Κεφ. 6: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές προβλήματα οριακών τιμών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφ. 6: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές προβλήματα οριακών τιμών"

Transcript

1 Κεφ 6: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές προβλήματα οριακών τιμών 61 Εισαγωγή στη μέθοδο των πεπερασμένων διαφορών 6 Προβλήματα δύο οριακών τιμών ΣΔΕ 63 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων - ΜΔΕ 64 Κυλινδρικές συντεταγμένες 65 Οριακές συνθήκες με παραγώγους 66 Παραδείγματα 1

2 61 Εισαγωγή στη μέθοδο των πεπερασμένων διαφορών Οι πλέον συνηθισμένες ελλειπτικές εξισώσεις με πλήθος εφαρμογών σε πολλά επιστημονικά και τεχνολογικά πεδία είναι οι εξισώσεις Laplace u 0 και Poison u f όπου ο Λαπλασιανός τελεστής (σε καρτεσιανό σύστημα xx yy zz συντεταγμένων), u u x, y, z η άγνωστη εξαρτημένη μεταβλητή και f f x, y, z μία γνωστή συνάρτηση Άλλες ελλειπτικές εξισώσεις που είναι αντιπροσωπευτικές και συναντώνται αρκετά συχνά είναι η εξίσωση Helmholtz uku 0 και η διαρμονική εξίσωση 4 u u f Οι ελλειπτικές εξισώσεις περιγράφουν προβλήματα οριακών τιμών, δηλαδή φαινόμενα ισορροπίας σε μόνιμα (όχι χρονικά μεταβαλλόμενα) προβλήματα όπως βαρυτικά πεδία, ηλεκτροστατικά πεδία, μόνιμη θερμική αγωγή, ιδανική ή πλήρως ανεπτυγμένη συνεκτική ροή, ελαστικότητα, κτλ

3 Οι ελλειπτικές εξισώσεις ορίζονται σε κλειστά πεδία ορισμού με την εξαρτημένη μεταβλητή να ορίζεται με οριακές συνθήκες τύπου Dirichlet, Newmann ή μικτές (Robin) στο κλειστό όριο του πεδίου ορισμού Όταν οι εξισώσεις και οι οριακές συνθήκες είναι διαχωρίσιμες τότε επιλύονται με τη απλή μέθοδο διαχωρισμού των μεταβλητών, ενώ όταν είναι μη διαχωρίσιμες επιλύονται με αναπτύγματα Fourier ή μέσω της επίλυσης του σχετιζόμενου (συγγενούς) προβλήματος χαρακτηριστικών τιμών Σε πολλές περιπτώσεις η αναλυτική επίλυση των ελλειπτικών μερικών διαφορικών εξισώσεων είναι ιδιαίτερα επίπονη ή ακόμη και αδύνατη Στις περιπτώσεις αυτές οι εξισώσεις επιλύονται αριθμητικά Η πλέον διαδεδομένη υπολογιστική μέθοδος επίλυσης είναι η μέθοδος των πεπερασμένων διαφορών 3

4 Το σημαντικό πλεονέκτημα των υπολογιστικών μεθόδων σε σχέση με τις αναλυτικές εστιάζεται στο γεγονός ότι οι υπολογιστικές μέθοδοι δύνανται να εφαρμοσθούν και να επιλύσουν μη γραμμικές διαφορικές εξισώσεις Αντίθετα οι αναλυτικές μέθοδοι επικεντρώνονται, με ελάχιστες εξαιρέσεις, στην επίλυση γραμμικών μερικών διαφορικών εξισώσεων και σε κάθε περίπτωση η αναλυτική επίλυση μη γραμμικών εξισώσεων αποτελεί ένα ιδιαίτερα δύσκολο πεδίο που απαιτεί εξειδικευμένες μαθηματικές τεχνικές Στο παρόν κεφάλαιο θα επικεντρωθούμε στην υπολογιστική επίλυση γραμμικών εξισώσεων Έχοντας στη διάθεσή μας την αναλυτική και υπολογιστική λύση του ιδίου προβλήματος μπορούμε να συγκρίνουμε τα υπολογιστικά προσεγγιστικά αποτελέσματα με τα αντίστοιχα αναλυτικά και να αξιολογήσουμε και να πιστοποιήσουμε την αριθμητική μεθοδολογία Θα πρέπει όμως να είναι σαφές ότι οι προτεινόμενες υπολογιστικές προσεγγίσεις μπορούν με μικρές τροποποιήσεις να εφαρμοσθούν και σε μη γραμμικές εξισώσεις 4

5 Η μέθοδος πεπερασμένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισμένες και διαδεδομένες υπολογιστικές τεχνικές επίλυσης διαφορικών εξισώσεων με πλήθος εφαρμογών στην μηχανική και σε άλλες επιστήμες Σύντομη και γενική περιγραφή της μεθόδου: a) Το συνεχές πεδίο ορισμού, όπου ορίζεται η διαφορική εξίσωση αντικαθίσταται από ένα πεπερασμένο αριθμό σημείων D, όπου D και παράλληλα το όριο του πεδίου ορισμού αντικαθίσταται από ένα πεπερασμένο αριθμό σημείων D που μπορεί να ανήκουν ή και να μην ανήκουν στο b) Το νέο πεδίο ορισμού του προβλήματος ονομάζεται υπολογιστικό πλέγμα, δομικά στοιχεία του οποίου είναι τα επιλεγέντα σημεία που ονομάζονται κόμβοι Για κάθε σημείο (κόμβο) P του D, διατυπώνεται μια αλγεβρική εξίσωση που περιλαμβάνει την τιμή της εξαρτημένης μεταβλητής στο σημείο P και σε γειτονικά σημεία του P εντός των και D D 5

6 c) Η αλγεβρική εξίσωση ονομάζεται εξίσωση πεπερασμένων διαφορών και αποτελεί προσέγγιση της μερικής διαφορικής εξίσωσης στο σημείο P Η συστηματική διατύπωση της αλγεβρικής εξίσωσης πεπερασμένων διαφορών εξαρτάται από τις πολλές εναλλακτικές δυνατότητες που προσφέρονται μέσω της μεθόδου των πεπερασμένων διαφορών d) Εάν υπάρχουν N σημεία στο D προκύπτει ένα σύστημα N αλγεβρικών εξισώσεων με N αγνώστους Εάν το σύστημα έχει μοναδική λύση, που συνήθως έχει, οι τιμές της εξαρτημένης μεταβλητής που προκύπτουν θεωρούνται προσεγγιστικές σε σχέση με αυτές της αναλυτικής λύσης e) Η καλή ή κακή προσέγγιση ανάμεσα στην υπολογιστική (αριθμητική) και πραγματική (αναλυτική αν υπάρχει) λύση εξαρτάται από την συγκεκριμένη μεθοδολογία πεπερασμένων διαφορών που υιοθετείται και αξιολογείται μελετώντας την σύγκλιση, την ευστάθεια και την συνοχή του αριθμητικού σχήματος 6

