν και φασµατική πυκνότητα ισχύος S X ( f ) 70, f < 00Hz 0, αλλιώς S X ( f ) f 50 Λύση: Ο ρυθµός που απαιτείται είναι R k fs 3 bits 300Hz 600 bits sec Ο παραµόρφωση που επιτυγχάνεται είναι 8 D ( Q( ) ) f X ( ) d i R i 33,38 Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.5-
2 Αν χρησιµοποιήσουµε 0 bits/έξοδο πηγής, τότε η καλύτερη επιλογή είναι ορίσουµε το ανακατασκευασµένο σήµα ίσο µε 0. Στην περίπτωση έχουµε παραµόρφωση D E ( X 0) σ X Από τη συνάρτηση ρυθµού-παραµόρφωσης έχουµε R(D) log σ D σ 0 R 3 Οι πιθανότητα εµφάνισης των 8 εξόδων του κβαντιστή είναι i ( i ) i π 400 e 800 d για i ( ˆ ) ( ˆ ) e d 7 π , D 6,5 4 ) ( ) 0,344 Χρησιµοποιώντας το θεώρηµα κωδικοποίησης πηγής, βλέπουµε ότι η έξοδος του κβαντιστή µπορεί να συµπιεσθεί µέχρι H(X),05 bits/έξοδο πηγής ) ( ) 0,04 ) ( ) 0,359 ( 7 ( 3 6 ( 5 Είναι πιο λογικό να συγκρίνουµε το 33,38 µε την τιµή που λαµβάνει η συνάρτηση ρυθµούπαραµόρφωσηςγια R,05 πουείναι D,6, αντίγια 6,5. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.5-
3 Στο παράδειγµα έχουµε επιλέξει ως µέτρο επίδοσης την E τετραγωνικήπαραµόρφωση, ήθόρυβοςκβάντισης. ( X Q(X )) Σεραφείµ Καραµπογιάς που καλείται µέση Ένα πιο σηµαντικό µέτρο της επίδοσης είναι µια κανονικοποιηµένη έκδοση του θορύβου κβάντισης, κανονικοποιηµένησεσχέσηµετηνισχύτουαρχικούσήµατος. Αν η τυχαία µεταβλητή X κβαντισθεί σε Q(X ), ο λόγος σήµατος προς θόρυβο κβάντισης, SQNR, ορίζεται ως E X SQNR E ( X Q(X )) Όταν εξετάζουµε χρονικά σήµατα, η ισχύς του θορύβου κβάντισης είναι καιηισχύςτουσήµατοςείναι Εποµένως, το SQNR είναι T ~ )) X E lim T T X E T T lim T ( X ( t) Q( X ( t ) d T T ( X ( t) ) d SQNR X ~ X Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.5-3
4 Οµοιόµορφη Κβάντιση Οι οµοιόµορφοι κβαντιστές είναι τα πιο απλά παραδείγµατα βαθµωτών κβαντιστών. Σ' έναν οµοιόµορφο κβαντιστή ολόκληρος ο πραγµατικός άξονας διαµερίζεται σε N περιοχές. Όλες οι περιοχέςεκτόςαπότις R και R N έχουντοίδιοεύρος, πουσυµβολίζεταιµε. Αυτόσηµαίνει ότιγιαόλατα i N, έχουµεα i+ i. f X () ( 5 ) 0,344 ( 6 ) 0,359 ( 7 ) 0,04 ˆ ˆ ˆ 3 ˆ 4 ˆ 5 ˆ 6 ˆ 7 ˆ 8 Παράδειγµα οµοιόµορφης κβάντισης, εύρος βαθµίδας, Ν 8. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.5-4
5 Μη Οµοιόµορφη Κβάντιση Σεραφείµ Καραµπογιάς Αν χαλαρώσουµε τη συνθήκη ότι οι περιοχές κβάντισης (εκτός της πρώτης και της τελευταίας) έχουν ίσα εύρη, τότε η ελαχιστοποίηση της παραµόρφωσης µπορεί να γίνει µε λιγότερους περιορισµούς. Ο κβαντιστής που προκύπτει θα λειτουργεί µε καλύτερες επιδόσεις σε σύγκριση µ' έναν µοιόµορφο κβαντιστήµετονίδιοαριθµόσταθµών. Ο µη οµοιόµορφος κβαντιστής χρησιµοποιεί µεταβαλλόµενο εύρος βαθµίδας. Έχει δύο σηµαντικά πλεονεκτήµατα ως προς τον οµοιόµορφο κβαντιστή: Οδηγεί σε µεγαλύτερο µέσο λόγο σήµατος προς θόρυβο κβάντισης από ότι ο οµοιόµορφος κβαντιστής όταν η συνάρτηση πυκνότητα πιθανότητας του σήµατος είναι ανοµοιόµορφη, πράγµα το οποίο συµβαίνει σε πολλές περιπτώσεις στη πράξη. Η rms τιµή του θορύβου κβάντισης ενός ανοµοιόµορφου κβαντιστή είναι ουσιαστικά ανάλογη προς τη στιγµιαία τιµή του δείγµατος X και έτσι σκεπάζεται η επίδραση του θορύβου κβάντισης. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.5-5
