y 1 και με οριακές συνθήκες w
|
|
- Φυλλίς Αξιώτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Η εξίσωση Laplace σε δύο διαστάσεις w w 0 () x y περιγράφει διάφορα προβλήματα μηχανικής των στερεών και των ρευστών. Να υπολογισθεί αριθμητικά η τιμή της εξαρτημένης μεταβλητής w x, y στο κέντρο μιας ορθογώνιας πλάκας με 0 x, 0 y και με οριακές συνθήκες w w0, y w, y 0, 0 και w x, x. () Λύση y y 0 Διακριτοποιούμε το πεδίο ορισμού επιλέγοντας Nx ίσα μεταξύ τους διαστήματα ( Nx κόμβους) στη x κατεύθυνση και Ny ίσα μεταξύ τους διαστήματα ( Ny κόμβους) στη y κατεύθυνση. Για απλούστευση των τύπων επιλέγουμε Nx Ny έτσι ώστε να δημιουργηθούν τετραγωνικά κελιά και να είναι: hx hy h Nx Ny Επίσης, επειδή ζητείται η ποσότητα στο κέντρο της πλάκας, βολεύει να επιλέξουμε το Ny ως μία δύναμη του (δηλ. Ny,,,3,... ) έτσι ώστε το κέντρο της πλάκας να συμπίπτει με κάποιον κόμβο του τετραγωνικού πλέγματος και συγκεκριμένα με τον κόμβο: i, j Nx /, Ny / Στο επόμενο σχήμα παρουσιάζεται το πλέγμα για Ny, Nx (x=0,y=) (,3) (,3) (3,3) (,3) (5,3) (,) (,) (3,) (,) (5,) Σχήμα (x=0,y=0) (i=,j=) (x=,y=0) (,) (3,) (,) (5,)
2 Διακριτοποιούμε την () στον τυχαίο εσωτερικό κόμβο (, i j) χρησιμοποιώντας εκφράσεις κεντρώων πεπερασμένων διαφορών ης τάξης. Έτσι έχουμε: w w w w w w i, j i, j i, j i, j i, j i, j hx hy 0 wi, jwi, jwi, jwi, j wi, jwi, j 0 h wi, j wi, jwi, jwi, j wi, j, i,..., Nx, j,..., Ny (3) Οι οριακές συνθήκες σε διακριτή μορφή δίνουν: w(0, y) 0w 0, j,..., Ny (), j w(, y) 0wNx, j 0, j,..., Ny (5) wx (,) xw ( i) h, i,..., Nx (6) iny, x w Για τη συνθήκη 0 επιλέγουμε την πιο απλή λύση, δηλαδή να y y 0 χρησιμοποιήσουμε μία έκφραση πρόδρομων πεπερασμένων διαφορών ης τάξης. (Αυτό βέβαια έχει σαν αποτέλεσμα ολόκληρο το αριθμητικό μας σχήμα να είναι πλέον ης τάξης.) Έτσι έχουμε: wi, wi, 0 wi, wi,, i,,3,..., Nx (7) h y Προσοχή πρέπει να δοθεί στο χειρισμό των γωνιακών κόμβων του πλέγματος, διότι σε αυτούς τους κόμβους η πληροφορία προέρχεται από δύο οριακές συνθήκες, οι οποίες συχνά δίνουν διαφορετικές τιμές. Για παράδειγμα στον κόμβο (5,3) του σχήματος μπορεί να δοθεί η τιμή 0 ή η τιμή. Υπάρχουν δύο βασικοί τρόποι αντιμετώπισης. Ο πιο απλός (αλλά όχι και ακριβής) τρόπος είναι να επιλέξουμε και να χρησιμοποιήσουμε αυθαίρετα μία από τις δύο τιμές, ενώ αν θέλουμε πιο ακριβή αποτελέσματα θα πρέπει η τιμή του γωνιακού κόμβου να προκύπτει από μία διαδικασία παρεμβολής μεταξύ των τιμών των γειτονικών προς αυτόν συνοριακών κόμβων. Στο συγκεκριμένο πρόβλημα επιλέγουμε τον πρώτο και πιο απλό τρόπο και συγκεκριμένα οι γωνιακοί κόμβοι (, Ny ), ( Nx, Ny ) προέρχονται από την οριακή συνθήκη wx (,) x, ενώ οι γωνιακοί κόμβοι (,), ( Nx,) προέρχονται w από την οριακή συνθήκη 0. y y 0 Επιλύοντας το πρόβλημά μας με το πλέγμα του σχήματος έχουμε το ακόλουθο σύστημα 5 εξισώσεων με 5 αγνώστους:
3 w, w, w, w, w3, w, w, w, w5, w5, w, 0 w w w w w w w w w w w w w w w w5, 0 w,3 0 w,3 0.5 w3,3 w,3.5 w, 3,,,3, 3,,, 3,3 3,, 5, 3,,3, 5,3 Το παραπάνω σύστημα μπορούμε να το λύσουμε με τη βοήθεια του Mathematica ως εξής: Solvew w, w w, w3 w3, w w, w5 w5, w 0, w w3 w w3 w,w3 w w w33 w3, w w5 w3 w3 w,w5 0, w3 0, w3 0.5, w33, w3.5, w53, w, w, w3, w, w5, w, w, w3, w, w5, w3, w3, w33, w3, w53 Τα αποτελέσματα παρουσιάζονται στον ακόλουθο πίνακα: w i= i= i=3 i= i=5 j= j= j= Επομένως η ζητούμενη ποσότητα στον κέντρο της πλάκας, δηλαδή στον κόμβο (3,) είναι η: 0.78 Για να επιλύσουμε τώρα τη γενική περίπτωση των Nx Ny εξισώσεων, θα πρέπει να χρησιμοποιήσουμε μία επαναληπτική μέθοδο επίλυσης συστημάτων όπως για παράδειγμα την Gauss-Seidel. Έτσι η (3) γράφετε στη μορφή: 3
4 ( k ) ( k ) ( k ) ( k ) ( k w ) i, j wi, j wi, j wi, j wi, j, i,..., Nx, j,..., Ny όπου με (k) δηλώνουμε τον δείκτη της επανάληψης. Το πρόγραμμα σε Fortran που επιλύει το πρόβλημα μας είναι το ακόλουθο: Program GaussSeidel implicit none doubleprecision,allocatable::w(:,:),wold(:,:) integer::nx,ny,i,j,maxi,done,k doubleprecision::s,rel,err,max,t,h! Arithmos diasthmatwn (= arithmos kombwn-) Ny=! Ths morfhs ^κ wste na yparxei kombos akribws sto kentro ths plakas Nx=*Ny! Gia na exoume Dx=Dy allocate(w(nx+,ny+),wold(nx+,ny+)) maxi=50000 rel= h=./ny!(=./nx) k= done=0 w(:,:)=0.! w(,:)=0! w(nx+,:)=0 do while (k<=maxi.and. done==0) wold(:,:)=w(:,:) do i=,nx+ w(i,ny+)=(i-)*h do j=ny,,- do i=,nx w(i,j)= 0.5*(w(i,j+)+w(i,j-)+w(i+,j)+w(i-,j)) do i=,nx+ w(i,)=w(i,)! elenxos gia termatismo max=- do i=,nx do j=,ny err = abs((w(i,j) - wold(i,j))/w(i,j)) if (err>max) then max=err end if if (max<rel) then done= end if k=k+
5 open(,file='res_gauss.txt',recl=000)!xwris to RECL=000 to megisto platos xwraei monon 5 sthles toy pinaka do j=,ny+!ektypwsh toy plegmatos anapoda gia na apodothei swstotera sto Array Viewer write(,*) w(:,j)! w at center t=w(nx/+,ny/+) print*, k-,t end Εκτελώντας των κώδικα π.χ. για Ny 6, Nx 3 παίρνουμε σαν αποτέλεσμα για την ποσότητα w στο κέντρο της πλάκας την τιμή: Επίσης ανοίγοντας το αρχείο 'res_gauss.txt' χρησιμοποιώντας το πρόγραμμα Compaq Array Viewer παίρνουμε την ακόλουθη κατανομή της ποσότητας w στην επιφάνεια της πλάκας: 5
6 ΑΣΚΗΣΗ Να λυθεί το πρόβλημα οριακών τιμών u u u 0, r r r z 0 r R, 0 z L με οριακές συνθήκες u r, 0 ur, L 0 και,z ur u R. Περιγράψτε ένα φυσικό φαινόμενο που μοντελοποιείται με το παραπάνω πρόβλημα οριακών τιμών. Λύση Επιλέγουμε R=, L= και u R =5. Διακριτοποιούμε επιλέγοντας Nr ίσα μεταξύ τους διαστήματα στην r κατεύθυνση και Nz Nr ίσα μεταξύ τους διαστήματα στην z κατεύθυνση, επομένως είναι: h / Nr h / Nz h r z u R Σχήμα Ο κόμβος (i=,j=) βρίσκεται στο σημείο (r=0,z=0), ενώ ο κόμβος (i=nr+,j=nz+) βρίσκεται στο σημείο (r=r,z=l). Επιλέγουμε να διακριτοποιήσουμε την () με ένα σχήμα κεντρώων πεπερασμένων διαφορών ης τάξης. Έτσι έχουμε: ui, jui, jui, j ui, jui, j ui, j ui, jui, j 0 hr r i hr hz ( i) hr ui, jui, jui, j ui, jui, jui, j ui, jui, j 0 ( i ) 6
7 u,,,,,,,...,,,..., i j u u u u i Nr j ( i ) i j ( i ) i j i j i j Nz (3) Για τις οριακές συνθήκες έχουμε τα ακόλουθα: Στον άξονα του κυλίνδρου ισχύει η συνθήκη συμμετρίας: u r r 0 Παρατηρούμε ότι εφαρμόζοντας τον κανόνα Hospital έχουμε: () όταν r 0 γράφεται ως: 0 () u lim r u. Έτσι η r0 r r u u r z 0 (5) Εφαρμόζοντας κεντρώες πεπερασμένες διαφορές στην (5) παίρνουμε: u u u u u u 0, j, j 0, j, j, j, j hr hz u, j u, j u0, j u, j u, j u, j 0 (6) Για την εκτίμηση του φανταστικού κόμβου διακριτοποιούμε τη συνθήκη συμμετρίας () και παίρνουμε: u 0, j u u, j 0, j h r 0 u (7) 0, j u, j Επομένως η (6) λόγω της (7) γίνεται: u, j u, j u, j u, j u, j 0 u, j u, j u, j u, j 0, 6 j,..., Nz (8) Για τις υπόλοιπες οριακές συνθήκες έχουμε: ur (,0) 0u i, 0, i,..., Nr (9) url (, ) 0uiNz, 0, i,..., Nr (0) urz (, ) ur unr, j 5, j,..., Nz () Επιλέγουμε όλοι οι γωνιακοί κόμβοι να έχουν τιμή 0. Έστω για παράδειγμα ότι έχουμε την απλή περίπτωση του πλέγματος του σχήματος με έναν μόνον εσωτερικό κόμβο: 7
8 (,3) (,3) (3,3) Σχήμα (,) (,) (3,) Τότε έχουμε να επιλύσουμε το ακόλουθο σύστημα 9 εξισώσεων με 9 αγνώστους: u, 0 u, 0 u3, 0 u, u, u,3 u, 6 u, u3, u, u,3 u, () () u3, 5 u,3 0 u,3 0 u 0 3,3 H λύση του συστήματος παρουσιάζεται στον ακόλουθο πίνακα: u i= i= i=3 j= j= j= Για να επιλύσουμε τώρα τη γενική περίπτωση των Nr Nz εξισώσεων, θα πρέπει να χρησιμοποιήσουμε μία επαναληπτική μέθοδο επίλυσης συστημάτων όπως για παράδειγμα την Gauss-Seidel. Έτσι η (3) γράφεται στη μορφή: (,) (,) (3,) u u u u ( i) ( i) i,..., Nr, j,..., Nz ( k) ( k) ( k) ( k) ( k) i, j i, j i, j i, j ui, j, ενώ η (8) γράφεται ως: ( k ) ( ) ( ) ( ), k k k u j u, j u, j u, j 0, j,..., Nz 6 όπου με (k) δηλώνουμε τον δείκτη της επανάληψης. 8
9 Το πρόγραμμα σε Fortran που επιλύει το πρόβλημα μας είναι το ακόλουθο: Program GaussSeidel implicit none doubleprecision,allocatable::u(:,:),uold(:,:) integer::n,i,j,maxi,done,k doubleprecision::s,rel,err,max,t,h! Arithmos diasthmatwn (= arithmos kombwn-) N=0! =Nr=Nz allocate(u(n+,n+),uold(n+,n+)) maxi=50000 rel= h=./n k= done=0 u(:,:)=0.! u(:,)=0! u(:,n+)=0 u(n+,:n)=5. do while (k<=maxi.and. done==0) uold(:,:)=u(:,:) do j=,n do i=,n if (i==) then u(i,j)=(*u(,j)+u(,j+)+u(,j-))/6. else u(i,j)= 0.5*( (+./(*(i-)))*u(i+,j)+(-./(*(i-)))*u(i-,j)+u(i,j+)+u(i,j-)) end if! elenxos gia termatismo max=- do i=,n do j=,n err = abs((u(i,j) - uold(i,j))/u(i,j)) if (err>max) then max=err end if if (max<rel) then done= end if k=k+ open(,file='results.txt',recl=000) do j=,n+ write(,*) u(:,j) 9
10 print*, k- end Εκτελώντας τον κώδικα π.χ. για Nr Nz 0 παίρνουμε την κατανομή που παρουσιάζεται στο επόμενο γράφημα: 0
11 ΑΣΚΗΣΗ 3 Να λυθεί το πρόβλημα οριακών τιμών u u u 0, r r r r 0 r R, 0 () με οριακές συνθήκες u R, u και ur, 0 ur, u 0. () Λύση Επιλέγουμε R=, u =5 και u 0 =. Επιλέγουμε Nr ίσα μεταξύ τους διαστήματα στην r κατεύθυνση και N ίσα μεταξύ τους διαστήματα στην θ κατεύθυνση. Στο επόμενο σχήμα παρουσιάζεται ένα πλέγμα με Nr και N : (3, 3) (3,) (3, ) (, 3) (, ) (, ) (3,5) (,5) (, ) (3, ) (i=, j=,,5) 0.5 Σχήμα Παρατηρούμε ότι στον κόμβο στο κέντρο του κάτω ορίου (δηλ. για i=) αντιστοιχούν όλες οι διακριτές γωνίες. Αυτό θα είναι σημαντικό στη συνέχεια για τον ορισμό των οριακών συνθηκών και τον προγραμματισμό της λύσης σε Fortran. Επιλέγουμε να διακριτοποιήσουμε την () με ένα σχήμα κεντρώων πεπερασμένων διαφορών ης τάξης. Έτσι έχουμε: u u u u u u u u 0 i, j i, j i, j i, j i, j i, j i, j i, j hr ri hr ri h u u u u u u u u 0 i, j i, j i, j i, j i, j i, j i, j i, j hr ( i) hr ( i) hrh