7 f) Η διαδικασία αντικατάστασης της αναλυτικής διαφορικής εξίσωσης και του συνεχούς πεδίου ορισμού της με ένα σύστημα αλγεβρικών εξισώσεων πεπερασμένων διαφορών που ορίζονται στους κόμβους του υπολογιστικού πλέγματος ονομάζεται διακριτοποίηση 7

8 6 Προβλήματα δύο οριακών τιμών - ΣΔΕ Ο αριθμός προβλημάτων οριακών τιμών που περιγράφονται από συνήθεις διαφορικές εξισώσεις (ΣΔΕ) είναι ιδιαίτερα μεγάλος Στις περιπτώσεις αυτές, και σε αντίθεση με ότι συμβαίνει στα προβλήματα αρχικών τιμών, οι συνθήκες του προβλήματος ορίζονται σε δύο διαφορετικές τιμές της ανεξάρτητης μεταβλητής Τα προβλήματα αυτά είναι γνωστά στη βιβλιογραφία σαν προβλήματα δύο οριακών τιμών Μερικά κλασσικά παραδείγματα προβλημάτων δύο οριακών τιμών περιλαμβάνουν: o ροή Poiseuille ανάμεσα σε δύο πλάκες ή σε κυλινδρικό αγωγό o ροή θερμότητας σε μονοδιάστατη ράβδο o λυγισμό λεπτής μονοδιάστατης δοκού 8

9 Η ροή Poiseuille ανάμεσα σε πλάκες περιγράφεται από την ΣΔΕ: d du dp dy dy dx όπου 0 y L είναι η απόσταση ανάμεσα στις δύο πλάκες, dp / dx είναι η κλίση της πίεσης στην αξονική διεύθυνση x της ροής και u u y η άγνωστη κατανομή της ταχύτητας Οι οριακές συνθήκες μη ολίσθησης είναι u L 0 0 Η ροή θερμότητας σε μονοδιάστατη ράβδο περιγράφεται από την ΣΔΕ: d dt k h T T dx dx 0 είναι το μήκος της ράβδου, όπου 0 x L T T x η άγνωστη θερμοκρασιακή κατανομή κατά μήκος της ράβδου, T η θερμοκρασία του περιβάλλοντος χώρου και k και h οι συντελεστές θερμικής αγωγής και συναγωγής αντίστοιχα Οι οριακές συνθήκες στην αρχή και στο τέλος της ράβδου είναι T0 TL και TL TR, όπου T L και T R είναι γνωστές θερμοκρασίες 9

10 Ο λυγισμός λεπτής μονοδιάστατης δοκού περιγράφεται από την ΣΔΕ d f k f 0 dx όπου 0 x L είναι το μήκος της δοκού και f f x (παραμόρφωση) από τη θέση ισορροπίας Επίσης k P/ EI η απομάκρυνση, όπου P είναι το εξωτερικό αξονικό φορτίο, E το μέτρο ελαστικότητας και I η ροπή αδρανείας Θεωρώντας ότι τα δύο άκρα της δοκού είναι πακτωμένα, προκύπτουν οι οριακές f 0 f L 0 συνθήκες Παρατηρούμε ότι το πρόβλημα του λυγισμού, όπως διατυπώνεται στη συγκεκριμένη περίπτωση, περιγράφεται από ομογενή διαφορική εξίσωση και ομογενείς οριακές συνθήκες Επομένως, σε αντίθεση με τα δύο προηγούμενα προβλήματα, είναι ένα πρόβλημα ιδιοτιμών τύπου Sturm-Liouville που μπορεί να λυθεί, όπως και τα δύο προηγούμενα κλασσικά προβλήματα οριακών τιμών, με τη μέθοδο των πεπερασμένων διαφορών 10

11 Στα παραπάνω παραδείγματα όταν οι συντελεστές των παραγώγων θεωρούνται σταθεροί τότε οι εξισώσεις είναι γραμμικές και μπορούν να επιλυθούν αναλυτικά και αριθμητικά Στη περίπτωση αυτή τα αριθμητικά αποτελέσματα συγκρίνονται με τα αντίστοιχα αναλυτικά και είναι εφικτό να μελετήσουμε και να προσδιορίσουμε την ακρίβεια των αριθμητικών αποτελεσμάτων Αντίθετα, όταν οι συντελεστές είναι συναρτήσεις της εξαρτημένης μεταβλητής (άμεσα ή έμμεσα) τότε οι εξισώσεις είναι μη γραμμικές και τις περισσότερες φορές επιλύονται μόνο αριθμητικά Στις περιπτώσεις αυτές θα πρέπει να είμαστε πολύ προσεκτικοί σχετικά με την ακρίβεια των αριθμητικών αποτελεσμάτων Σημειώνεται τέλος ότι είναι ιδιαίτερα χρήσιμο για τον μη μυημένο αναγνώστη να ανατρέξει και να εντοπίσει στη βιβλιογραφία προβλήματα δύο οριακών τιμών που περιγράφονται από γραμμικές και μη γραμμικές ΣΔΕ 11

12 Η μέθοδος των πεπερασμένων διαφορών σε προβλήματα οριακών τιμών: Θεωρούμε τη γραμμική ΣΔΕ ης τάξης στη γενική μορφή P x y'' Q x y' R x ys x 0 (*) στο διάστημα x x, x με οριακές συνθήκες y y L για x xl και y yr για x xr L R Οριακές συνθήκες, που περιέχουν τιμές μόνο της εξαρτημένης μεταβλητής (και όχι των παραγώγων της) ονομάζονται οριακές συνθήκες τύπου Dirichlet και δύναται να είναι ομογενείς ή μη ομογενείς 1

13 Το πρώτο βήμα, στη εφαρμογή της μεθόδου των πεπερασμένων διαφορών, είναι ο καθορισμός του υπολογιστικού πλέγματος και των κόμβων: Το διάστημα x x, x L R διαιρείται σε N ίσα τμήματα και το κάθε τμήμα έχει μήκος hxr xl/ N Τα σημεία που ορίζουν την αρχή και το τέλος κάθε τμήματος ονομάζονται κόμβοι και η θέση τους στο υπολογιστικό πλέγμα προσδιορίζεται από τις x x i 1 h, i 1,, N 1 σχέσεις i L Είναι προφανές ότι x1 xl και xn 1 xr Συνολικά, ορίζονται N 1 κόμβοι, εκ των οποίων οι N 1 κόμβοι x i, i,3,, N είναι εσωτερικοί κόμβοι, ενώ οι δύο κόμβοι x 1 και xn 1 ταυτίζονται με τα δύο όρια x L και x R αντίστοιχα Επίσης οι τιμές της εξαρτημένης μεταβλητής στους κόμβους του πλέγματος ορίζονται από τις σχέσεις y x y, i 1,, N 1 i i 13