6 f X () ˆ ˆ ˆ 3 ˆ 4 ˆ 5 ˆ 6 ˆ 7 ˆ 8 Παράδειγµα µη οµοιόµορφης κβάντισης, Ν 8. Στη πράξη, µία ανοµοιόµορφη κβάντιση πραγµατοποιείται µε µία συµπίεση των δειγµάτων µετά την οποία µπαίνει ένας οµοιόµορφος κβαντιστής. Η συµπίεση µετατρέπει τη µεταβλητή εισόδου X σε µία άλλη µεταβλητή Y µε τη χρήση ενός µη γραµµικού µετασχηµατισµού Y g(x ) τέτοιου ώστε η τυχαία µεταβλητή Y να έχει οµοιόµορφη συνάρτηση πυκνότητα πιθανότητας. Στο δέκτη ένας συµπληρωµατικός αποσυµπιεστής µε χαρακτηριστική µεταφοράς g - αποκαθιστά τις κβαντισµένες τιµές της µεταβλητής X. Ο συµπιεστής και ο αποσυµπιεστής παρµένοι µαζί αναφέρονται ως σύστηµα compnder (compressor-epnder). Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.5-6
7 Οι συµπιεστές που χρησιµοποιούνται πιο συχνά κάνουν λογαριθµική συµπίεση Y log(x ) σε τρόπο ώστε οι στάθµες πυκνώνουν στη αρχή και αραιώνουν όλο και περισσότερο προς την κορυφήτωντιµώντης X. y y m y 5 y 4 min m y y y min Συµπιεστής για τη µετατροπή ενός µη οµοιόµορφου κβαντιστή σε οµοιόµορφο. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.5-7
8 Η παραµόρφωση για το βέλτιστο κβαντιστή µε N περιοχές κβάντισης χωρίς κάποιο περιορισµό γιατοεύροςτουςδίνεταιαπότην ˆ D ( ) f X ( ) d + N i+ i i ( ) f ( d+ ( ) f ( d i + X ) N N X ) Ηελαχιστοποίησητου Dθαπρέπειναγίνεισεσχέσηµετις N µεταβλητέςπουυπάρχουν την παραπάνω έκφραση. ϑ ϑ i D ( ) ( ) 0 f X ( i ) i i i i+ ( + ) i i i+ i,,..., N Το αποτέλεσµα αυτό σηµαίνει απλά ότι, σ' ένα βέλτιστο κβαντιστή, τα άκρα των περιοχών κβάντισης δίνονται από τον αριθµητικό µέσο των γειτονικών τιµών κβάντισης. Έτσι η κβάντιση γίνεται µε βάση την ελάχιστη απόσταση, δηλαδή κάθε τιµή κβαντίζεται στο Ν πλησιέστερο { i } i. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.5-8
9 Γιανακαθορίσουµετώρατιςτιµέςκβάντισης i, διαφορίζουµετο Dωςπρος i καιορίζουµε α 0 καια N +. Έτσιπροκύπτει ϑ ϑ i D i i ( ) f ( ) d 0 X i f X ( ) d i i i f X ( ) d i i i f X ( ) d < X i i i i f X () < X i i d αν χρησιµοποιήσουµε τον ορισµό της συνάρτησης πυκνότητας πιθανότητας υπό συνθήκη f X ( i < X i ) f X i () < X 0, i, i < αλλιώς i έχουµε i f X ( i < X i ) d E X < X ) i i Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.5-9