12 h 0 ( i) ( i) h u u u u u u u u i, j i, j i, j i, j i, j i, j i, j i, j h i, j i, j i, j i, j i, j i, j i j u h h u u u u u u,, ( i) ( i) ( i) i,..., Nr, j,..., N (3) Για τις οριακές συνθήκες ισχύουν τα ακόλουθα: ur (, ) uu 5, j, N Nr, j ur (,0) u u, i, Nr 0 i, ur (, ) u u, i, Nr 0 in, Επίσης, ειδικά για τον κόμβο με i= η οριακή συνθήκη πρέπει να γραφεί ως: u, j, j, N Επιλέγουμε την τιμή u στους γωνιακούς κόμβους (Nr+,) και (Νr+,Nθ+). Για να επιλύσουμε το πρόβλημα απαιτείται η επίλυση ενός συστήματος Nr N εξισώσεων με αντίστοιχους αγνώστους. Για την επίλυσή του θα πρέπει να χρησιμοποιήσουμε μία επαναληπτική μέθοδο όπως για παράδειγμα την Gauss-Seidel. Έτσι η (3) γράφετε στη μορφή: ( k ) ui, j h ( i ) h h u u u u ( i) ( i) u u i,..., Nr, j,..., N όπου με (k) δηλώνουμε τον δείκτη της επανάληψης. k k k k k k i, j i, j i, j i, j i, j i, j ( ) ( ) ( ) ( ) ( ) ( ) Το πρόγραμμα σε Fortran που επιλύει το πρόβλημα είναι το ακόλουθο: Program GaussSeidel implicit none doubleprecision,allocatable::u(:,:),uold(:,:) integer::nr,nth,i,j,maxi,done,k doubleprecision::s,rel,err,max,t,hth,pi! Arithmos diasthmatwn (= arithmos kombwn-) Nr= Nth= allocate(u(nr+,nth+),uold(nr+,nth+)) pi=*atan(.) maxi=50000 rel= !hr=./nr,
13 hth=pi/nth k= done=0 u(:,:)=0. u(nr+,:)=5. u(:nr,)=. u(:nr,nth+)=. u(,:)=. do while (k<=maxi.and. done==0) uold(:,:)=u(:,:) do i=,nr do j=,nth u(i,j)= (*hth**+./(i-)**)**(-) * (hth***(u(i+,j)+u(i-,j))+hth**/(.*(i-))*(u(i+,j)-u(i-,j))+./(i-)***(u(i,j+)+u(i,j-)))! elenxos gia termatismo max=- do i=,nr do j=,nth err = abs((u(i,j) - uold(i,j))/u(i,j)) if (err>max) then max=err end if if (max<rel) then done= end if k=k+ open(,file='results.txt',recl=000)!xwris to RECL=000 to megisto platos xwraei monon 5 sthles toy pinaka do i=nr+,,- write(,*) u(i,:) print*, k- end Το αποτέλεσμα της εκτέλεσης του κώδικα για Νr= και Νθ= παρουσιάζεται στον επόμενο πίνακα u j= j= j=3 j= j=5 i= i= i= Παρατήρηση: Ολόκληρη η τελευταία γραμμή του πίνακα αποτελεσμάτων αφορά τον ίδιο κόμβο (αυτόν που βρίσκεται στο κέντρο του κάτω ορίου) 3
14 Παραστατικά οι τιμές της u φαίνονται στο ακόλουθο σχήμα: Σχήμα
15 ΑΣΚΗΣΗ Η θερμοκρασιακή κατανομή στο τετράγωνο πλακίδιο πλευράς L του σχήματος, περιγράφεται από την εξίσωση Laplace T x T y 0 () με οριακές συνθήκες τύπου Dirichlet στις τρεις πλευρές και την μικτή οριακή συνθήκη T k ht a x T στην τέταρτη πλευρά. Με βάση το πλέγμα του Σχήματος, διατυπώστε για τους κόμβους και 5 τις εξισώσεις πεπερασμένων διαφορών. Τέλος δίδοντας στις παραμέτρους τις τιμές L 60 cm, h 0 cm, h 0 cm, Ta 0 C, T T T3 T6 50 C, T7 T8 T9 00 C, 0 0 k 0.7 c al / scm C, h0.0 cal/ scm C και υπολογίστε τις θερμοκρασίες στους κόμβους και 5. Οριακή συνθήκη: T k h( T a T) x () Σχήμα Θα χρησιμοποιήσουμε τα αποτελέσματα της Άσκησης της ης Εργασίας του ακαδημαϊκού έτους για την κεντρώα έκφραση πεπερασμένων διαφορών ης τάξης για την δεύτερη παράγωγο μιας συνάρτησης f σε μη ισαπέχοντα σημεία. 5
16 Υποθέτοντας ότι το σημείο xi βρίσκεται σε απόσταση ότι το σημείο xi βρίσκεται σε απόσταση στην έκφραση: h από το σημείο x i, και h από το σημείο x i είχαμε καταλήξει d f f ( i ) f i f i (3) dx ( ) i h Εφαρμόζοντας τον τύπο στον κόμβο 5 του σχήματος (όπου h=λ h) έχουμε: T ( ) T5 T6 T ( ) T5 T8 0 ( ) ( ) h h T ( ) T T T ( ) T T T T6 T T8 T5 () ( ) Επίσης για τον κόμβο διακριτοποιούμε την εξ. () με μία πρόδρομη έκφραση πεπερασμένων διαφορών ης τάξης: T k T h 5 h T ( a T ) (5) Αντικαθιστώντας τις αριθμητικές τιμές των παραμέτρων στις σχέσεις () και (5) παίρνουμε το σύστημα: T T5 T5 T ( ) 6 6 T5 T (0 T ) 0 Η λύση του συστήματος δίνει της ζητούμενες θερμοκρασίες στους κόμβους και 5: Τ = C Τ 5 =7.966 C 6
πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r
Άσκηση : πρόκειται για ΣΔΕ δύο οριακών τιμών με εφαρμογή του αλγόριθμου Thomas για επίλυση τριγωνικού συστήματος Έχουμε να επιλύσουμε την εξίσωση: du du u dr r dr με οριακές συνθήκες u () 0 και u(0) πεπερασμένη
Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
ΠΑΡΑΔΕΙΓΜΑ 17 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 005-006, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Ομάδα Α: Άσκηση Έχουμε να επιλύσουμε
Επιµέλεια: Γιάννης Λυχναρόπουλος Οµάδα Α: Άσκηση 2 Έχουµε να επιλύσουµε την εξίσωση: 2
Οµάδα Α: Άσκηση Έχουµε να επιλύσουµε την εξίσωση: du du u = dr + r dr = (Α) du µε οριακές συνθήκες u () = 0 και u(0) πεπερασµένη ή = 0 (συνθήκη dr r = 0 συµµετρίας). Η αναλυτική λύση της διαφορική ς εξίσωσης
w 1, z = 2 και r = 1
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 0..009 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Δίδεται η διαφορική εξίσωση Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
Παράδειγμα #10 ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΜΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Άσκηση 1 Παράδειγμα #10 ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΜΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Να επιλυθεί η ροή ρευστού διαμέσου τετραγωνικού αγωγού η οποία εκφράζεται μέσω της διαφορικής εξίσωσης Poisson
f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 00-0, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5--00 ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Θεωρούμε τετραγωνική πλάκα πλευράς L που φορτίζεται με ομοιόμορφο
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 011-01, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5-1-011 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιλέξτε μία εκ των Ασκήσεων 1 και : ΑΣΚΗΣΗ 1 Να λυθεί το πρόβλημα οριακών
Επιλύστε αριθμητικά με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών: ( )
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Επιλύστε αριθμητικά με τη μέθοδο
(συνθήκη συμμετρίας) (4) Το παραπάνω πρόβλημα μπορεί να περιγράψει τη μεταβατική πλήρως ανεπτυγμένη ροή σε κυλινδρικό αγωγό.
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 00-0, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ (αρχικών και οριακών τιμών) ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..00 ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Ζητείται να επιλυθεί η εξίσωση t
Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό αγωγό περιγράφεται από την συνήθη διαφορική εξίσωση
Άσκηση ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ 08-09 5 Ο ΕΞΑΜΗΝΟ Ι ΑΣΚΩΝ:. Βαλουγεώργης ΕΡΓΑΣΙΑ: ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΟΡΙΑΚΩΝ ΤΙΜΩΝ (Σ Ε & Μ Ε Ηµεροµηνία παράδοσης: 8//09 Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.
ΑΣΚΗΣΗ 1 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-1, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 15.1.9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος. Η μόνιμη θερμοκρασιακή κατανομή σε δύο διαστάσεις περιγράφεται από την εξίσωση: και
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ και ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Η μόνιμη
Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών
Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα
Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές
Κεφ 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 71 Εισαγωγή πρότυπες εξισώσεις 7 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων 73 Οριακές συνθήκες μικτού τύπου και ακανόνιστα
4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή
. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,
Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0. ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Άσκηση Έστω ένα κύμα που κινείται εντός αγωγού με ταχύτητα c 0 m/s. Η κατανομή
Λύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 05-06 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0-03-06 Ημερομηνία
Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών
Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Κεφ. 6: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές προβλήματα οριακών τιμών
Κεφ 6: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές προβλήματα οριακών τιμών 61 Εισαγωγή στη μέθοδο των πεπερασμένων διαφορών 6 Προβλήματα δύο οριακών τιμών ΣΔΕ 63 Εξισώσεις πεπερασμένων
Υπολογιστικές Μέθοδοι 2006-7
Υπολογιστικές Μέθοδοι 006-7 Άσκηση. (Επιμέλεια: Ιωάννης Λυχναρόπουλος) Θα επιλύσουμε την εξίσωση: urr ur u t, t t 0 και R i /Rout r r Έστω Ri 0.4 και Rout δηλαδή: Ri / Rout 0.4 με αρχική συνθήκη: ur (,0)
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό
Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων
Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης
την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία παράδοσης --0 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Με βάση τη σειρά Taylor βρείτε για τη παράγωγο
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση 1 Δίνοντας το ολοκλήρωμα στη Mathematica παίρνουμε την τιμή του: 0 40 100 140558 z 2z 15
4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή
4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές
Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο
ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ
ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη
Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε
Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4 ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 009-00, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ # ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5..00 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Να επιλυθεί η εξίσωση
0.5, Μεταφορά θερμότητας ανάμεσα σε κυλίνδρους μεγάλου μήκους (χωρίς ασπίδα):
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 0-05 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 6-03-05 Ημερομηνία
x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα:
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0 05, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0 Ημερομηνία παράδοσης εργασίας: 9 0 Επιμέλεια απαντήσεων:
Παράδειγμα #4 ΑΛΓΕΒΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
Παράδειγμα #4 ΑΛΓΕΒΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση 1 Τα ισοζύγια µάζας του συστήµατος διανοµής ατµού σε µονάδα διυλιστηρίου δίνονται από τις παρακάτω εξισώσεις: 181.60
Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k)
Παράδειγμα # EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί το παρακάτω μη γραμμικό σύστημα με την μέθοδο Newton: ( ) ( ) f, = + = 0 f, = + 8=
Επιλύστε αριθμητικά το με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών:
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 1-13, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ημερομηνίες παράδοσης: Ασκήσεις 1 και : -1-1, Ασκήσεις 3 και 4: 8-1-13 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ
Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί η εξίσωση ροής διαμέσου ενός κυλινδρικού αγωγού λόγω διαφοράς πίεσης: d u du u = + = dr r dr du με
Παράδειγμα #8 ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και β) για τη παράγωγο f
Παράδειγμα #8 ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση 1 Με βάση τη σειρά Taylor να βρεθεί α) για τη παράγωγο την κεντρώα έκφραση πεπερασμένων διαφορών ης τάξης και β) για τη παράγωγο την
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση
f x και τέσσερα ζευγάρια σημείων
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές
Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26
Πίνακας Περιεχομένων 7
Πίνακας Περιεχομένων Πρόλογος...5 Πίνακας Περιεχομένων 7 1 Εξισώσεις Ροής- Υπολογιστική Μηχανική Ρευστών...15 1.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ.....15 1.1.1 Γενικά θέματα. 15 1.1.2 Υπολογιστικά δίκτυα...16
ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).
ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους
Ειδικά θέματα στην επίλυση
Ενότητα 5: Εισαγωγή Βασικές Έννοιες Ειδικά Θέματα Αριθμητικής Παραγώγισης Επίλυση Γραμμικών Συστημάτων Αλγεβρικών Εξισώσεων Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ειδικά θέματα
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΚΕΝΤΡΑ ΒΑΡΟΥΣ ΕΠΙΠΕ ΩΝ ΕΠΙΦΑΝΕΙΩΝ ΟΡΙΣΜΟΣ ΚΕΝΤΡΟΥ ΒΑΡΟΥΣ ΕΠΙΠΕ ΗΣ ΕΠΙΦΑΝΕΙΑΣ
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΚΕΝΤΡΑ ΒΑΡΟΥΣ ΕΠΙΠΕ ΩΝ ΕΠΙΦΑΝΕΙΩΝ ΟΡΙΣΜΟΣ ΚΕΝΤΡΟΥ ΒΑΡΟΥΣ ΕΠΙΠΕ ΗΣ ΕΠΙΦΑΝΕΙΑΣ Για τους βασικούς ορισμούς σχετικά με το κέντρο βάρους θα γίνεται αναφορά στην επόμενη εικόνα, η οποία απεικονίζει
A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου
A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο
Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0.008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Άσκηση Επιμέλεια απαντήσεων:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 4: Εξίσωση διάχυσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 4: Εξίσωση διάχυσης Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... 1. Εξετάσαμε τις μεθόδους των
Μηχανική του στερεού σώματος
Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη
ΚΑΤΑΣΚΕΥΗ ΠΙΝΑΚΑ ΣΥΝΕΚΤΙΚΟΤΗΤΑΣ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Ι. Γραμμικά τετραγωνικά στοιχεία Q4 Έστω πλέγμα ΝxΜ Έστω πλέγμα με ΝxM στοιχεία:
ΚΑΤΑΣΚΕΥΗ ΠΙΝΑΚΑ ΣΥΝΕΚΤΙΚΟΤΗΤΑΣ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Ι. Γραμμικά τετραγωνικά στοιχεία Q Έστω πλέγμα ΝxΜ Έστω πλέγμα με ΝxM στοιχεία: Τοπικό σύστημα σε κάθε στοιχείο J Ο πίνακας συνεκτικότητας
Παρουσίαση 3ης Άσκησης
Παρουσίαση 3ης Άσκησης Παράλληλος προγραμματισμός για αρχιτεκτονικές κατανεμημένης μνήμης με MPI Συστήματα Παράλληλης Επεξεργασίας 9ο Εξάμηνο, ΣΗΜΜΥ Εργ. Υπολογιστικών Συστημάτων Σχολή ΗΜΜΥ, Ε.Μ.Π. Νοέμβριος
Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας
Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας Να γραφεί script το οποίο να επιλύει αριθμητικά της γενική εξίσωση θερμότητας με χρήση της προς τα εμπρός παραγώγου ως προς το χρόνο,
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2008-2009 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 14.10.2008 Να μετατραπεί ο αριθμός στο δυαδικό σύστημα.! " Ο αριθμός μετατρέπεται αρχικά
Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή
Κεφ. 4: Ολοκλήρωση 4. Εισαγωγή 4. Εξισώσεις ολοκλήρωσης Newto Cotes 4.. Κανόνας τραπεζίου 4.. Πρώτος και δεύτερος κανόνας Simpso 4.. Πολλαπλά ολοκληρώματα 4. Ολοκλήρωση Gauss 4.. Πολυώνυμα Legedre, Chebyshev,
Πεπερασμένες Διαφορές.
Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Παράδειγμα #5 ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ & ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης
Παράδειγμα #5 ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ & ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Το παρακάτω αλγεβρικό τρι-διαγώνιο σύστημα έχει προκύψει από την επίλυση µιας συνήθους διαφορικής εξίσωσης που περιγράφει
Πίνακες. FORTRAN και Αντικειμενοστραφής Προγραμματισμός
Πίνακες (i) Δομημένη μεταβλητή: αποθηκεύει μια συλλογή από τιμές δεδομένων Πίνακας (array): δομημένη μεταβλητή που αποθηκεύει πολλές τιμές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas
Κεφάλαιο 0: Εισαγωγή
Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε
Υπολογιστικές Μέθοδοι = 0.4 και R
Υπολογιστικές Μέθοδοι 006-7 Άσκηση. (Επιμέλεια: Ιωάννης Λυχναρόπουλος) Θα επιλύσουμε την εξίσωση: urr + ur =u t, t > t 0 και R i /Rout r r Έστω R i = 0.4 και R out = δηλαδή: Ri / R out = 0.4 με αρχική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2011-2012 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 26.10.2011 Άσκηση 1. Να μετατραπεί
Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Τα ισοζύγια μάζας του συστήματος διανομή ατμού σε μονάδα διυλιστηρίου δίνονται από τις παρακάτω
Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας.
ΔΙΑΛΕΞΗ η : Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας Στόχος: Στο μάθημα αυτό θα ασχοληθούμε με την αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας, ενώ αργότερα θα γενικεύσουμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2010-2011 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 3 η Σειρά Ασκήσεων 07.12.2010 Άσκηση 1. Δίνονται τα
- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ [Ενότητες Ορισμός της Συνέχειας Πράξεις με Συνεχείς
ΚΩ ΙΚΑΣ ΕΠΙΛΥΣΗΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΚΤΙΝΟΒΟΛΙΑ ΣΕ ΚΛΕΙΣΤΕΣ ΚΟΙΛΟΤΗΤΕΣ ΜΕ ΙΑΧΥΤΙΚΕΣ ΚΑΙ ΓΚΡΙΖΕΣ ΕΠΙΦΑΝΕΙΕΣ
ΚΩ ΙΚΑΣ ΕΠΙΛΥΣΗΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΚΤΙΝΟΒΟΛΙΑ ΣΕ ΚΛΕΙΣΤΕΣ ΚΟΙΛΟΤΗΤΕΣ ΜΕ ΙΑΧΥΤΙΚΕΣ ΚΑΙ ΓΚΡΙΖΕΣ ΕΠΙΦΑΝΕΙΕΣ Επιµέλεια: Νίκος Βασιλειάδης (φοιτητής ΤΜΜ, 6 ο εξάµηνο) 1 η έκδοση προγράµµατος (Μάιος 2014)
Θέματα Εξετάσεων Σεπτεμβρίου 2010:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΑΣΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ μονάδες Στο επίπεδο, ορίζεται χωρίο που περικλείεται από τον άξονα των δηλ. την οριζόντια ευθεία που
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο.: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Έστω μια παραγωγίσιμη στο συνάρτηση, τέτοια ώστε για κάθε x
Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις
Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις - διαστάσεις Στις -διαστάσεις, η περιγραφή της εκδοχής hp της ΜΠΣ είναι αρκετά πολύπλοκη. Στο παρόν κεφάλαιο θα δούμε κάποια στοιχεία της, ξεκινώντας με
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2008-2009 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 07.01.2009 Δίνονται τα ακόλουθα ζεύγη τιμών: Να προσδιοριστεί πολυώνυμο παρεμβολής
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης
Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ
Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 6 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό
Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines
Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.
Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις
Κεφάλαιο 9 Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις Σε αυτό το κεφάλαιο θεωρούμε μια απλή ελλειπτική εξίσωση, στις δύο διαστάσεις. Θα κατασκευάσουμε μεθόδους πεπερασμένων διαφορών
Β ΜΕΡΟΣ: ΕΦΑΡΜΟΓΗ ΤΟΥ MATLAB ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ
Β ΜΕΡΟΣ: ΕΦΑΡΜΟΓΗ ΤΟΥ MATLAB ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 1. Εύρεση ρίζας Στο κεφάλαιο αυτό θα ασχοληθούμε με την εύρεση ρίζας μιας συνάρτησης ή αλλιώς με την ευρεση λύσης της εξίσωσης: Πριν αναφερθούμε στην
ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ
ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια
ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Υψηλών Τάσεων ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ (Αριθμητικές μέθοδοι υπολογισμού
Άσκηση 1 Έχουµε να επιλύσουµε την εξίσωση κύµατος 1 ης τάξης (υπερβολική εξίσωση) (1)
Άσκηση Έχουµε να επιλύσουµε την εξίσωση κύµατος ης τάξης (υπερβολική εξίσωση) u t + cu = 0 () Θα χρησιµοποιήσουµε τις ακόλουθες µεθόδους: α) Μέθοδος FTBS (Πρόδροµη στο χρόνο, ανάδροµη στο χώρο) Το σχήµα
Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος
9/8/6 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Να υπολογισθούν τα ακρότατα της συνάρτησης: y y y y 3 (, ) 3 3 3 Πεδίο ορισμού της συνάρτησης είναι το Υπολογίζουμε
Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας
Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας. Συναρτήσεις στη PASCAL Σκοπός Προσομοίωση ενός Συστήματος / Κυκλώματος,
Πίνακες. (i) FORTRAN και Αντικειµενοστραφής Προγραµµατισµός
Πίνακες (i) οµηµένη µεταβλητή: αποθηκεύει µια συλλογή από τιµές δεδοµένων Πίνακας (array): δοµηµένη µεταβλητή που αποθηκεύει πολλές τιµές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas
Κεφάλαιο 4. Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές
Κεφάλαιο 4 Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές 4 Εισαγωγή πρότυπες εξισώσεις Οι πλέον συνηθισµένες ελλειπτικές εξισώσεις µε πλήθος εφαρµογών σε πολλά επιστηµονικά και τεχνολογικά
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Δομή Επανάληψης Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Δομή Επανάληψης Επανάληψη με αρίθμηση DO = ,
ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:
ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα
Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις
Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις Όπως είδαμε μέχρι τώρα η ομαλότητα της ακριβούς λύσης επηρεάζει τις εκτιμήσεις σφάλματος με τέτοιο τρόπο ώστε ολα όσα αποδείξαμε ισχύουν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2009-2010 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 13.10.2009 Άσκηση 1. Δίνονται τα
Αριθµητική Ολοκλήρωση
Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο
Εφαρμοσμένα Μαθηματικά 3η εργαστηριακή άσκηση
ΤΕΙ ΑΘΗΝΑΣ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ Εφαρμοσμένα Μαθηματικά 3η εργαστηριακή άσκηση ΣΠΟΥΔΑΣΤΗΣ: ΧΑΤΖΗΓΕΩΡΓΙΟΥ ΑΝΤΩΝΗΣ Α.Μ. 09036 Εξάμηνο ΠΤΧ ΚΑΘΗΓΗΤΗΣ: ΔΡ. ΜΠΡΑΤΣΟΣ ΑΘΑΝΑΣΙΟΣ Περιεχόμενα 3.1 Πολυωνυμική παρεμβολή...