14 Οι τιμές της εξαρτημένης μεταβλητής στους εσωτερικούς κόμβους είναι άγνωστες και αποτελούν το αντικείμενο της υπολογιστικής επίλυσης του προβλήματος, ενώ οι αντίστοιχες τιμές στα όρια είναι γνωστές από τις οριακές συνθήκες 1 3 i-1 i i+1 N-1 N N+1 x 1 x x 3 x i-1 x i x i+1 x N-1 x N x N+1+1 Υπολογιστικό πλέγμα και κόμβοι πλέγματος 14

15 Το δεύτερο βήμα είναι η προσέγγιση της ΣΔΕ σε ένα τυχαίο εσωτερικό κόμβο, έστω x, του πλέγματος Η πράξη αυτή συμβολίζεται ως εξής: i P x y'' Q x y' R x y S x 0 xx x x i xxi xx i i Η πρώτη και η δεύτερη παράγωγος της ΣΔΕ προσεγγίζονται με τις κεντρώες εκφράσεις πεπερασμένων διαφορών ης τάξης y ' xx i y y h y y y h i1 i1 i1 i i1 Oh και y '' O h xx i Οι εκφράσεις αυτές αντικαθίστανται στη εξίσωση που γράφεται στη μορφή yi 1 yi yi 1 yi 1 yi 1 Pi Q 0 i Riyi Si, i,, N (**) h h 15

16 Οι δείκτες i 1, i και i 1 στις διάφορες ποσότητες συμβολίζουν τις ποσότητές αυτές στους αντίστοιχους κόμβους Σημειώνεται ότι η εξίσωση (**) δεν ταυτίζεται αλλά αποτελεί προσέγγιση της ΣΔΕ (*) και το σφάλμα είναι Oh Βλέπουμε επίσης ότι είναι αλγεβρική και ότι ισχύει για κάθε εσωτερικό κόμβο Επομένως δημιουργείται ένα σύστημα αλγεβρικών εξισώσεων με αγνώστους τις τιμές της εξαρτημένης μεταβλητής στους εσωτερικούς κόμβους του πλέγματος Η εξίσωση (**) ονομάζεται εξίσωση πεπερασμένων διαφορών Αναδιατάσσοντας κατάλληλα τους όρους της (**), ξαναγράφεται στη μορφή Pi Qi Pi Pi Qi yi1ri y i y i1 Si, i,, N h h h h h Έχουμε N 1 αλγεβρικές εξισώσεις με αγνώστους τις N 1 τιμές της εξαρτημένης μεταβλητής y, y3,, yn Οι τιμές y 1 και yn 1 που εμφανίζονται στην πρώτη ( i ) και τελευταία (i N) εξίσωση του συστήματος αντίστοιχα είναι γνωστές από τις οριακές συνθήκες 16

17 Οι αντίστοιχοι όροι μετακινούνται στην δεξιά πλευρά του συστήματος που ξαναγράφεται στη παρακάτω γενική μορφή: P P Q P Q R y y S y h h h h h 3 1 Pi Qi Pi Pi Qi yi1ri y i y i1 Si, i 3,, N 1 (***) h h h h h P Q P P Q y R y S y h h h h h N N N N N N1 N N N N1 17

18 Το τρίτο (και τελευταίο) βήμα είναι η επίλυση του συστήματος (***) Το σύστημα έχει τριδιαγώνια μορφή και γνωρίζουμε, ότι στη περίπτωση αυτή, η πλέον αποτελεσματική μέθοδος επίλυσης είναι ο αλγόριθμος Thomas Τονίζεται ότι η λύση του συστήματος και ο υπολογισμός των αγνώστων y, y3,, yn αποτελεί προσέγγιση της αναλυτικής λύσης της αρχικής ΣΔΕ (*) στα σημεία x, x3,, xn Λέμε ότι η αριθμητική μέθοδος συγκλίνει, εφόσον καθώς ο αριθμός N 1 των κόμβων αυξάνει και το διάστημα h 0, βελτιώνεται η ακρίβεια των αριθμητικών αποτελεσμάτων σε σχέση με τα αναλυτικά Στο συγκεκριμένο πρόβλημα αφού οι εκφράσεις πεπερασμένων διαφορών είναι ης τάξης, αναμένεται η σύγκλιση να είναι τετραγωνική Βέβαια αυτό δεν ισχύει γενικώς αλλά για μικρές τιμές του διαστήματος h και ακόμα καλύτερα για h 0 Είναι προφανές ότι καθώς αυξάνει ο αριθμός των κόμβων αυξάνει παράλληλα ο αριθμός των αλγεβρικών εξισώσεων του συστήματος και βεβαίως το υπολογιστικό κόστος (μνήμη υπολογιστή και χρόνος υπολογισμών) 18

19 Η επιλογή του κατάλληλου πλέγματος εξαρτάται από την εκάστοτε εφαρμογή Είναι όμως χρήσιμο και τις περισσότερες φορές απαραίτητο να γίνονται δοκιμές με διαφορετικά πλέγματα ώστε να εξετάζεται η συμπεριφορά των αποτελεσμάτων για διαφορετικά h και να επιβεβαιώνεται η σύγκλισή τους Όπως βλέπουμε το σύστημα (***) αλλά όπως θα δούμε και στη συνέχεια, ο πίνακας των συντελεστών των αλγεβρικών συστημάτων που προκύπτουν με την εφαρμογή της μεθόδου των πεπερασμένων διαφορών, περιέχει πολλά μηδενικά στοιχεία και μόνο ένας μικρός αριθμός συντελεστών, σε σχέση με τη τάξη του συστήματος, είναι μη μηδενικοί Επομένως, πρόκειται για αραιούς πίνακες Επίσης η απόλυτη τιμή των διαγωνίων στοιχείων είναι μεγαλύτερη ή ίση από το άθροισμα των απολύτων τιμών των υπολοίπων στοιχείων κάθε γραμμής Άρα οι επαναληπτικές μέθοδοι επίλυσης συστημάτων (Jacobi, Gauss-Seidel, SOR) θα πρέπει να προτιμώνται αντί των άμεσων μεθόδων (απαλοιφή Gauss, παραγοντοποίηση LU), εκτός βεβαίως αν πρόκειται για ειδικές μορφές πινάκων όπως οι τριδιαγώνιοι ή οι συμμετρικοί πίνακες όπου ο αλγόριθμος Thomas και η μέθοδος Cholesky αντίστοιχα είναι οι πλέον αποτελεσματικές μέθοδοι επίλυσης 19

20 63 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων - ΜΔΕ Όπως και στη περίπτωση των συνήθων διαφορικών εξισώσεων, έτσι και τώρα η εφαρμογή της μεθόδου των πεπερασμένων διαφορών σε προβλήματα οριακών τιμών σε ή 3 διαστάσεις που περιγράφονται από μερικές διαφορικές εξισώσεις (ΜΔΕ) περιλαμβάνει τα εξής 3 βήματα: a) διακριτοποίηση του πεδίου ορισμού του προβλήματος και την αντικατάστασή του με το υπολογιστικό πλέγμα b) διακριτοποίηση της μερικής διαφορικής εξίσωσης και των οριακών συνθηκών στους κόμβους του πλέγματος και την διατύπωση του αλγεβρικού συστήματος εξισώσεων πεπερασμένων διαφορων c) επίλυση του αλγεβρικού συστήματος που διαμορφώνεται από τις εξισώσεις πεπερασμένων διαφορών 0