10 Η παραµόρφωση για το βέλτιστο κβαντιστή µε N περιοχές κβάντισης δίνεται από την ˆ D ( ) f X ( ) d + N i+ i i ( ) f ( d+ ( ) f ( d i + X ) N N X ) όπουοι N µεταβλητέςείναι ( + ) i i i+, i,,..., N i E X i < X i ), i,,..., N Σε έναν βέλτιστο κβαντιστή η τιµή της κβάντισης (ή το αντιπροσωπευτικό σηµείο) για µια περιοχή θα πρέπει να επιλεγεί έτσι ώστε να είναι το κέντρο µάζας (η υπό συνθήκη αναµενόµενη τιµή) της περιοχής αυτής. Οι εξισώσεις δίνουν τις αναγκαίες συνθήκες, ώστε ένας βαθµωτός κβαντιστής να είναι βέλτιστος και είναι γνωστές ως συνθήκες Lloyd-M. Τα κριτήρια για βέλτιστη κβάντιση µπορούν να συνοψισθούν ως εξής: Τα άκρα των περιοχών κβάντισης δίνονται από τον αριθµητικό µέσο των γειτονικών τιµών κβάντισης (νόµος πλησιέστερου γείτονα). Οι τιµές κβάντισης είναι τα κέντρα µάζας των περιοχών κβάντισης. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.5-0
ιαφορική εντροπία Σεραφείµ Καραµπογιάς
ιαφορική εντροπία Σεραφείµ Καραµπογιάς Για πηγές διακριτού χρόνου µε συνεχές αλφάβητο, των οποίων οι έξοδοι είναι πραγµατικοί αριθµοί, ορίζεται µια άλλη ποσότητα που µοιάζει µε την εντροπία και καλείται
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Αναλογικά Ψηφιακά Σήματα Αναλογικό Σήμα x t, t [t min, t max ], x [x min, x max ] Δειγματοληψία t n, x t x n, n = 1,, N Κβάντιση x n x(n) 3 Αλφάβητο
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Κωδικοποίηση Αναλογικής Πηγής: Κβάντιση Εισαγωγή Αναλογική πηγή: μετά από δειγματοληψία γίνεται διακριτού χρόνου άπειρος αριθμός bits/έξοδο για τέλεια αναπαράσταση Θεωρία Ρυθμού-Παραμόρφωσης
Θεώρημα κωδικοποίησης πηγής
Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Άσκηση 5.1 Για ένα σήμα που έχει τη σ.π.π. του σχήματος να υπολογίσετε: μήκος του δυαδικού κώδικα για Ν επίπεδα κβάντισης για σταθερό μήκος λέξης;
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ Κβάντιση και Κωδικοποίηση ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Χειμερινό Εξάμηνο Τμήμα Πληροφορικής και Τηλεπικοινωνίων Νικόλαος Χ. Σαγιάς Αναπληρωτής Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 7 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Παλµοκωδική ιαµόρφωση
Παλµοκωδική ιαµόρφωση Η παλµοκωδική διαµόρφωση (PCM) είαι το απλούστερο και αρχαιότερο σχήµα κωδικοποίησης κυµατοµορφής. Έας παλµοκωδικός διαµορφωτής αποτελείται από τρία βασικάµέρη: έαδειγµατολήπτηση,
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης
Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Παλμοκωδική διαμόρφωση (PCM) I + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ + Περιεχόμενα
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 5: Pulse Code Modulation (PCM) Σαγκριώτης Εμμανουήλ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας 1. Γνωριμία με την περισσότερο εφαρμοζόμενη
Τηλεπικοινωνίες. Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ
Τηλεπικοινωνίες Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
ΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ /2/ :09:46 µµ
ΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ 013-14 18//014 1:09:46 µµ PULSE CODE MODULATION (PCM) 18//014 Το PCM είναι ένα σύστηµα, µε το οποίο µπορούµε να διαβιβάσουµε ένα αναλογικό (συνεχές) σήµα x(t) µέσω διακριτού καναλιού.
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 3 ο : Κβάντιση-Κωδικοποίηση
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ψηφιακές Επικοινωνίες Εργαστήριο 4 ο : Κβάντιση-Κωδικοποίηση Βασική Θεωρία Κβάντιση Κατά την μετατροπή ενός αναλογικού
Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης
Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης Μορφοποίηση - Κωδικοποίηση πηγής Μορφοποίηση παλµών βασικής ζώνης Μορφοποίηση & µετάδοση βασικής ζώνης Mορφοποίηση-κωδικοποίηση πηγής Mορφοποίηση παλµών
( ) log 2 = E. Σεραφείµ Καραµπογιάς
Παρατηρούµε ότι ο ορισµός της Η βασίζεται στη χρονική µέση τιµή. Για να ισχύει ο ορισµός αυτός και για µέση τιµή συνόλου πρέπει η πηγή να είναι εργοδική, δηλαδή H ( X) ( ) = E log 2 p k Η εντροπία µιας
Τι είναι σήµα; Σεραφείµ Καραµπογιάς
Τι είναι σήµα; Σεραφείµ Καραµπογιάς Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές Παραδείγµατα: Σήµα οµιλίας Σήµα εικόνας
Σεραφείµ Καραµπογιάς ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι
Ψηφιακές Τηλεπικοινωνίες. Κωδικοποίηση Κυματομορφής
Ψηφιακές Τηλεπικοινωνίες Κωδικοποίηση Κυματομορφής Σύνδεση με τα Προηγούμενα Οι τεχνικές κωδικοποίησης αναλογικής πηγής διακρίνονται σε τεχνικές κωδικοποίησης κυματομορφής τεχνικές ανάλυσης σύνθεσης Οι
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
ΘΕΜΑΤΑ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ
Αντικείμενο: Δειγματοληψία ΘΕΜΑΤΑ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Έστω οτι το σήμα x()=sinc(4) δειγματοληπτείται με συχνότητα δειγματοληψίας διπλάσια της συχνότητας Nyquis και κβαντίζεται με ομοιόμορφη
Διαδικασία Ψηφιοποίησης (1/2)
Διαδικασία Ψηφιοποίησης (1/2) Η διαδικασία ψηφιοποίησης περιλαμβάνει: Φιλτράρισμα και δειγματοληψία Κβαντισμό και κωδικοποίηση Φιλτράρισμα και δειγματοληψία Κβαντισμός και κωδικοποίηση Κβαντισμός Τα αναλογικά
Άσκηση 2: Y=BX+C. Λύση:
Άσκηση 2: Η τιμή ενός σήματος x(t) για τη χρονική στιγμή t=t θεωρείται ότι είναι τυχαία μεταβλητή Χ=x(t ) με κανονική κατανομή 0,. Να υπολογιστεί η πιθανότητα της τυχαίας μεταβλητής Y=y(t ) να έχει τιμή
Παράδειγµα ενός ηλεκτρικού συστήµατος
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός aplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος A R B i( ) i
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 18
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 18 14 Νοεµβρίου, 2006 Γεώργιος Έλληνας Επίκουρος Καθηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ
χωρίςναδηµιουργείταιαίσθησηαπώλειαςτηςποιότηταςτηςανακατασκευασµένηςεικόνας.
Το πρότυπο JPEG για κωδικοποίησηση εικόνας Το JPEG, που υιοθετήθηκε από την Joint Photographic Experts Group, είναι ένα πρότυπο που χρησιµοποιείταιευρέωςγιατησυµπίεσηακίνητωνεικόνων, µε µέσο λόγο συµπίεσης
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 014-015 Μοναδικά Αποκωδικοποιήσιμοι Κώδικες Δρ. Ν. Π. Σγούρος Έλεγος μοναδικής Αποκωδικοποίησης Γενικοί ορισμοί Έστω δύο κωδικές λέξεις α,β με μήκη,m και
c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων : Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. (α) Εχουµε ότι : 6 5 x= y= 6 x= 6 x= c(x + y)dxdy = ) c
ιαφορική Παλµοκωδική ιαµόρφωση
ιαφορική Παλµοκωδική ιαµόρφωση Σεραφείµ Καραµπογιάς Στον απλούστερο τύπο διαφορικής παλµοκωδικής διαµόρφωσης (DPCM), κβαντίζεται η διαφοράµεταξύδύοδιαδοχικώνδειγµάτων. ύο διαδοχικά δείγµατα έχουν υψηλή
Γενική εικόνα τι είναι σήµα - Ορισµός. Ταξινόµηση σηµάτων. Βασικές ιδιότητες σηµάτων. Μετατροπές σήµατος ως προς το χρόνο. Στοιχειώδη σήµατα.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Εισαγωγή. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Εισαγωγή Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Εφαρµογές της Ψηφιακής Επεξεργασίας Σηµάτων Ακουστικά Σήµατα ü Αναγνώριση, Ανάλυση, Σύνθεση,
Σεραφείµ Καραµπογιάς. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.3-1
Ο αλγόριθµος Lempel-iv Ο αλγόριθµος Lempel-iv ανήκει στην κατηγορία των καθολικών universal αλγορίθµων κωδικοποίησης πηγής δηλαδή αλγορίθµων που είναι ανεξάρτητοι από τη στατιστική της πηγής. Ο αλγόριθµος
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Μετατροπείς A/D-Διαµόρφωση Δ Μετατροπείς Σ-Δ
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Μετατροπείς A/D-Διαµόρφση Δ Μετατροπείς Σ-Δ Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Μετατροπή A/D Μοντέλο Μετατροπέα Α/D xat
ΣΤOIΧΕΙΑ ΑΠΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ και PCM
ΣΤOIΧΕΙΑ ΑΠΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ και PCM ΠΗΓΗ ΜΕ ΔΙΑΚΡΙΤΑ ΣΥΜΒΟΛΑ Τα στοιχεία της ακολουθίας των συμβόλων Διακριτή Πηγή Χωρίς Μνήμη-DMS Σύμβολα μεταξύ τους στατιστικά ανεξάρτητα: (X i =α k & X j =α l )=
ΠΑΡΑ ΕΙΓΜΑΤΑ ΣΤΙΣ ΑΝΑΛΟΓΙΚΕΣ ΚΑΙ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 29/10/2014 1:55 µµ
ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΕΣ & ΑΝΑΛΟΓΙΚΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Τα παραδείγµατα που περιέχονται στο ile αυτό έχουν επιλεγεί για τους µεταπτυχιακούς φοιτητές του ΡΗ που παρακολουθούν το µάθηµα
Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία
Θ.Ε. ΠΛΗ22 (2012-13) 2η Γραπτή Εργασία Στόχος: Η 2 η εργασία αποσκοπεί στην κατανόηση των συστατικών στοιχείων των αναλογικών διαμορφώσεων, της δειγματοληψίας, και της μετατροπής του αναλογικού σήματος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 2 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst233
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Στοιχεία Επεξεργασίας Σήματος Δρ. Ν. Π. Σγούρος 2 Εργοδικές Διαδικασίες Η μέση τιμή διαφόρων στιγμιότυπων της διαδικασίας (στατιστική μέση τιμή) ταυτίζεται με τη χρονική μέση
Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι
Επεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα
Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 3 ο : Πολυπλεξία με διαίρεση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 9 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Τεχνικές Ανάλυσης-Σύνθεσης
Τεχνικές Ανάλυσης-Σύνθεσης Σεραφείµ Καραµπογιάς Σε αντίθεση µε την κωδικοποίηση κυµατοµορφής, οι τεχνικές ανάλυσης-σύνθεσης είναι µέθοδοιπουβασίζονται σ' έναµοντέλοτουµηχανισµούπουπαράγειτηνκυµατοµορφή.
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 4 : Δειγματοληψία και κβάντιση (Sampling and Quantization) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες
( x) Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ. Βασικά αξιώµατα και ιδιότητες της πιθανότητας. Σεραφείµ Καραµπογιάς
Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ Βασικά αξιώµατα και ιδιότητες της πιθανότητας Σεραφείµ Καραµπογιάς Η αθροιστική συνάρτηση κατανοµής cumulaive diribuio ucio CDF µίας τυχαίας µεταβλητής X ορίζεται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst33
Βέλτιστα γραµµικά χρονικά αναλλοίωτα συστήµατα Συστήµατα που ελαχιστοποιούν το µέσο-τετραγωνικό σφάλµα
Σεραφείµ Καραµπογιάς Βέλτιστα γραµµικά χρονικά αναλλοίωτα συστήµατα Ο Wiener εέτασε το προβληµα της εκτίµησης µίας επιθυµητής κυµατοµορφής σήµατος s παρουσία προσθετικού θορύβου n, βάση του λαµβανόµενου
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Κωδικοποίηση Πηγής Ψηφιακή Μετάδοση Υπάρχουν ιδιαίτερα εξελιγμένες τεχνικές αναλογικής μετάδοσης (που ακόμη χρησιμοποιούνται σε ορισμένες εφαρμογές) Επίσης,
Η Έννοια της τυχαίας ιαδικασίας
Η Έννοια της τυχαίας ιαδικασίας Η έννοια της τυχαίας διαδικασίας, βασίζεται στην επέκταση της έννοιας της τυχαίας µεταβλητής, ώστε να συµπεριλάβει το χρόνο. Σεκάθεαποτέλεσµα s k ενόςπειράµατοςτύχης αντιστοιχούµε,
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Ψηφιακή Μετάδοση Αναλογικών Σηµάτων
Ψηφιακή Μετάδοση Αναλογικών Σηµάτων Τα σύγχρονα συστήµατα επικοινωνίας σε πολύ µεγάλο ποσοστό διαχειρίζονται σήµατα ψηφιακής µορφής, δηλαδή, σήµατα που δηµιουργούνται από ακολουθίες δυαδικών ψηφίων. Τα
4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Κεφάλαιο 7 ο Ταξινόμηση Συστημάτων Κρουστική Απόκριση Κεφάλαιο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 004 005, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση αποτελείται από δύο µέρη. Το πρώτο περιλαµβάνει
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Θεωρητικές Ασκήσεις (# ): ειγµατοληψία, κβαντοποίηση και συµπίεση σηµάτων. Στην τηλεφωνία θεωρείται ότι το ουσιαστικό περιεχόµενο της
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 5 : Θόρυβος Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Είδη θορύβου Περιγραφή θορύβου Θεώρημα Shannon Hartley Απόδοση ισχύος και εύρους
Kalman Filter Γιατί ο όρος φίλτρο;
Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:
Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων
Άσκηση η α) Πώς θα µετρήσετε πρακτικά πόσο κοντά είναι ένα σήµα σε λευκό θόρυβο; Αναφέρατε 3 διαφορετικές µεθόδους (κριτήρια) για την απόφαση: "Ναι, πρόκειται για σήµα που είναι πολύ κοντά σε λευκό θόρυβο"
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 2 Ιουνίου 2015 ηµήτρης-αλέξανδρος Τουµπακάρης Προχ. Θέµατα Θεωρίας Πληροφορίας 12η
ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ
ΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ 011-1 16/1/011 9:45:1 µµ ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ ΑΠΑΙΤΗΣΕΙΣ ΣΕ ΕΥΡΟΣ ΖΩΝΗΣ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΙΑΒΙΒΑΣΗΣ ΙΑΚΡΙΤΩΝ Ε ΟΜΕΝΩΝ Η ΣΧΕΣΗ ΜΕΤΑΞΥ ΕΥΡΟΥΣ
Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης
Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 6: Κωδικοποίηση & Συμπίεση Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 6: Κωδικοποίηση & Συμπίεση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης Το
Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων
1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.
Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x).
Κεφάλαιο 2, άσκηση 1: Δίνονται οι συναρτήσεις: α) 2, β), Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x). Λύση : Για να είναι
Συμπίεση Πολυμεσικών Δεδομένων
Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας
12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων: Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. α) Η περιθωριακή σ.π.π. της f X,Y για την τ.µ X γίνεται:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26
Επεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα
Γραφική αναπαράσταση ενός ψηφιακού σήµατος
γ) Ψηφιακάτα x (n) 3 2 1 1 2 3 n Γραφική αναπαράσταση ενός ψηφιακού σήµατος Αφού δειγµατοληπτηθεί και κβαντιστεί η έξοδος µιας αναλογικής πηγής πληροφορίας, δηµιουργείταιµιαακολουθίααπόκβαντισµένεςτιµές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την
Pulse Amplitude (PAM) Pulse Code (PCM) Pulse Width (PWM) Delta (DM) Pulse Position (PPM) Adaptive Delta (ADM)
Εισαγωγή στις Τηλεπικοινωνίες ιαµόρφωση Παλµών Αναλογική/Ψηφιακή PCM/DPCM DM/ADM ρ. Αθανάσιος. Παναγόπουλος Λέκτορας ΕΜΠ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ Εισαγωγή στις Τηλεπικοινωνίες
Κεφάλαιο 3 Προεπεξεργασία Σήµατος Οµιλίας
Κεφάλαιο 3 Προεπεξεργασία Σήµατος Οµιλίας σελ.83 Κεφάλαιο 3 Προεπεξεργασία Σήµατος Οµιλίας 3.1 Eισαγωγή Τα στάδια που προηγούνται της βασικής διαδικασίας αναγνώρισης, αναφέρονται σαν στάδια προεπεξεργασίας
Γραµµικός Προγραµµατισµός - Μέθοδος Simplex
Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 9 Νοεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Μία τυχαία µεταβλητή X καλείται διακριτή ή απαριθµητή αν παίρνει
Συστήµατα Πολυµέσων Ενδιάµεση Εξέταση: Οκτώβριος 2004
Ενδιάµεση Εξέταση: Οκτώβριος 4 ΜΕΡΟΣ Β: ΑΣΚΗΣΕΙΣ Άσκηση (25 µονάδες): Μια εικόνα αποχρώσεων του γκρι και διαστάσεων 25 x pixel έχει κωδικοποιηθεί κατά PCM µε βάθος χρώµατος 3 bits /pixel. Οι τιµές φωτεινότητας
«Επικοινωνίες δεδομένων»
Εργασία στο μάθημα «Διδακτική της Πληροφορικής» με θέμα «Επικοινωνίες δεδομένων» Αθήνα, Φεβρουάριος 2011 Χρονολογική απεικόνιση της εξέλιξης των Τηλεπικοινωνιών Χρονολογική απεικόνιση της εξέλιξης των
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση
4 Συνέχεια συνάρτησης
4 Συνέχεια συνάρτησης Σε αυτό το κεφάλαιο ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη συμπίεση εικόνας Μη απωλεστικες
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
Μετάδοση πληροφορίας - Διαμόρφωση
Μετάδοση πληροφορίας - Διαμόρφωση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Μετάδοση Βασικές έννοιες Διαμόρφωση ορισμός είδη
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α)
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α) 3.1. ΣΚΟΠΟΣ ΑΣΚΗΣΗΣ Σκοπός της εργαστηριακής αυτής άσκησης είναι η μελέτη της παλμοκωδικής διαμόρφωσης που χρησιμοποιείται στα σύγχρονα τηλεπικοινωνιακά
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 12: Δειγματοληψία και ανακατασκευή (IV) Παρεμβολή (Interpolation) Γενικά υπάρχουν πολλοί τρόποι παρεμβολής, π.χ. κυβική παρεμβολή (cubic spline
Μετάδοση πληροφορίας - Διαμόρφωση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός
Βασικά στοιχεία της θεωρίας πιθανοτήτων
Η έννοια του Πειράµατος Τύχης. 9 3 6 Το σύνολο των πιθανών εκβάσεων ενός πειράµατος τύχης καλείται δειγµατοχώρος ή δειγµατικόςχώρος (sample space)καισυµβολίζεταιµεωήµε S.Έναστοιχείοωήsτου δειγµατικού χώρου
Αναλογικές και Ψηφιακές Επικοινωνίες
Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα : Βέλτιστος δέκτης για ψηφιακά διαμορφωμένα σήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 6: ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Ακαδηµαϊκό Έτος 26 27, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το
1. Διατήρηση της Ενέργειας
. Διατήρηση της Ενέργειας Η ολική ενέργεια σε κάθε απομονωμένο σύστημα διατηρείται, οτιδήποτε και να συμβαίνει μέσα στο σύστημα. α) Σε σύγκρουση σωμάτων μεγάλης ελαστικότητας η κινητική ενέργεια διατηρείται.
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Αναλογικά και ψηφιακά συστήματα Μετατροπή
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου u Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ u Μαθηµατική Ανάλυση της Διαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος