Σταυρούλα Πατσιομίτου
|
|
- Ιόλη Γκόφας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Σταυρούλα Πατσιομίτου Τάξη: Γ Γυμνασίου A Λυκείου Μάθημα : Άλγεβρα Διδακτική ενότητα: Ταυτότητες, Παραγοντοποίηση Σχετικά με το σενάριο: Η παρούσα εργασία είναι αναδιαμόρφωση της δειγματικής διδακτικής πρότασης που παρουσιάστηκε από τους μαθητές του 15 ου Γυμνασίου Αθηνών, στην επιμορφωτική συνάντηση που συνδιοργανώθηκε από τους Σχολικούς Συμβούλους των Μαθηματικών κο Μιχ. Μανωλόπουλο και κο Μιχ. Χρυσοβέργη κατά την σχολική χρονιά ( ). Το ίδιο σενάριο έχει δεχθεί τις κρίσεις και βελτιώσεις Ελλήνων και διεθνών κριτών, αφού έχει παρουσιαστεί στο Πανελλήνιο συνέδριο της «Αξιοποίησης των Τεχνολογιών της Πληροφορίας και της Επικοινωνίας στη διδακτική πράξη των ΤΠΕ» (Σύρος, 2007), στο Πανελλήνιο συνέδριο «Ψηφιακό Υλικό για την υποστήριξη του παιδαγωγικού έργου των εκπαιδευτικών» (Νάουσα, 2008) καθώς και ως άρθρο για το περιοδικό «Ευκλείδης Γ» της Ελληνικής Μαθηματικής Εταιρείας (ΕΜΕ). Το ερευνητικό μέρος με προσαρμοσμένο θεωρητικό υπόβαθρο έχει δημοσιευτεί στο 13 ο Διεθνές συνέδριο «13 th Asian Conference in Technology in Mathematics» (ATCM, 2008) και στη συνέχεια στο Διεθνές περιοδικό «Electronic Journal of Mathematics and Technology (ejmt)» (ejmt, 2009). Patsiomitou, S., (2008c) Do geometrical constructions affect students algebraic expressions? In Yang, W., Majewski, M., Alwis T. and Klairiree, K. (Eds.) Enhancing Understanding and Constructing Knowledge in Mathematics with Technology. Proceedings of the 13 th Asian Conference in Technology in Mathematics. pp Bangkok, Thailand: Suan Shunanda Rajabhat University.Available on line Patsiomitou, S. (2009). The Impact of Structural Algebraic Units on Students Algebraic Thinking in a DGS Environment at the Electronic Journal of Mathematics and Technology (ejmt), 3(3),
2 Σενάριο : Μοντελοποίηση των ταυτοτήτων σε στατικά και δυναμικά μέσα παραγοντοποίηση πολυωνύμων Εισαγωγή (When I listen, I hear. When I see, I remember. But when I do, then I understand.) Οι γεωμετρικές αναπαραστάσεις των ταυτοτήτων είναι μια μέθοδος που χρησιμοποιείται από την αρχαιότητα για την επεξεργασία και κατανόηση των σχετικών αλγεβρικών εννοιών. Όπως αναφέρει ο Ε. Σταμάτης «Το ΙΙ βιβλίο των Στοιχείων του Ευκλείδη.περιέχει την εφαρμογή της γεωμετρίας στην Άλγεβρα και αποδίδεται κατά το μέγιστο στους Πυθαγορείους. Τα πρώτα 10 θεωρήματα αφορούν εις αλγεβρικάς ταυτότητας, τας οποίας δυνάμεθα να παραστήσωμεν ως ακολούθως αν δια των γραμμάτων α,β,γ, νοήσωμεν τμήματα ευθειών γραμμών». Πολλές έρευνες έχουν αποδείξει ότι η χρήση υλικών για τη κατανόηση των εννοιών έχει σημαντική επίδραση στην κατανόηση τους από τους μαθητές (π.χ Η Dina van Hiele Gelfolf για παράδειγμα χρησιμοποίησε tiles (manipulatives) κατά τις έρευνες που διεξήγαγε στην διάρκεια του διδακτορικού της συμφωνα με τις περιγραφές που αναφέρονται με ακρίβεια από τους Fuys,Geddes,Tischler (1988). Η σύγχρονη μοντελοποίηση με χρήση των αλγεβρικών δομικών μονάδων (algebra tiles) έχει διευκολύνει την κατανόηση των εννοιών της πρόσθεσης ομοσήμων, ετεροσήμων αριθμών, την αναγωγή ομοίων όρων σε πολυώνυμα, αλλά και την παραγοντοποίηση ταυτοτήτων
3 ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Θέμα: Η μοντελοποίηση της ταυτότητας (α+β) 2, (α-β) 2, (α+β) 3 Το σενάριο επιχειρεί να συνδέσει το γνωστικό πεδίο της γεωμετρίας με της άλγεβρας. Οι μαθητές θα ανασχηματίσουν τα ψηφιακά τεχνουργήματα σε στατικά μέσα ή στην οθόνη του υπολογιστή αξιοποιώντας τις δυνατότητες που παρέχει το λογισμικό δυναμικής γεωμετρίας και θα μοντελοποιήσουν στην οθόνη γεωμετρικά, την αλγεβρική ταυτότητα. Ευρύτερος στόχος είναι η σύνδεση της εννοιολογικής γνώσης με την διαδικαστική. Δηλαδή, πως οι μαθητές από τον διαδικαστικό χειρισμό των τεχνουργημάτων (στατικών ή ψηφιακών) θα οδηγηθούν στην εννοιολογική κατανόηση. Ακόμα, στην ανάπτυξη της ικανότητας μετάφρασης της οπτικής εικονικής αναπαράστασης της έννοιας, στην λεκτική και συμβολική μορφή της έννοιας. Δηλαδή, οι μαθητές θα αναγνωρίσουν οπτικά τη γεωμετρική μορφή της ταυτότητας και θα μεταφράσουν την εικονική αναπαράσταση σε λεκτική και συμβολική, εφαρμόζοντας διαδικαστικά το κατάλληλο θεώρημα για τη λύση του προβλήματος. Η κατανόηση των εννοιών θα επιτευχθεί σε αλληλεπίδραση με στατικά (π.χ. κατασκευή ταυτοτήτων από τους μαθητές με χαρτόνι) και δυναμικά μέσα (π.χ περιβάλλον λογισμικού δυναμικής γεωμετρίας). Διδακτικοί στόχοι: Οι στόχοι της διδασκαλίας με την προαναφερόμενη διδακτική προσέγγιση καθορίστηκαν ως ακολούθως: Μέσα από τις διαφορετικές σελίδες του λογισμικού οι μαθητές θα διερευνήσουν την ισότητα των δυο μελών στην ταυτότητα, ως αποτέλεσμα του αθροίσματος των εμβαδών των σχημάτων θα υπερβούν σημαντικά διδακτικά επιστημολογικά εμπόδια τα οποία εκδηλώνονται ως λάθη που συνήθως παρατηρούνται κατά την εισαγωγή των εννοιών μέσω φορμαλιστικών διαδικασιών: για παράδειγμα ότι (α+β) 2 = α 2 +β 2 θα τους δοθεί η δυνατότητα να σχηματίσουν γεωμετρικά την αλγεβρική ταυτότητα και να συνδέσουν την άλγεβρα με την - 3 -
4 γεωμετρία. Έτσι, θα κατανοήσουν ότι τα μαθηματικά έχουν νόημα στον πραγματικό κόσμο. θα παίξουν και οδηγηθούν μέσα από το παιχνίδι, στην κατανόηση των εννοιών. Διδακτική προσέγγιση Προτείνεται ιστορική πλαισίωση από το αρχαίο κείμενο των Στοιχείων του Ευκλείδη παρουσίαση του μεταγλωττισμένου από τη διδάσκουσα ppt a_tiles.ppt παρουσίαση και επεξεργασία έτοιμων υλικών σχετικών με αυτά που προτείνονται στο λογισμικό The Geometer s Sketchpad (Jackiw,1988) (για παράδειγμα χάρτινων τετραγώνων με διαφορετικά χρώματα), προκειμένου οι μαθητές να χειριστούν τα υλικά και να κατασκευάσουν με αυτά τις δικές τους κατασκευές, εικόνες και σύμβολα στη συνέχεια. διδασκαλία των ταυτοτήτων στη τάξη Ως δραστηριότητα προτείνεται η κατασκευή σχημάτων που αναπαριστάνουν ταυτότητες, τριώνυμα, η κατασκευή της ταυτότητας ( α+β) 3 με κατασκευή κύβου ακμών α+β (συναρμολογούμενης), έτσι ώστε το κατασκευαστικό αποτέλεσμα να προκύπτει ως άθροισμα των επιμέρους σχημάτων παραλληλεπιπέδων και κύβων. Οργάνωση της διδασκαλίας Η διδασκαλία με χρήση του λογισμικού δυναμικής γεωμετρίας πραγματοποιήθηκε με το τμήμα Γ3 της Γ τάξης του 1 ου Πρότυπου Πειραματικού Γυμνασίου Αθηνών στη βιβλιοθήκη του σχολείου και είχε διάρκεια μιας ώρας, καθώς και στο περιβάλλον της τάξης κατά τις ημερομηνίες που αναφέρονται στο βιβλίο ύλης του τμήματος. Η διδάσκουσα κατασκεύασε και στη συνέχεια χρησιμοποίησε σε συνεργασία με τους - 4 -
5 μαθητές ένα ημιπροσχεδιασμένο αρχείο πολλαπλών σελίδων λογισμικού δυναμικής γεωμετρίας, εννοιολογικά και διαδικαστικά συνδεδεμένων μεταξύ τους. Οι μαθητές και η διδάσκουσα χρησιμοποίησαν τον διαδραστικό πίνακα της αίθουσας και οι πρώτοι απάντησαν σε φύλλο εργασίας τα ερωτήματα που τέθηκαν παράλληλα με την αλληλεπίδραση με το αρχείο του λογισμικού. Περιγραφή του αρχείου του λογισμικού δυναμικής γεωμετρίας Geometer s Sketchpad 1η σελίδα του λογισμικού Τα σχήματα των τετραγώνων και ορθογωνίων παρέχονται σε τυχαία θέση στην οθόνη και οι μαθητές πρέπει να ανακαλύψουν μέσω του συρσίματος το σωστό προσανατολισμό τους, ώστε να κατασκευάσουν την μορφή της ταυτότητας. Για το λόγο αυτό η διδάσκουσα έχει σχεδιάσει τις δραστηριότητες, προβλέποντας την δυνατότητα αλλαγής του προσανατολισμού τους, με σύρσιμο σημείου-κορυφής του κάθε σχήματος. Σχήμα 1-5 -
6 Σχήμα 2 2η σελίδα Περιλαμβάνει την κατασκευή δυο τετραγώνων των οποίων οι διαστάσεις α, β είναι αλληλοεξαρτώμενες, αφού έχουν κατασκευαστεί ώστε το σύρσιμο του τμήματος β να μην υπερβαίνει το τμήμα α. Σχήμα 3 Σχήμα 4 Σχήμα 5-6 -
7 3η σελίδα Η τοποθέτηση του τετραγώνου με πλευρά β επί του τετραγώνου με πλευρά α (β α), οδηγεί τους μαθητές στην οπτική αντίληψη της διαφοράς των δυο τετραγώνων. Σχήμα 6 Στη συνέχεια οι μαθητές οδηγούνται να υπολογίσουν το εμβαδόν του σχήματος που υπολείπεται με διαχωρισμό σε εμβαδά δυο σχημάτων ορθογωνίων. Η απόκρυψη του ορθογωνίου με διαστάσεις α-β, β και η εμφάνιση του με περιστροφή σε κατακόρυφη θέση, και στη συνέχεια η απόκρυψη του και η εμφάνιση στη θέση από ανάκλαση του κατακόρυφου ορθογωνίου, καθοδηγεί τους μαθητές να μετασχηματίσουν οπτικά το εμβαδόν του υπολοίπου σχήματος και να οδηγηθούν στην οπτική αποδεικτική διαδικασία. Σχήμα 7 4η σελίδα Η διαδικασία επαναλαμβάνεται στην επόμενη σελίδα στην οποία οι μαθητές έχουν την δυνατότητα να προσθέσουν κίνηση στο σημείο Ρ και να παρατηρήσουν τον - 7 -
8 μετασχηματισμό των σχημάτων, αλλά και πως μεταβάλλεται το εμβαδόν του υπολοίπου σχήματος (αφαιρουμένων των εμβαδών των δυο τετραγώνων). 5η σελίδα Στη συνέχεια οι μαθητές θα παραγοντοποιήσουν ένα τριώνυμο (π.χ το x 2 + 8x + 15), σύροντας και ανατοποθετώντας τα ψηφιακά τεχνουργήματα στην οθόνη, όπως φαίνεται στο σχήμα 9 κάτω. Σχήμα 8 Σχήμα 9 Για πιο σύνθετες μοντελοποιήσεις αλγεβρικών παραστάσεων οι μαθητές θα αλληλεπιδράσουν με τις «αλγεβρικές δομικές μονάδες» του λογισμικού μέσω των οποίων δίνεται η δυνατότητα γεωμετρικών αναπαραστάσεων μαθηματικών αντικειμένων σε μορφή custom tools (εργαλείων προκατασκευασμένων στη βιβλιοθήκη του λογισμικού). Κατασκευές αλγεβρικές μονάδες με δομικές Σχήμα
9 6 η -8 η σελίδα Οι μαθητές θα πειραματιστούν με τα προκατασκευασμένα ψηφιακά τεχνουργήματα της οθόνης στις συνδεόμενες σελίδες του λογισμικού, προκειμένου να κατανοήσουν την γεωμετρική μοντελοποίηση της διαφοράς δυο τετραγώνων διαφορετικών διαστάσεων, και να τη συσχετίσουν με την αλγεβρική έννοια της διαφοράς τετραγώνων. Αυτή θα προκύψει με την αναδιαμόρφωση των γεωμετρικών αναπαραστάσεων (αναδιάταξη και αλλαγή προσανατολισμού)
10 Φύλλο εργασίας Σελίδα 1 1. Τοποθετήστε κατάλληλα τα σχήματα, ώστε με αυτά να κατασκευάσετε ένα νέο μεγαλύτερο τετράπλευρο; Τι τετράπλευρο είναι αυτό και γιατί ; 2. Ποιο είναι το μήκος της πλευράς του σχήματος που κατασκευάσατε ; 3. Ποιο είναι το εμβαδόν του συναρτήσει της πλευράς του; 4. Από τα εμβαδά ποιών σχημάτων αποτελείται; 5. Μπορείτε να διατυπώσετε την ισότητα των εμβαδών με αλγεβρικό τρόπο; Η ισότητα που μόλις κατασκευάσατε είναι η γνωστή μας ταυτότητα ανάπτυγμα τετραγώνου αθροίσματος. Συσχέτισε την ταυτότητα αυτή με την πρόταση 4 του ΙΙ βιβλίου των Στοιχείων του Ευκλείδη. Σελίδα 2 6. Στην εικόνα στην οθόνη παρατηρείτε δυο τετράγωνα με εμβαδά Ε 1 =.. και εμβαδόν Ε 2 =.. 7. Τοποθετήστε το τετράγωνο με εμβαδόν Ε2 στο τετράγωνο με εμβαδόν Ε1. Πως συμβολίζεται αυτό με αλγεβρικό τρόπο; Μπορείτε να γράψετε την αλγεβρική έκφραση;
11 υπόδειξη: Υπολόγισε το εμβαδόν του τετραγώνου με πλευρά α Υπολόγισε το εμβαδόν του τετραγώνου με πλευρά β Υπολόγισε τη διαφορά των δυο εμβαδών, δηλαδή τη διαφορά τετραγώνων. 8. Ποιες είναι οι διαστάσεις των ορθογωνίων παραλληλογράμμων που σχηματίζονται (ΝΖΗΕ και ΚΗΒΑ);.. 9. Γράψτε την αλγεβρική έκφραση του εμβαδού ως αποτέλεσμα του αθροίσματος των ΝΖΗΕ και ΚΗΒΑ... Η ισότητα που μόλις κατασκευάσατε είναι η γνωστή μας ταυτότητα διαφορά τετραγώνων. Ποια πρόταση του ΙΙ βιβλίου των Στοιχείων του Ευκλείδη είναι αυτή; Σελίδα 3 9. Σύρετε το αυθαίρετο τμήμα ΒΑ από τα άκρα του. Τι παρατηρείτε; Πως μετασχηματίζεται το εμβαδόν της διαφοράς των τετραγώνων; Γράψτε την αλγεβρική έκφραση
12 Εκφράστε τη διαφορά των δυο τετραγώνων ως γινόμενο συναρτήσει των τμημάτων α, β... Σελίδα Αν τροποποιήσουμε το μήκος του τμήματος β, η ταυτότητα θα ισχύει ; Πατήστε το κουμπί προσθήκης κίνησης (animation) του σημείου. Τι μεταβάλλεται τώρα στο σχήμα ;.. Σελίδα Ποιο το εμβαδόν του τετραγώνου με πλευρά x 13. Ποιο το εμβαδόν του ορθογώνιου με πλευρές x, Σχηματίστε ένα μεγαλύτερο ορθογώνιο ή τετράγωνο με σχήματα που υπάρχουν στην οθόνη. Γράψτε το εμβαδόν του σχήματος (ορθογωνίου) που σχηματίζεται
13 18. Στο αρχείο algebra tiles σχεδιάστε την ταυτότητα 5x 2 + 3x + 1. Βιβλιογραφία : Σταµάτης, Ε. (1975) Ευκλείδου Γεωµετρία. Στοιχεία βιβλία 1-4 Fuys, D., Geddes, D. & Tischler, R. (1988). The Van Hiele Model of Thinking in Geometry among Adolescents. Monograph No. 3, NCTM. ιευθύνσεις ιαδικτύου a%20tiles.ppt algebra_tiles.pdf Εργασίες μαθητών Οι μαθητές του τμήματος Γ3 Κωνσταντίνος Παλαιολόγος, Κωνσταντίνος Παπαγεωργίου Κούτουλας, Ηλίας Παπασωτηρίου, Πάρις Πατρικάς, Κατερίνα Πέτρου, Κατερίνα Τομτσίνι, Δημήτρης Σπυρόπουλος, Μυρτώ Τζήμα, Νάγια Ροδίτη Σοφία Σαπουντζόγλου και Κωνσταντίνος Σπαθαριώτης εργάστηκαν μεμονωμένα και κατασκεύασαν τις παρακάτω αναπαραστάσεις των ταυτοτήτων. Υλικό: χρωματιστά χαρτόνια, ψαλίδι και κόλλα
14 Κωνσταντίνος Παλαιολόγος Κωνσταντίνος Παπαγεωργίου Κούτουλας Σοφία Σαπουντζόγλου Μυρτώ Τζήμα
15 Πάρις Πατρικάς Νάγια Ροδίτη Κατερίνα Πέτρου Κατερίνα Τομτσίνι
16 Κωνσταντίνος Σπαθαριώτης Δημήτρης Σπυρόπουλος Ηλίας Παπασωτηρίου
17 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΤΑΥΤΟΤΗΤΑΣ (α+β) 3 από τον μαθητή του τμήματος Γ3 Δημήτρη Σπυρόπουλο
18 - 18 -
Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr. Σενάριο : Μοντελοποίηση ταυτοτήτων σε στατικά και δυναμικά μέσα παραγοντοποίηση πολυωνύμων
Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr Τάξη: Γ Γυμνασίου A Λυκείου Μάθημα : Άλγεβρα Διδακτική ενότητα: Αξιοσημείωτες Ταυτότητες, Παραγοντοποίηση αλγεβρικών παραστάσεων Εισαγωγή Σενάριο : Μοντελοποίηση
Σταυρούλα Πατσιομίτου
Αριστοτέλους Μεταφυσικά 1078 α 30 Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr Σ υνδέονται τα Μαθηματικά με την Αισθητική, με την Τέχνη, με την Τεχνολογία. Πόσο σημαντικό είναι να γνωρίζουμε την Ιστορία τους;
Το ιστορικό σημείωμα είναι απόσπασμα του κειμένου που περιέχεται στο έργο «Μαθαίνω Μαθηματικά με το Geometer s Sketchpad» (Πατσιομίτου, 2010)
Σ.Πατσιομίτου Ιστορία του Πυθαγόρειου θεωρήματος 1 Το Πυθαγόρειο θεώρημα έχει πάρει το όνομά του από τον Πυθαγόρα (569-475 π.χ.) που το απέδειξε. O Howard Eves (1983) αναφέρεται στο Πυθαγόρειο θεώρημα
Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ
ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ. ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες
ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : 1 Η Διδακτική ώρα : Εισαγωγή
Εφαρμογές του Πυθαγορείου θεωρήματος- Υπολογισμοί στο Δένδρο του Πυθαγόρα. Σ.Πατσιομίτου 1
1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Εφαρμογές του Πυθαγορείου θεωρήματος- Υπολογισμοί στο Δένδρο του Πυθαγόρα Σ.Πατσιομίτου 1 Το Πυθαγόρειο θεώρημα που περιέχεται στα περισσότερα σχολικά εγχειρίδια
Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου
Γιώργος Μαντζώλας ΠΕ03 Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Σύντοµη περιγραφή του σεναρίου Η βασική ιδέα του σεναρίου Το συγκεκριµένο εκπαιδευτικό σενάριο αναφέρεται στην εύρεση των τύπων µε τους
ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ
ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΔΙΔΑΚΤΕΑ ΥΛΗ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά.,
ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ
ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ Γνωστική Περιοχή: Γεωμετρία Β Λυκείου Θέμα Το Πυθαγόρειο Θεώρημα είναι γνωστό στους μαθητές από το Γυμνάσιο. Το προτεινόμενα θέμα αφορά την
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος
Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν
Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-
3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη
Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου
Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2
Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας
Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή
Ιδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις /
Ιδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις / Οι παρακάτω πίνακες καλύπτουν το μεγαλύτερο μέρος της ύλης του αναλυτικού προγράμματος σπουδών της Γεωμετρίας.
Σε ποιους απευθύνεται: Χρόνος υλοποίησης: Χώρος υλοποίησης: Κοινωνική ενορχήστρωση της τάξης Στόχοι:... 4
Περιεχόμενα Νικόλαος Μανάρας... 2 Σενάριο για διδασκαλία/ εκμάθηση σε μια σύνθεση μεικτής μάθησης (Blended Learning) με τη χρήση του δυναμικού μαθηματικού λογισμικού Geogebra σε διαδραστικό πίνακα και
Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση
Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.
Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη
ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου
Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.
9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη
Οδηγίες & Ενδεικτικά θέματα προαγωγικών & απολυτηρίων εξετάσεων Γυμνασίου Σελίδα 1
ΟΔΗΓIEΣ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ Α. ΘΕΩΡΙΑ Οι μαθητές υποχρεούνται σε διαπραγμάτευση ενός απλού από δύο τιθέμενα θέματα θεωρίας της διδαγμένης ύλης. Ένα θέμα από την Άλγεβρα και
ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA
ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.
Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα
Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.
ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ
ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 2. Εκπαιδευτικό Λογισμικό για τα Μαθηματικά 2.1 Κύρια χαρακτηριστικά του εκπαιδευτικού λογισμικού για την Διδακτική των Μαθηματικών 2.2 Κατηγορίες εκπαιδευτικού λογισμικού για
Μαθηματικά Α Τάξης Γυμνασίου
Μαθηματικά Α Τάξης Γυμνασίου Διδακτικό Έτος 2018-2019 Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου. Κεφ. 1 ο :
ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,
ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ
Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:
1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ
ΜΕΡΟΣ Α 1.4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 59 1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Πολλαπλασιασμός μονωνύμου με πολυώνυμο Ο πολλαπλασιασμός μονώνυμου με πολυώνυμο γίνεται ως εξής: Πολλαπλασιάζουμε το μονώνυμο με
Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και
Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.
9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή
1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ
Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου
Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής
Οι Πλακοστρώσεις στο Sketchpad v4 ως διαισθητικό θεμέλιο για την ανάπτυξη παραγωγικών συλλογισμών
Οι Πλακοστρώσεις στο Sketchpad v4 ως διαισθητικό θεμέλιο για την ανάπτυξη παραγωγικών συλλογισμών Σ.Πατσιομίτου Εκπ/κός Δ/θμιας Εκπ/σης, Med Διδακτικής και Μεθοδολογίας Μαθηματικών ΕΚΠΑ, Υπ. Διδάκτωρ Παν.
Η λογαριθµική συνάρτηση και οι ιδιότητές της
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα
5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα
5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι
Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ
Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Σχολικό Έτος: 2014-2015 Μαθηματικός Περιηγητής 1 Διδακτέα ύλη και οδηγίες διδασκαλίας
πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια
Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα
ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ
184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία
Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).
τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο
«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»
Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο
Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού
Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.
Εισαγωγή στην έννοια της συνάρτησης
Εισαγωγή στην έννοια της συνάρτησης Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ
Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε.
Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε. Ζαφειρόπουλος Χρήστος Μαθηματικός Γυμνασίου & Λυκείου Καράτουλα zafeiropouloschristos@yahoo.gr ΠΕΡΙΛΗΨΗ Το Πυθαγόρειο Θεώρημα ξεκινώντας την ιστορική
Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.
Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες:
Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017
Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017 Α Λυκείου Γεωμετρία Κεφάλαιο 3 3.1 Είδη και στοιχεία τριγώνων 3.2 1 ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.3 2 ο Κριτήριο ισότητας
«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.
«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,
Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Σχεδίαση και μετασχηματισμοί Συνδεόμενων Οπτικών Αναπαραστάσεων-Εφαρμογή στη διδασκαλία σε τάξη
Σχεδίαση και μετασχηματισμοί Συνδεόμενων Οπτικών Αναπαραστάσεων-Εφαρμογή στη διδασκαλία σε τάξη Σταυρούλα Πατσιομίτου spatsiom@cc.uoi.gr Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης, Πανεπιστήμιο Ιωαννίνων,
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Η χρήση γεωμετρικών μετασχηματισμών με DGS, ως μέθοδος επίλυσης προβλημάτων γεωμετρικών τόπων και κατασκευών
Η χρήση γεωμετρικών μετασχηματισμών με DGS, ως μέθοδος επίλυσης προβλημάτων γεωμετρικών τόπων και κατασκευών Ειρήνη Περυσινάκη peririni@hotmail.com Δρ. Πανεπιστημίου UCL Επιμορφώτρια Β Επιπέδου Πειραματικό
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 3. Ασκήσεις: -5 Θεωρία ως και την 3.3 Ασκήσεις: 6-8 Άσκηση Δίνεται η παράσταση: A= 3 5 +
Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ
Εξισώσεις α βαθμού. Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο
Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)......
4. Βασικά Στοιχεία ιδακτικής της Άλγεβρας µε τη χρήση Ψηφιακών Τεχνολογιών Οι ψηφιακές τεχνολογίες που έχουν µέχρι τώρα αναπτυχθεί για τη διδασκαλία και τη µάθηση εννοιών της Άλγεβρας µπορούν να χωριστούν
GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης
GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης Ενημερωτική Συνάντηση Ομάδων Εργασίας Ν.Α.Π. Παιδαγωγικό Ινστιτούτο, Λευκωσία, 8 Μαΐου 2012 Ιδιότητες
Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................
Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).
Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση
ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Γνωστική περιοχή: Γεωµετρία Β Λυκείου Αναλογίες γεωµετρικών µεγεθών, Οµοιότητα τριγώνων, Εµβαδόν Τετραγώνου. Εµβαδόν Τριγώνου Βασικές γνώσεις Ευκλείδειας Γεωµετρίας Α
ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Β Λυκείου τμήμα.. Καθηγητής/τρια:Τάξη: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό
ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ
ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Εκπαιδευτικό
Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ
Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ (2007 2013) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Πρακτική Άσκηση Εκπαιδευομένων στα Πανεπιστημιακά Κέντρα Επιμόρφωσης
3, ( 4), ( 3),( 2), 2017
ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.
ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β
Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.
Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται
A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη
ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΧΡΟΝΟΣ : 2 Ώρες Υπογραφή :
ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2018 2019 ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ 2019 ΜΑΘΗΜΑ : Μαθηματικά ΤΑΞΗ : Γ ΗΜΕΡΟΜΗΝΙΑ : 5 / 6 / 2019 ΧΡΟΝΟΣ : 2 Ώρες Βαθμός : Ολογράφως
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
Διδακτικές ενότητες Στόχος
Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2
β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε R. Μονάδες 8 γ) Αν x
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ ΕΤΟΣ 06-7 Εξισώσεις Β βαθμού Α Λυκείου Τριών Ιεραρχών την Δευτέρα κι ευκαιρία να τους τιμήσουμε λύνοντας μερικές ασκησούλες άλγεβρας Αρχίστε από τις,,3,4,5,6,8,3,4,5,6,7,8,9,0,
ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.
Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.
ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS
246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν
Γ Τάξη Γυμνασίου. Ι. Διδακτέα ύλη
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.
εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.
εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς
ΔΗΜΙΟΥΡΓΙΑ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ ΣΕ LOGO
ΔΗΜΙΟΥΡΓΙΑ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ ΣΕ LOGO ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΠΑΝΟΥΣΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ ΠΕ19 ΣΧΟΛΕΙΟ 3 ο ΓΥΜΝΑΣΙΟ ΚΟΡΙΝΘΟΥ ΚΟΡΙΝΘΟΣ 06/04/18 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Η πρακτική
ΕΝΟΤΗΤΑ 5 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα και δεκαδικούς αριθμούς,
ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ. Άσε το Χάος να βάλει τάξη. ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ. Fractals Πλακοστρώσεις(Penrose) Χάος. Α Β Γ Λυκείου ΑΡΙΘΜΟΣ ΜΑΘΗΤΩΝ
ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ Δρ ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ ΤΑΞΗ Άσε το Χάος να βάλει τάξη. Fractals Πλακοστρώσεις(Penrose) Χάος Α Β Γ Λυκείου
ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ
3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον
Σχολικός Σύµβουλος ΠΕ03
Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήµατος ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρηµα έχουν δοθεί
ΔΗΜΙΟΥΡΓΙΑ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ ΣΕ LOGO
ΔΗΜΙΟΥΡΓΙΑ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ ΣΕ LOGO ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΠΑΝΟΥΣΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ ΠΕ19 ΣΧΟΛΕΙΟ 3 ο ΓΥΜΝΑΣΙΟ ΚΟΡΙΝΘΟΥ ΚΟΡΙΝΘΟΣ 06/04/18 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Η πρακτική
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.
ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ
ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Two projects Η συμβολή της Αστρονομίας στην ανάπτυξη των επιστημών: A) Το Ηλιακό μας Σύστημα και B) 2 ος Νόμος του Kepler!
Two projects Η συμβολή της Αστρονομίας στην ανάπτυξη των επιστημών: A) Το Ηλιακό μας Σύστημα και B) 2 ος Νόμος του Kepler! Διαλέξαμε θέματα της Αστρονομίας γιατί δεν διδάσκονται στην σχολική ύλη. Με στόχο
Άλγεβρα Α ΕΠΑΛ Εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.
Άλγεβρα Α ΕΠΑΛ Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.2ο: Οι Πραγματικοί Αριθμοί 2.1 Οι Πράξεις και οι Ιδιότητές τους 2.2 Διάταξη Πραγματικών
ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
Cabri II Plus Λογισμικό δυναμικής γεωμετρίας απευθύνεται σε μαθητές και δασκάλους όλων των βαθμίδων!
Cabri II Plus Λογισμικό δυναμικής γεωμετρίας απευθύνεται σε μαθητές και δασκάλους όλων των βαθμίδων! Επ ιτρέπ ει τη σχεδίαση και το χειρισμό γεωμετρικών αντικειμένων απ ό τα απ λά έως τα π ιο π ερίπ λοκα
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό
Έρευνα 1: Μέσα παράλληλων χορδών
Μέσα χορδών Έρευνα 1: Μέσα παράλληλων χορδών Σχεδιάστε με το Sketchpad το ίχνος των μέσων των χορδών κατά την παράλληλη μεταφορά μιας ευθείας. Για το σκοπό αυτό, πρέπει πρώτα να κατασκευάσετε τα μέσα.
ΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα και δεκαδικούς αριθμούς,