21 u u Εξετάζεται σαν παράδειγμα η πρότυπη εξίσωση Poisson 1 (*) στο x y συνεχές πεδίου ορισμού : 0 x 1, 0 y A και u 0 στο όριο του πεδίου ορισμού Όλες οι ποσότητες είναι σε αδιάστατη μορφή y Κόμβος (i,j) y=a u=0 u 1 y=0 x=0 x=1 Πεδίο ορισμού και οριακές συνθήκες y J y J-1 y J- y j+1 y j y j-1 y y 1 y 0 x 0 x 1 x x i-1 x i x i+1 x I- x I-1 x I Υπολογιστικό πλέγμα και κόμβοι πλέγματος x 1

22 Το 1 ο βήμα εφαρμογής της μεθόδου περιλαμβάνει την επιλογή του υπολογιστικού πλέγματος Διαιρούμε τις αποστάσεις 0 x 1 και 0 y A κατά μήκος των αξόνων x και y σε I και J ίσα τμήματα αντίστοιχα Το μήκη των ευθυγράμμων τμημάτων κατά μήκος των αξόνων x και y έχουν μήκος x 1/ I και y A/ J Τα σημεία που ορίζουν την αρχή και το τέλος κάθε διαστήματος προσδιορίζονται από τις σχέσεις xi x0 i x, i 0,1,, I και yj y0 j y, j 0,1,, J Από τα σημεία x i και y j φέρνουμε παραλλήλους προς τους άξονες x και y αντίστοιχα, με αποτέλεσμα το συνεχές πεδίο ορισμού να αντικατασταθεί από το υπολογιστικό πλέγμα που απαρτίζεται από I J ίσα ορθογώνια, οι κορυφές των οποίων ονομάζονται κόμβοι και αποτελούν τα δομικά στοιχεία του πλέγματος Ο κάθε κόμβος i, j του πλέγματος προσδιορίζεται από το ζεύγος σημείων xi, y j, για i 0,1,, I και j 0,1,, J I 1 J 1 κόμβους Συνολικά έχουμε

23 Αντίστοιχα, οι τιμές της εξαρτημένης μεταβλητής στους κόμβους του πλέγματος u x, y u x ix, y iy u, i 0,1,, I, ορίζονται από τις σχέσεις j 0,1,, J i j 0 0 i, j Οι άγνωστες τιμές u i, j θα προκύψουν από την υπολογιστική επίλυση του προβλήματος Οι κόμβοι που βρίσκονται εντός του ονομάζονται εσωτερικοί κόμβοι ή για λόγους συντομίας απλώς κόμβοι, ενώ οι κόμβοι που βρίσκονται στο ονομάζονται οριακοί κόμβοι Όταν το υπολογιστικό πλέγμα αποτελείται από μικρό αριθμό κόμβων τότε χαρακτηρίζεται σαν αραιό πλέγμα (coarse grid), ενώ στην αντίθετη περίπτωση, όταν δηλαδή x 1 και y A, τότε χαρακτηρίζεται σαν πυκνό πλέγμα (fine grid) 3

24 Το ο βήμα περιλαμβάνει την διατύπωση της εξίσωσης πεπερασμένων διαφορών σε κάθε εσωτερικό κόμβο του πλέγματος Προσεγγίζουμε την μερική διαφορική εξίσωση στον τυχαίο κόμβο i, j του πλέγματος και γράφουμε u x u y i, j i, j 1, i 1,, I 1, j 1,, J 1 Στη συνέχεια, επιλέγουμε να προσεγγίσουμε τις δεύτερες παραγώγους με κεντρώες εκφράσεις πεπερασμένων διαφορών ης τάξης, κάτι που αποτελεί πάγια τακτική στη περίπτωση των ελλειπτικών εξισώσεων Επομένως η ΜΔΕ γράφεται στη διακριτοποιημένη μορφή ui 1, jui, jui1, j ui, j1 ui, jui, j1 1, i 1,, I 1, j 1,, J 1 (**) x y Η αλγεβρική εξίσωση (**) ονομάζεται εξίσωση πεπερασμένων διαφορών πέντε σημείων, αφού η κάθε μία από τις εξισώσεις αυτές εμπλέκει την ποσότητα u σε πέντε κόμβους (στον κόμβο i, j και στους τέσσερις γειτονικούς i 1, j και i, j 1) 4

25 Η ακρίβεια του σχήματος είναι ης τάξης, δηλαδή το σφάλμα είναι Ox y, Εφαρμόζοντας την (**) σε κάθε εσωτερικό κόμβο του πλέγματος σχηματίζεται ένα αλγεβρικό σύστημα με I 1 J 1 εξισώσεις Ο αριθμός των αγνώστων είναι ο ίδιος, αφού στο συγκεκριμένο παράδειγμα οι οριακές συνθήκες είναι τύπου Dirichlet και επομένως οι τιμές του u στους οριακούς κόμβους είναι γνωστές Όταν οι οριακές συνθήκες είναι τύπου Newmann ή μικτές τότε η διαδικασία της διακριτοποίησης συνεχίζεται με την διατύπωση εξισώσεων πεπερασμένων διαφορών στους οριακούς κόμβους του πλέγματος Στην ειδική περίπτωση που το υπολογιστικό πλέγμα επιλέγεται έτσι ώστε xy h, η εξίσωση (**) γράφεται στην απλούστερη μορφή 4u i, j u i 1, j u i 1, j u i, j 1 u i, j 1 h 5

26 Το 3 ο βήμα της μεθόδου είναι η επίλυση του συστήματος (**) με άμεσες ή επαναληπτικές τεχνικές και ο υπολογισμός των u i, jγια i 1,, I 1 και j 1,, J 1 Εάν η ακρίβεια των αποτελεσμάτων είναι μείζονος σημασίας τότε βελτιώνουμε την ακρίβεια του αριθμητικού σχήματος χρησιμοποιώντας εκφράσεις πεπερασμένων διαφορών με ακρίβεια ανώτερη της ης τάξης Βεβαίως, στη περίπτωση αυτή κάθε εξίσωση i, j εμπλέκει την ποσότητα u στον κεντρικό κόμβο i, j και σε περισσότερους από τέσσερις γειτονικούς κόμβους Τυπικό παράδειγμα είναι το σχήμα εννέα σημείων Για xy h η εξίσωση πεπερασμένων διαφορών εννέα σημείων που προσεγγίζει την (*) γράφεται στη μορφή: u u u u 4 u u u u 0u h i1, j1 i1, j1 i1, j1 i1, j1 i, j1 i1, j i1, j i, j1 i, j Το σχήμα εννέα σημείων είναι ακριβείας 4 ης τάξης πέντε και εννέα σημείων είναι τα πλέον συνηθισμένα O x, y 4 4 Τα σχήματα των 6

27 Η επέκταση της συγκεκριμένης μεθοδολογίας σε τρεις διαστάσεις μπορεί να γίνει χωρίς δυσκολία Βεβαίως αυξάνει ο αριθμός των κόμβων ανά εξίσωση Οι εκφράσεις των πέντε και εννέα σημείων ανάγονται σε εξισώσεις πεπερασμένων διαφορών επτά και είκοσι επτά σημείων αντίστοιχα Σημειώνεται τέλος, ότι ακολουθώντας με συνέπεια τους κανόνες και τις διαδικασίες που θεσπίσαμε στην επίλυση της εξίσωσης Poisson (*), μπορούμε να επιλύσουμε με τη μέθοδο των πεπερασμένων διαφορών έναν μεγάλο αριθμό ελλειπτικών εξισώσεων 7

28 64 Οριακές συνθήκες με παραγώγους Είναι πιθανό μία από τις δύο οριακές συνθήκες να προσδιορίζει την τιμή της παραγώγου της εξαρτημένης μεταβλητής (και όχι την ίδια την μεταβλητή) στο όριο αυτό Στη περίπτωση αυτή οι οριακές συνθήκες της ΣΔΕ (*) δίδονται από τις σχέσεις: dy y y L για x xl και yr dx για x xr Η οριακή συνθήκη στο όριο x xr ονομάζεται οριακή συνθήκη τύπου Newmann και δύναται να είναι ομογενής ή μη ομογενής Επομένως, τώρα η τιμή yn 1 δεν είναι γνωστή και θα πρέπει να υπολογισθεί μαζί με τις υπόλοιπες τιμές της y i Η τελευταία εξίσωση του συστήματος (***) τροποποιείται και γράφεται στη μορφή: P Q P P Q y R y y S h h h h h N N N N N N1 N N N1 N, i N 8

29 Επίσης, θα πρέπει να διατυπωθεί μία επιπλέον εξίσωση για τον κόμβο xn 1, ώστε ο αριθμός των εξισώσεων να ισούται με τον αριθμό των αγνώστων Αυτό επιτυγχάνεται με δύο διαφορετικούς τρόπους: Ο πρώτος τρόπος εμπλέκει μόνο την οριακή συνθήκη Newmann στο x xr Η παράγωγος στην οριακή συνθήκη προσεγγίζεται από την ανάδρομη έκφραση πεπερασμένων διαφορών 1 ης τάξης dy yn 1 yn Oh dx h N 1 και η οριακή συνθήκη στο όριο y y hy N N1 R x x αντικαθίσταται από την αλγεβρική έκφραση R Το μειονέκτημα της μεθόδου είναι ότι η εξίσωση πεπερασμένων διαφορών στο κόμβο xn 1 είναι 1 ης τάξης, ενώ όλες οι άλλες εξισώσεις πεπερασμένων διαφορών για τους υπόλοιπους κόμβους είναι ης τάξης και επομένως η ακρίβεια του όλου σχήματος μειώνεται σε 1 η τάξη 9

30 Ο δεύτερος τρόπος εμπλέκει την οριακή συνθήκη Newmann και την ΣΔΕ στο x x R Η παράγωγος στην οριακή συνθήκη προσεγγίζεται από την κεντρώα έκφραση πεπερασμένων διαφορών ης τάξης dy dx y y N N O h ή yn yn hyr N 1 h Ο όρος yn αντιστοιχεί στο εικονικό κόμβο xn N-1 N N+1 N+ x N-1 x N x N+1 x N+ Οριακή συνθήκη με παράγωγο - εικονικός κόμβος πλέγματος 30

31 Στη συνέχεια η γενική έκφραση πεπερασμένων διαφορών (**) εφαρμόζεται στον κόμβο xn 1 και παίρνουμε την εξίσωση πεπερασμένων διαφορών P Q P P Q y R y y S h h h h h N1 N1 N1 N1 N1 N N1 N1 N N1 Συνδυάζοντας τις παραπάνω εκφράσεις προκύπτει, για το κόμβο xn 1, η εξίσωση πεπερασμένων διαφορών ης τάξης ( yn yn hyr) P P P Q y R y S hy h h h h N1 N1 N1 N1 N N1 N1 N1 R Το σύστημα είναι και πάλι τριδιαγώνιο και επιλύεται με τον αλγόριθμο Thomas, ενώ η ακρίβεια όλων των εξισώσεων πεπερασμένων διαφορών και επομένως ολόκληρου του αριθμητικού σχήματος είναι ης τάξης Τέλος σημειώνεται ότι οι κεντρώες εκφράσεις πεπερασμένων διαφορών είναι η πλέον συνήθης προσέγγιση για προβλήματα οριακών τιμών τόσο για συνήθεις όσο και για μερικές διαφορικές εξισώσεις 31

32 65 Κυλινδρικές συντεταγμένες Παρουσιάζονται οι βασικές τροποποιήσεις στη μεθοδολογία ώστε η μέθοδος να επεκταθεί αρχικά σε κυλινδρικές και στη συνέχεια σε σφαιρικές συντεταγμένες Έστω ότι ζητείται η αριθμητική επίλυση της εξίσωσης Laplace u 1u 1 u u r r r r z 0 στο πεδίο ορισμού : 0 r R, 0, 0 z L, με οριακές συνθήκες τύπου u r,,0 u r,, L u u R,, z u u r,0, z u r,, z u Dirichlet 0, 1 και 3

33 Το πλέγμα είναι τρισδιάστατο και ο κάθε κόμβος i, j, k του πλέγματος προσδιορίζεται από τη τριάδα σημείων ri, j, zk, για i 0,1,, I, j 0,1,, J και k 0,1,, K Συνολικά έχουμε I 1 J 1 K 1 κόμβους Αντίστοιχα οι τιμές της εξαρτημένης μεταβλητής στους κόμβους του πλέγματος ορίζονται από τις σχέσεις,, u r,, z u ir, j, kz ui j k u 1 u 0 u u 0 i+1,j+1,k+1 i,j+1,k+1 Πεδίο ορισμού και υπολογιστικό πλέγμα i+1,j+1,k i,j+1,k i,j,k i+1,j,k i,j,k+1 i+1,j,k+1 33

34 Η ΜΔΕ διακριτοποιείται στον τυχαίο κόμβο του πλέγματος i, j, k : u 1 u 1 u u 0, r r r r z i,j,k i i,j,k i i,j,k i,j,k Εφαρμόζοντας κεντρώες σχέσεις πεπερασμένων διαφορών και παρατηρώντας ότι i r προκύπτει η εξίσωση πεπερασμένων διαφορών ri ui 1, jk, ui, jk, ui 1, jk, 1 ui 1, jk, ui 1, jk, 1 ui, j1, kui, jk, ui, j1, k ui, jk, 1 ui, jk, ui, jk, 1 r ir r ir z για i 1,,, I 1, j 1,,, J 1 και k 1,,, K 1 Παρατηρούμε ότι σε κάθε εξίσωση πεπερασμένων διαφορών έχουμε επτά μη μηδενικούς όρους Το αλγεβρικό σύστημα επιλύεται με μία επαναληπτική μέθοδο και προκύπτουν οι άγνωστες ποσότητες u i, j, kστους εσωτερικούς κόμβους 0 34

35 Η εφαρμογή της μεθόδου των πεπερασμένων διαφορών σε κυλινδρικές συντεταγμένες απαιτεί ιδιαίτερη προσοχή όταν κρίνεται αναγκαία η διατύπωση εξισώσεων πεπερασμένων διαφορών για τους κόμβους που βρίσκονται στον άξονα r 0 Σημειώνεται ότι ο Λαπλασιανός τελεστής δεν ορίζεται για r 0 Θα εξετάσουμε το θέμα αυτό στην ειδική περίπτωση της αξονοσυμμετρικής συμμετρίας Έστω ότι ζητείται η αριθμητική επίλυση της εξίσωσης Laplace u 1 u u r r r z 0 στο πεδίο ορισμού 0 r R, 0 z L, με οριακές συνθήκες τύπου Dirichlet u r,0 u r, L 0 u R, z u στην εξωτερική επιφάνεια του κυλίνδρου και τη, 0 συνθήκη συμμετρίας u r r 0 0 στο άξονα συμμετρίας 35

36 z=l z=l 0 r=0 r=r u r =0 u o z=0 z=0 r=0 0 r=r Σχήμα 46: Αξονοσυμμετρικό υπολογιστικό πλέγμα Θεωρώντας r z η εξίσωση πεπερασμένων διαφορών γράφεται στη μορφή ui1, k1 ui1, k4uik, uik, 1 uik, 1 0 i i Ισχύει για τους εσωτερικούς κόμβους του πλέγματος i 1,,, I 1 και k 1,,, K 1 36

37 Δεν ισχύει για τους κόμβους που βρίσκονται στον άξονα του κυλίνδρου και το αλγεβρικό σύστημα έχει περισσότερους αγνώστους από εξισώσεις Το πρόβλημα παρακάμπτεται εφαρμόζοντας τη συμμετρική οριακή συνθήκη στο r 0: u r r 0 u u 0 u u 1, k 0, k 1, k 0, k, k 1,,, K 1 Όμως οι παραπάνω σχέσεις είναι 1 ης τάξης και αλλοιώνεται η ακρίβεια του αριθμητικού σχήματος που είναι ης τάξης Η ανακολουθία αυτή διορθώνεται ως εξής: Παρατηρούμε ότι καθώς το r 0 και ο αριθμητής του ιδιόμορφου όρου της ΜΔΕ επίσης τείνει στο μηδέν u Κανόνας Ηospital: lim r u r 0 r r Αντικαθιστώντας το αποτέλεσμα αυτό στην εξίσωση (465) προκύπτει στο r 0 η αναλυτική ΜΔΕ εξίσωση u u 0 rr zz 37

38 Εφαρμόζοντας κεντρώες πεπερασμένες διαφορές σε συνδυασμό με τη συμμετρία της λύσης ως προς τον άξονα του κυλίνδρου προκύπτει η εξίσωση πεπερασμένων διαφορών ( r z) u, k u1, k u1, k1 u1, k u1, k 4 0, k 1,,, K 1 Οι εξισώσεις είναι ης τάξης και είναι συμβατές ως προς την ακρίβεια και ως προς την δομή με τις εξισώσεις των υπολοίπων εσωτερικών κόμβων Η επίλυση ελλειπτικών εξισώσεων σε σφαιρικές συντεταγμένες ακολουθεί τους ίδιους ακριβώς κανόνες όπως στις κυλινδρικές συντεταγμένες 38

39 66 Παραδείγματα Παράδειγμα: Αριθμητική επίλυση του προβλήματος δύο οριακών τιμών du 1 du u 1 1, (1) 0 dr r dr Αναλυτική λύση: ur r u και du dr r 0 0 Αδιάστατη παροχή: 1 Q uda Q ru( r) dr

40 Διακριτοποίηση πεδίου ορισμού: Χωρίζουμε την ακτίνα σε Ν ίσα διαστήματα (Ν+1 κόμβους) πλάτους r 1/ N 0 r 1 1 N N+1 r=0 i-1 i i+1 r=1 Προσεγγίζουμε τη διαφορική εξίσωση (Α1) στον τυχαίο κόμβο i: u u u 1 u u i1 i i1 i1 i1 r ri r ui 1 ui u i1 1 r ri r r r rir για τους εσωτερικούς κόμβους i,, N όπου r ( i1) r i 40

41 Για i N 1: u 1 0 N Για i 1 θα χρησιμοποιήσουμε την οριακή συνθήκη μαζί με την διαφορική εξίσωση: du d u 1 du d u Παρατηρούμε ότι limr 0 lim dr r 0 lim dr r0 rdr r 1 dr du u0 u1u 1 Η ΣΔΕ γράφεται στη μορφή: 1 dr r du u u0 Η οριακή συνθήκη: 0 0u u dr r r0 0 Ό κόμβος i 0 είναι φανταστικός Συνδυάζοντας τις παραπάνω εξισώσεις προκύπτει: 4u 4u r 1 41

42 Το σύστημα που προκύπτει είναι τριδιαγώνιο και θα επιλυθεί με την μέθοδο Τhomas Έστω ένα αραιό πλέγμα με 3 διαστήματα και 4 κόμβους ( r h 1/3) Τότε επιλύεται το σύστημα u1 1/ u u 3 1 u1 05 u 0 u u4 0 (από οριακή συνθήκη) Για το ολοκλήρωμα της παροχής Q χρησιμοποιούμε κανόνα τραπεζίου: R r Q ru( r) dr [ ru 1 1 ru rnun rn 1uN1] 0 Q

43 Παράδειγμα: Δίδεται το πρόβλημα ιδιοτιμών dw 0 kw 0 0 dx, w wl Να υπολογισθούν αριθμητικά οι δέκα πρώτες ιδιοτιμές (ιδιοσυχνότητες) Οι πρώτες δύο να συγκριθούν με τις αντίστοιχες αναλυτικές Έχουμε ένα πρόβλημα εύρεσης ιδιοτιμών k, δηλαδή οι διάφορες τιμές του για τις οποίες το πρόβλημα έχει την μη μηδενική τετριμμένη λύση Αναλυτική γενική λύση: w x Acoskx Bsin kx, όπου Α και Β αυθαίρετες σταθερές Εφαρμόζοντας τις οριακές συνθήκες προκύπτει w(0) 0 A 0 και wl ( ) 0 Bsin( kl) 0 Η λύση δεν είναι η μηδενική με B 0 και sin( kl) 0 kl n wx Bsin n x L k n, n 1,, L 43

44 Αριθμητική επίλυση: Για να υπολογισθούν αριθμητικά οι δέκα πρώτες ιδιοτιμές απαιτούνται 10 εσωτερικοί κόμβοι Επομένως 11 διαστήματα, αριθμός κόμβων Ν+1=1 και h L/11 w w w h i1 i i1 0 kwi 1 1 w i1 k w i w i1 h h h 0, i 3,,10 Ειδικά για τους κόμβους i και i 11 θα είναι: 1 k w w 3 h h 0 και 1 w 10 k w 11 h h 0 Το σύστημα σε μορφή πινάκων θα έχει την μορφή: 0 και ο πίνακας A έχει την εξής μορφή: A w, όπου w w, w,, w 3 11 T 44

45 h k h h h k h h h k h h h k h h h k h h h k h h h k h h h k h h h k h h k det 0 Επομένως γίνονται οι πράξεις και προκύπτει ένα πολυώνυμο ως προς k δεκάτου βαθμού Στη συνέχεια με τη μέθοδο της διχοτόμησης υπολογίζονται οι 10 ρίζες του πολυωνύμου Το σύστημα έχει μη μηδενική λύση εάν A 1 h 45

46 L=1;n=10; h=l/(n+1) t=table[0,{n},{n}]; Doti, i 1 N1h, i, 1, n 1 Doti, i Nh, i, n Doti, i 1 N1h, i,, n sol=sort[eigenvalues[t]] {9807,384166,83537,14147,0756,7644,3453,400476,445583,474197} pn_ : N n Pi L real=table[p[i],{i,1,n}] {98696,394784,88864,157914,4674,355306,483611,631655,799438,98696} real sol error 100 real { ,6895,596977,104134,15879,1965,9173,365989,4469,519538} 46

47 Αριθμός ιδιοτιμής Αριθμητική τιμή k Αναλυτική τιμή k Σχετικό σφάλμα (%)

48 Στη περίπτωση του προβλήματος λυγισμού λεπτής μονοδιάστατης δοκού k P/ EI, όπου P είναι το εξωτερικό αξονικό φορτίο, E το μέτρο ελαστικότητας και I η ροπή αδρανείας Επομένως τα κρίσιμα φορτία λυγισμού που προκαλούν απομάκρυνση της ράβδου από n EI την αρχική θέση wx 0 είναι Pk EI L 48

49 Παράδειγμα: Ροή Hartmann ανάμεσα σε παράλληλες πλάκες db d u 3 1, dy dy b y 1: u 0, b 0 y du d b 3 0 dy dy, y 11, b y 1: u 0, b 0 y Επιλέγουμε 3 κόμβους (μαζί με τους οριακούς), h 1: y 1: i 0, y 0: i 1, y 1: i Διακριτοποίηση ΣΔΕ στον κεντρικό κόμβο y 0: i 1 b b u u u 3 1 h h O h 0 1 u u b b b 3 0 h h 15b 15b u O h b b1 b0 0 49

50 Διακριτοποίηση μικτών οριακών συνθηκών στους κόμβους i 0 και i : b 4 b 3 b b y y h b 4b 3b h O h b b b 1 b b 4 b 3 b b y y h O h 1 b 4b 3b h b 0 b0 b 1 b Από την επίλυση προκύπτει b 0 b 1 b 0 και u1 05 Επιλέξτε την μεθοδολογία με τους εικονικούς κόμβους στα δύο όρια και επαναλάβετε τους υπολογισμούς 50

51 Παράδειγμα: Η ροπή M ανά μονάδα μήκους που απαιτείται για την περιστροφή ενός κυλινδρικού R άξονα, ακτίνας R, κατά γωνία δίδεται από το ολοκλήρωμα M 4G r rdr 0 0 r R όπου r η λύση της εξίσωσης 1 r με οριακές συνθήκες r r r 0 r R 0 και r0 Πρώτα υπολογίστε αριθμητικά τη συνάρτηση σας με την αναλυτική λύση του προβλήματος r και συγκρίνετε τα αποτελέσματά Στη συνέχεια επιλέγοντας τιμές για τη ροπή M και τη παράμετρο G βρείτε την αντίστοιχη γωνία 51

52 Παράδειγμα: Ροή Poiseuille ανάμεσα σε παράλληλες πλάκες d du dp dy dy dx, 0 y L, u L 0 0 Αδιαστατοποίηση: du 1 dy, 0 y 1, u Παράδειγμα: Ροή θερμότητας σε μονοδιάστατη ράβδο: dt h T T 0 dx, 0 x L, T0 TL, TL TR TL 40 o C, TR 00 o C, T 0 o C, h 10 m -, 10 L m 01x 01 Αναλυτική λύση: x T x 7345e 5345e 0 Εξίσωση πεπερασμένων διαφορών: T hx T T h x T i1 i i1 5

53 Παράδειγμα: Επιλύστε αριθμητικά με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών: 1 T r r r r 0, R1 r R, TR T, TR 1 1 T Συγκρίνετε τα αριθμητικά αποτελέσματα με τα αντίστοιχα αναλυτικά Περιγράψτε ένα φυσικό πρόβλημα που θα μπορούσε να μοντελοποιείται με το παραπάνω πρόβλημα οριακών τιμών 53

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφ 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 71 Εισαγωγή πρότυπες εξισώσεις 7 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων 73 Οριακές συνθήκες μικτού τύπου και ακανόνιστα

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή . Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή 4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,

Διαβάστε περισσότερα

Κεφάλαιο 4. Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές

Κεφάλαιο 4. Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές Κεφάλαιο 4 Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές 4 Εισαγωγή πρότυπες εξισώσεις Οι πλέον συνηθισµένες ελλειπτικές εξισώσεις µε πλήθος εφαρµογών σε πολλά επιστηµονικά και τεχνολογικά

Διαβάστε περισσότερα

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas)..

Διαβάστε περισσότερα

f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N

f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU ειδικές περιπτώσεις: Cholesky, Thomas..

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφάλαιο 7 Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 7. Εξισώσεις κύματος ης ης τάξης Οι κλασσικές αντιπροσωπευτικές εξισώσεις της κατηγορίας των υπερβολικών εξισώσεων είναι οι

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα

Διαβάστε περισσότερα

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας.

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας. ΔΙΑΛΕΞΗ η : Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας Στόχος: Στο μάθημα αυτό θα ασχοληθούμε με την αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας, ενώ αργότερα θα γενικεύσουμε

Διαβάστε περισσότερα

πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r

πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r Άσκηση : πρόκειται για ΣΔΕ δύο οριακών τιμών με εφαρμογή του αλγόριθμου Thomas για επίλυση τριγωνικού συστήματος Έχουμε να επιλύσουμε την εξίσωση: du du u dr r dr με οριακές συνθήκες u () 0 και u(0) πεπερασμένη

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΦΑΣΗ Β- CASE STUDIES ΕΦΑΡΜΟΓΗΣ ΕΜΠΟΡΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Διαβάστε περισσότερα

Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί η εξίσωση ροής διαμέσου ενός κυλινδρικού αγωγού λόγω διαφοράς πίεσης: d u du u = + = dr r dr du με

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή Κεφ. 4: Ολοκλήρωση 4. Εισαγωγή 4. Εξισώσεις ολοκλήρωσης Newto Cotes 4.. Κανόνας τραπεζίου 4.. Πρώτος και δεύτερος κανόνας Simpso 4.. Πολλαπλά ολοκληρώματα 4. Ολοκλήρωση Gauss 4.. Πολυώνυμα Legedre, Chebyshev,

Διαβάστε περισσότερα

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) 10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Διατύπωση εξισώσεων ΜΠΣ βάσει μετακινήσεων

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Υψηλών Τάσεων ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ (Αριθμητικές μέθοδοι υπολογισμού

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο

Διαβάστε περισσότερα

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια

Διαβάστε περισσότερα

Κεφάλαιο 0: Εισαγωγή

Κεφάλαιο 0: Εισαγωγή Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε

Διαβάστε περισσότερα

w 1, z = 2 και r = 1

w 1, z = 2 και r = 1 ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 0..009 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Δίδεται η διαφορική εξίσωση Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Διαβάστε περισσότερα

z είναι οι τρεις ανεξάρτητες

z είναι οι τρεις ανεξάρτητες Κεφάλαιο 5 Επίλυση παραβολικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές 5. Εξίσωση θερµότητας ή διάχυσης Η πλέον αντιπροσωπευτική εξίσωση µεταξύ των παραβολικών εξισώσεων είναι η εξίσωση θερµότητας

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Εξίσωση Laplace Θεωρήματα Μοναδικότητας

Εξίσωση Laplace Θεωρήματα Μοναδικότητας Εξίσωση Laplace Θεωρήματα Μοναδικότητας Δομή Διάλεξης Εξίσωση Laplace πλεονεκτήματα μεθόδου επίλυσης της για εύρεση ηλεκτρικού δυναμικού Ιδιότητες λύσεων εξίσωσης Laplace σε 1, 2 και 3 διαστάσεις Θεώρημα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι

z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι στο άπειρο το αποτέλεσμα απειρίζεται λογαριθμικά. Αυτή η συμπεριφορά του δυναμικού Coulomb σε δύο διαστάσεις δεν μπορεί να εξαλειφθεί με τον ίδιο τρόπο όπως η απόκλιση (86 διότι έχει φυσική αφετηρία :

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ Ασκήσεις ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ για Γενική Επανάληψη Πολυχρόνη Μωυσιάδη, Καθηγητή ΑΠΘ ΟΜΑΔΑ 1. Συναρτήσεις 1. Δείξτε ότι: και υπολογίστε την τιμή 2. 2. Να υπολογισθούν οι τιμές και 3. Υπολογίστε τις τιμές

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 55 Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. Η δισδιάστατη γραμμική δυναμική ορίζεται στο ευκλείδειο επίπεδο από ένα σύστημα

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Μία ειδική κατηγορία διδιάστατων δυναμικών συστημάτων είναι τα λεγόμενα συντηρητικά συστήματα. Ο όρος προέρχεται από την μηχανική, όπου για υλικό σημείο που δέχεται δύναμη

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει

κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει Πρόβλημα 22. Θεωρούμε το ακόλουθο πρόβλημα συνοριακών τιμών για τη εξίσωση του Laplace u + u = 0, 1 < < 1, 1 < < 1, u(, 1) = f(), u(, 1) = 0, u( 1, ) = 0, u(1, ) = 0. α) Σωστό ή λάθος; Αν f( ) = f() είναι

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο.: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Έστω μια παραγωγίσιμη στο συνάρτηση, τέτοια ώστε για κάθε x

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

Πίνακας Περιεχομένων 7

Πίνακας Περιεχομένων 7 Πίνακας Περιεχομένων Πρόλογος...5 Πίνακας Περιεχομένων 7 1 Εξισώσεις Ροής- Υπολογιστική Μηχανική Ρευστών...15 1.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ.....15 1.1.1 Γενικά θέματα. 15 1.1.2 Υπολογιστικά δίκτυα...16

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Πολυβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Συστήματα με Κατανεμημένη Μάζα και Δυσκαμψία 1. Εξίσωση Κίνησης χωρίς Απόσβεση: Επιβαλλόμενες

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή,

Φίλη μαθήτρια, φίλε μαθητή, Φίλη μαθήτρια φίλε μαθητή Η εργασία αυτή έγινε με σκοπό να συμβάλει στην κατανόηση στην εμπέδωση και στην εμβάθυνση των μαθηματικών εννοιών που αναπτύσσονται στην Άλγεβρα της Β Λυκείου. Η ύλη είναι γραμμένη

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

ΜΔΕ: Αναλυτικό πρόγραμμα - Ύλη Μαθήματος 2018

ΜΔΕ: Αναλυτικό πρόγραμμα - Ύλη Μαθήματος 2018 1 ΚΕΦΑΛΑΙΟ 1 ΜΔΕ: Αναλυτικό πρόγραμμα - Ύλη Μαθήματος 2018 Αντικείμενο του μαθήματος είναι η μελέτη Μερικών Διαφορικών Εξισώσεων. Τον όρο Μερική Διαφορική Εξίσωση θα συμβολίζουμε με (ΜΔΕ). Η ιστοσελίδα

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 2. H εξίσωση θερμότητας.

KΕΦΑΛΑΙΟ 2. H εξίσωση θερμότητας. 1 Εισαγωγή KΕΦΑΛΑΙΟ H εξίσωση θερμότητας Εστω είναι ανοικτό σύνολο του με γνωστή θερμοκρασία στο σύνορό του κάθε χρονική στιγμή και γνωστή αρχική θερμοκρασία σε κάθε σημείο του Τότε οι φυσικοί νόμοι μας

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό αγωγό περιγράφεται από την συνήθη διαφορική εξίσωση

Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό αγωγό περιγράφεται από την συνήθη διαφορική εξίσωση Άσκηση ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ 08-09 5 Ο ΕΞΑΜΗΝΟ Ι ΑΣΚΩΝ:. Βαλουγεώργης ΕΡΓΑΣΙΑ: ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΟΡΙΑΚΩΝ ΤΙΜΩΝ (Σ Ε & Μ Ε Ηµεροµηνία παράδοσης: 8//09 Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 21 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων

11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων 11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 2 Θέματα Εισαγωγή Διατύπωση ΜΠΣ Βάσει Μετακινήσεων Γενική

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου Δυναμική Μηχανών I 8 1 Δυναμικά Μοντέλα Συνεχούς Μέσου 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Μοντελοποίηση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 2 Χειμερινό Εξάμηνο 213 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/214, 12. Απαιτείται αποδεικτικό ταυτότητας Απαγορεύεται η παρουσία & χρήση κινητού!

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 009-010, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ 1 Έστω το πρόβλημα

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ

ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ Ν. Ε. Ηλιού Αναπληρωτής Καθηγητής Τμήματος Πολιτικών Μηχανικών Πανεπιστημίου Θεσσαλίας Γ. Δ.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της

ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα