Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
|
|
- ŌΘωμᾶς Παυλόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί η εξίσωση ροής διαμέσου ενός κυλινδρικού αγωγού λόγω διαφοράς πίεσης: d u du u = + = dr r dr du με οριακές συνθήκες u () = 0 και u (0) πεπερασμένη ή = 0 (συνθήκη συμμετρίας). Στην dr r = 0 συνέχεια να υπολογιστεί η ογκομετρική παροχή του ρευστού. Απάντηση: Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια της Mathematica: DSolve[{u''[r] + /r*u'[r] == -, u[] == 0, u'[0] == 0}, u[r], r] 4 Αναλυτική λύση: u( r) = ( r ) π r Αναλυτική ογκομετρική παροχή: Q = u r da = u r r drdθ = Για την αριθμητική επίλυση του προβλήματος αρχικά διακριτοποιείται το πεδίο ορισμού. Η ακτίνα του αγωγού χωρίζεται σε N ίσα τμήματα ( N + κόμβοι) πλάτους r = / N r N N+ r=0 i- i i+ r= Αναπτύσσοντας τις εκφράσεις των πεπερασμένων διαφορών για τις παραγώγους η διακριτοποιημένη εξίσωση στους εσωτερικούς κόμβους i =,3... N δίνεται ως: - -
2 u u + u u u + = i+ i i i+ i r ri r u 0 = 0 u + = 0 Η οριακή συνθήκη στο τοίχωμα του αγωγού είναι: N Η οριακή συνθήκη στον άξονα συμμετρίας είναι: 4u 4u = r Το γραμμικό σύστημα που προκύπτει είναι τριδιαγώνιο όπως φαίνεται παρακάτω και επιλύεται με τον αλγόριθμο Thomas u r r r r r r r r u = ui r ri r r r ri r u N r rn r r Μετά την επίλυση του παραπάνω συστήματος η ογκομετρική παροχή μπορεί να υπολογιστεί με τον κανόνα τραπεζίου ως: π r N Q = u ( r) da = u ( r) r drdθ = π r ru + ru i i + rn+ un+ i= 0 0 Το πρόγραμμα σε Fortran που εκτελεί τους παραπάνω υπολογισμούς δίνεται παρακάτω: program CylinderPoiseuille implicit none integer::i,n real*8::pi,tstart,tend,radius,dr,q real*8,allocatable::r(:),u(:) real*8,allocatable::a(:,:) Pi=acos(-.)!Find program start time call cpu_time(tstart)!open output file open(00,file="cylinderpoiseuille_results.dat") - -
3 !Definition of geometry and discetization radius=.!radius of cylinder n=3!number of discrete segments (n+ nodes)!definition of the linear system of equations Dr=radius/Real(n) allocate(r(n+),u(n+),a(n,n+)) do i=,n r(i)=(i-)*dr Enddo a(:,:n)=0. ; a(:,n+)=-. a(,)=4. ; a(,)=-4 ; a(,n+)=dr**. do i=,n- a(i,i-)=./dr**.-./(.*r(i)*dr) a(i,i)=-./dr**. a(i,i+)=./dr**.+./(.*r(i)*dr) a(n,n-)=./dr**.-./(.*r(n)*dr); a(n,n)=-./dr**.;!write the linear system of equations to the output file write(00,"(a)") " " write(00,"(a)") " Linear system of equations " write(00,"(a)") " " do i=,n write(00,"(0000es5.5)") a(i,:)!solve the linear system using the Thomas algorithm Call Thomas(n,a,u)!Write the linear system of equations to the output file write(00,"(a)") " " write(00,"(a)") "----- Linear system solution -----" write(00,"(a)") " " do i=,n write(00,"(a,f5.3,a,es0.0)")"u(",r(i),")=",u(i) write(00,"(a,f5.3,a,es0.0)")"u(",radius,")=",0.!wall boundary condition!volumetric flowrate Q=u()*r() do i=,n Q=Q+.*u(i)*r(i) Q=Pi*Dr*Q write(00,"(a)") "----- Volumetric flow rate " write(00,"(a,es0.0)")"q=",q!find program end time call cpu_time(tend) - 3 -
4 write(*,"(a,es4.4,x,a)") "Program has used", tend-tstart,"seconds of CPU time." write(*,"(a)") "Open file CylinderPoiseuille_results.dat for the solution..." write(00,"(a)") " " write(00,"(a,es4.4,x,a)") "Program has used", tend-tstart,"seconds of CPU time."!close output file close(00) Contains Subroutine Thomas(n,a,x) implicit none integer::i,n real*8::x(n+),a(n,n+) real*8,allocatable::e(:),g(:) allocate(e(n),g(n))!find vectors e and g e()=a(,) ; g()=a(,n+)/e() do i=,n e(i)=a(i,i)-a(i,i-)*a(i-,i)/e(i-) g(i)=(a(i,n+)-a(i,i-)*g(i-))/e(i)!backsubstitution to find x x(n)=g(n) do i=n-,,- x(i)=g(i)-a(i,i+)*x(i+)/e(i) deallocate(e,g) end Subroutine end program Με τον παραπάνω κώδικα για ένα αραιό πλέγμα με N = 3 υποδιαστήματα (4 κόμβοι) το σύστημα που προκύπτει είναι: u u = u Από την επίλυση του προκύπτει το προφίλ ταχυτήτων: u ( 0) = 0.5 u ( / 3) = 0. u ( / 3) = u = 0.0 Με αριθμητική ολοκλήρωση προκύπτει η ογκομετρική παροχή: Q =
5 Από τα παραπάνω φαίνεται πως οι αριθμητικές τιμές της ταχύτητας ταυτίζονται με τις αντίστοιχες αναλυτικές. Στον παρακάτω πίνακα εμφανίζονται ενδεικτικά αποτελέσματα για τον προφίλ ταχυτήτων χρησιμοποιώντας ένα πυκνό πλέγμα N = 00 διαστημάτων και οι αντίστοιχες αναλυτικές τιμές. Ακτίνα r u (Αριθμητική) u (Αναλυτική) Η αντίστοιχη ογκομετρική παροχή είναι: Q = Όπως αναμένεται οι αριθμητικές τιμές πάλι ταυτίζονται με τις αντίστοιχες αναλυτικές ενώ το αριθμητικό αποτέλεσμα της ογκομετρικής παροχής βελτιώνεται σημαντικά και ταυτίζεται σε 4 σημαντικά ψηφία με το αναλυτικό αποτέλεσμα. Άσκηση Δίνεται το πρόβλημα ιδιοτιμών: dw kw w w 0, (0) () 0 dx + = = = Να υπολογισθούν αριθμητικά οι δέκα πρώτες ιδιοτιμές (ιδιοσυχνότητες). Να συγκριθούν οι πρώτες δύο με τις αντίστοιχες αναλυτικές. Απάντηση: Η γενική αναλυτική λύση του προβλήματος έχει την μορφή: w( x) = Acos( kx) + B sin ( kx) Οι αυθαίρετες σταθερές A και B προσδιορίζονται από τις οριακές συνθήκες ως: w Για μη τετριμμένες λύσεις 0 ( 0) = 0 A= 0, w( L) B ( kl) B προκύπτει : = 0 sin = 0 n π L n π L sin kl = 0 k = λ = k =, n =,,
6 Για την αριθμητική επίλυση αναπτύσσεται η έκφραση των πεπερασμένων διαφορών για την δεύτερη παράγωγο και η διακριτοποιημένη εξίσωση στους εσωτερικούς κόμβους i =,..., N + (συνολικά N + κόμβοι) δίνεται ως: wi+ wi + wi + kw 0 i = w i+ + k w i + w i = 0, i=,..., N+ h h h h όπου h = L N w 0 = w L = 0 w = w + = 0. + ενώ από τις οριακές συνθήκες N Η μορφή του παραπάνω συστήματος είναι: + k h h w 0 M w = 0 0 k 0 w 0 + i = h h h 0 wn k + Για την εύρεση των ιδιοτιμών θέτεται η ορίζουσα ίση με το μηδέν και επιλύεται η προκύπτουσα εξίσωση (πολυώνυμο N βαθμού). Εναλλακτικά το σύστημα ξαναγράφεται A ki w= 0 και ζητούνται οι ιδιοτιμές του πίνακα A. στην μορφή Η εύρεση των ιδιοτιμών του πίνακα A για οποιοδήποτε αριθμό εσωτερικών κόμβων N γίνεται με την βοήθεια της Mathematica ως: L=; n=0; h=l/(n+); t=table[0,{n},{n}]; Do[t[[i,i+]]=N[-/h^],{i,n-}]; Do[t[[i,i]]=N[/h^],{i,n}]; Do[t[[i,i-]]=N[-/h^],{i,,n}]; TableForm[t] sol=sort[eigenvalues[t]]; p[n_]:=n[n^*pi^/l^]; Analytical=Table[p[i],{i,,n}]; error=(analytical-sol)/analytical*00.; TableForm[Transpose[{sol,Analytical,error}]] h h - 6 -
7 Με βάση τον παραπάνω κώδικα υπολογίζονται οι ιδιοτιμές για N =, 5,0. Α/Α Αναλυτικές Αριθμητικές N = Αριθμητικές N = 5 Αριθμητικές N = 0 Σφάλμα % N = Σφάλμα % N = 5 Σφάλμα % N = , Παρατηρείται ότι καθώς αυξάνεται η διακριτοποίηση του προβλήματος οι αριθμητικές ιδιοτιμές συγκλίνουν στις αναλυτικές. Συγκεκριμένα για N = 0 οι πρώτες δύο ιδιοτιμές είναι σε ικανοποιητική συμφωνία με τις αντίστοιχες αναλυτικές ενώ για τις επόμενες ιδιοτιμές παρατηρείται ότι το σφάλμα αρχίζει να αυξάνει σημαντικά. Άσκηση 3 Να επιλυθεί το παρακάτω πρόβλημα Hartmann: d u db + = dy dy d b du + = 0 dy dy b ± = 0. Με οριακές συνθήκες u ( ± ) = 0 και Απάντηση: Το χωρίο επίλυσης y (,) διακριτοποιείται σε N ισαπέχοντες κόμβους ( N διαστήματα πλάτους y = / ( N ) ). Δy=/(Ν-) N- N y=- i- i i+ y= Αναπτύσσοντας τις εκφράσεις των πεπερασμένων διαφορών για τις παραγώγους οι διακριτοποιημένες εξισώσεις στους εσωτερικούς κόμβους i =,..., N γράφονται ως: - 7 -
8 ui+ ui + ui bi+ bi + =, y y i =,..., N bi+ bi + bi ui+ ui + = 0, y y i =,..., N u ± = 0 u = u = 0, b ± = 0 b = b = 0 Οριακές συνθήκες: N Από τις παραπάνω εξισώσεις προκύπτει ένα ( N ) ( N ) N γραμμικό σύστημα το οποίο πρέπει να επιλυθεί. Για παράδειγμα το παραπάνω σύστημα για N = 5 κόμβους γράφεται: y y y 0 u y y y y y u y y y u4 = b y y y b3 0 b y y y y y y y y Πρόγραμμα σε Mathematica που κατασκευάζει και επιλύει το παραπάνω γραμμικό σύστημα: - 8 -
9 n=0; Dy=./(n-); n=n-; A=ConstantArray[0,{*n,*n}]; Do[A[[i,i]]=-./Dy^,{i,,n}]; Do[A[[i,i+]]=./Dy^,{i,,n-}]; Do[A[[i,i-]]=./Dy^,{i,,n}]; Do[A[[i,i+n+]]=./(*Dy),{i,,n-}]; Do[A[[i,i+n-]]=-./(*Dy),{i,,n}]; Do[A[[i+n,j]]=A[[i,j+n]],{i,,n},{j,,n}]; Do[A[[i+n,j+n]]=A[[i,j]],{i,,n},{j,,n}]; c=constantarray[0,{*n}]; Do[c[[i]]=-,{i,,n}]; sol=linearsolve[a,c]; y=constantarray[0,n+]; u=constantarray[0,n+]; b=constantarray[0,n+]; Do[y[[i]]=-+(i-)*Dy,{i,,n+}] Do[u[[i+]]=sol[[i]],{i,,n}] Do[b[[i+]]=sol[[i+n]],{i,,n}] TableForm[Transpose[{y,u,b}]] Show[ListLinePlot[Transpose[{y,u}]],ListLinePlot[Transpose[{y,b}],PlotStyl e->red],plotrange->all,plotlabel->none,labelstyle- >{4,GrayLevel[0],Bold},ImageSize->Large] Στην γενική του μορφή το παραπάνω σύστημα μπορεί επίσης να επιλυθεί με την επαναληπτική μέθοδο Gauss-Seidel. Από τις διακριτοποιημένες εξισώσεις προκύπτει απευθείας ο επαναληπτικός χάρτης της μεθόδου ως: Οριακή συνθήκη u ( ± ) = 0: u u N ( k+ ) ( k) ( k+ ) ( k) ( k) Εσωτερικοί κόμβοι: ui = ( y + ( ui+ + ui ) + y( bi+ bi ) ), i =,..., N 4 Οριακή συνθήκη b ( ± ) = 0: ( k+ ) ( k+ ) = = 0 ( k+ ) ( k+ ) b = b N = 0 ( k+ ) Εσωτερικοί κόμβοι: ( ) k k+ k+ k+ b i = bi+ + bi + y ui+ ui, i =,..., N 4 Πρόγραμμα σε Fortran που επιλύει το παραπάνω πρόβλημα: Program HartmannDirichlet implicit none integer::i,iter,maxiter,n real*8::dy,error,err,tstart,tend real*8,allocatable::y(:),uold(:),u(:),bold(:),b(:)!find program start time call cpu_time(tstart) - 9 -
10 !Open output file open (00,file="HartmannDirichlet_results.dat")!Definition of parameters for the Gauss-Seidel method n=!number of nodes allocate(y(n),uold(n),u(n),bold(n),b(n))!memory allocation error=d-0!desired error maxiter=0000!number of maximum iterarions uold()=0.; uold(n)=0.!boundary conditions for u(y) bold()=0.; bold(n)=0.!boundary conditions for b(y) uold(:n-)=0.!inititial guess for u(y) bold(:n-)=0.!inititial guess for b(y)!implementation of Gauss-Seidel method dy=./(n-.)!segment width do i=,n y(i)=-.+(i-)*dy!initial parameters err=. iter=0 u=uold b=bold!write initial guess to output file write(00,"(a)") " " write(00,"(a)") " Initial guess " write(00,"(a)") " " write(00,"(a)") " y u(y) b(y)" do i=,n write(00,"(3es0.8)") y(i),uold(i),bold(i) do while (iter<=maxiter.and. err>=error) do i=,n- u(i)=(.*dy**.+.*(uold(i+)+u(i-))+dy*(bold(i+)-bold(i- )))/4. Enddo do i=,n- b(i)=(.*(bold(i+)+b(i-))+dy*(u(i+)-u(i-)))/4.!find error err = sqrt(sum((u-uold)**.)+sum((b-bold)**.))/(.*n) uold = u bold = b iter=iter+!write results to output file write(00,"(a)") " " write(00,"(a,i5,a)") " Iteration ",iter," " write(00,"(a)") " " - 0 -
11 write(00,"(a,es5.5)") "The error is : ",err write(00,"(a)") " y u(y) b(y)" do i=,n write(00,"(3es0.8)") y(i),uold(i),bold(i)!write results to screen If (iter>maxiter) then write(*,"(a,i0,a)") "Solution didn't converge after: ",iter-," iterations." write(*,*) endif!find program end time call cpu_time(tend) write(*,"(a,i0,a)") "Solution converge after: ",iter," iterations." write(*,"(a,es4.4,x,a)") "Program has used", tend-tstart,"seconds of CPU time." write(*,"(a)") "Open file HartmannDirichlet_results for the solution..." write(00,"(a)") " " write(00,"(a,es4.4,x,a)") "Program has used", tend-tstart,"seconds of CPU time."!close output file close(00) end Τα αποτελέσματα του παραπάνω κώδικα σε Fortran ταυτίζονται με τα αντίστοιχα αποτελέσματα του κώδικα σε Mathematica. Εκτελώντας οποιονδήποτε από τους δύο παραπάνω κώδικες για N = 3 και N = λαμβάνονται πινακοποιημένα αποτελέσματα για b y που φαίνονται παρακάτω: τα u( y ) και Αποτελέσματα για N = 3 Αποτελέσματα για N = y u( y ) b( y ) y u( y ) b( y )
12 Επίσης παρουσιάζονται οι γραφικές παραστάσεις που παράγονται από την Mathematica b y. όπου η μπλε και η κόκκινη γραμμή αντιστοιχούν στα u( y ) και Γραφική παράσταση για N = 3 Γραφική παράσταση για N = Άσκηση 4 Έστω το πρόβλημα μεταφοράς θερμότητας μεταξύ ομοαξονικών κυλίνδρων: T r = 0, R r R, T( R ) = T, T( R ) = T r r r Να επιλυθεί το παραπάνω πρόβλημα θεωρώντας R =, R = 3, T = 00, T = 300. Απάντηση: Η δοσμένη διαφορική εξίσωση γράφεται στην ισοδύναμη μορφή: T T + = 0 r r r Η αναλυτική λύση του παραπάνω προβλήματος μπορεί να βρεθεί με Mathematica ως: sol=dsolve[{t''[r]+t'[r]/r==0,t[r]==t,t[r]==t},t[r],r] sol/.{r->,r->3,t->00,t->300} Από τα παραπάνω προκύπτει η αναλυτική λύση: T r T ln r T ln r+ T ln R T ln R T ln r/ R T ln r/ R = = ln R ln R ln R/ R Καθώς και η λύση για τα δεδομένα του προβλήματος T( r) 00ln r = 00 + = ln r ln 3 - -
13 Για την αριθμητική επίλυση του παραπάνω προβλήματος το χωρικό πεδίο r ( R, R) διακριτοποιείται σε N ίσα διαστήματα ( N + κόμβοι) πλάτους r = ( R R ) N = N / / 0 3 N N+ r= i- i i+ r=3 Αναπτύσσοντας τις εκφράσεις των πεπερασμένων διαφορών για τις παραγώγους η διακριτοποιημένη εξίσωση στους εσωτερικούς κόμβους i =,..., N γράφεται ως: T T + T T T + = 0 i+ i i i+ i r ri r + Ti+ + T i + T i = 0, i =,..., Ν r ri r r r ri r 3 = 300 = 300. Από τις οριακές συνθήκες προκύπτει T = 00 T = 00 και T T N + Το γραμμικό σύστημα που προκύπτει είναι τριδιαγώνιο όπως φαίνεται παρακάτω και επιλύεται με τον αλγόριθμο Thomas r r ri r T T r ri r T i = 0 r ri r r r ri r T N T r r r ri r i r r N
14 Πρόγραμμα σε Fortran: program HeatTransferCoaxCylinders implicit none integer::i,n real*8::tstart,tend,dr,r,r,tr,tr real*8,allocatable::r(:),t(:) real*8,allocatable::a(:,:)!find program start time call cpu_time(tstart)!open output file open(00,file="heattransfercoaxcylinders_results.dat")!definition of geometry and discetization R=.!Radius of inner cylinder R=3.!Radius of outer cylinder TR=00.!Temperature at inner cylinder TR=300.!Temperature at outer cylinder n=4!number of discrete segments (n+ nodes)!definition of the linear system of equations Dr=(R-R)/Real(n) allocate(r(n+),t(n+),a(n-,n)) Do i=,n+ r(i)=r+(i-)*dr Enddo T()=TR; T(n+)=TR; a=0. a(,)=-./dr**. ; a(,)=./dr**.+./(.*r()*dr) ; a(,n)=-(./dr**.-./(.*r()*dr))*tr Do i=,n- a(i,i-)=./dr**.-./(.*r(i)*dr) a(i,i)=-./dr**. a(i,i+)=./dr**.+./(.*r(i)*dr) a(i,n)=0. Enddo a(n-,n-)=./dr**.-./(.*r(n)*dr); a(n-,n-)=-./dr**.; a(n-,n)=- (./Dr**.+./(.*r(n)*Dr))*TR!Write the linear system of equations to the output file write(00,"(a)") " " write(00,"(a)") " Linear system of equations " write(00,"(a)") " " do i=,n- write(00,"(0000es5.5)") a(i,:)!solve the linear system using the Thomas algorithm Call Thomas(n-,a,T(:n))!Write the linear system of equations to the output file write(00,"(a)") " " write(00,"(a)") "----- Linear system solution -----" write(00,"(a)") " " - 4 -
15 do i=,n+ write(00,"(a,f5.3,a,es0.0)")"t(",r(i),")=",t(i)!find program end time call cpu_time(tend) write(*,"(a,es4.4,x,a)") "Program has used", tend-tstart,"seconds of CPU time." write(*,"(a)") "Open file CylinderPoiseuille_results.dat for the solution..." write(00,"(a)") " " write(00,"(a,es4.4,x,a)") "Program has used", tend-tstart,"seconds of CPU time."!close output file close(00) Contains Subroutine Thomas(n,a,x) implicit none integer::i,n real*8::x(n),a(n,n+) real*8,allocatable::e(:),g(:) allocate(e(n),g(n))!find vectors e and g e()=a(,) ; g()=a(,n+)/e() do i=,n e(i)=a(i,i)-a(i,i-)*a(i-,i)/e(i-) g(i)=(a(i,n+)-a(i,i-)*g(i-))/e(i)!backsubstitution to find x x(n)=g(n) do i=n-,,- x(i)=g(i)-a(i,i+)*x(i+)/e(i) deallocate(e,g) End Subroutine end program Με τον παραπάνω κώδικα για ένα αραιό πλέγμα με N = 4 υποδιαστήματα (5 κόμβοι) το σύστημα που προκύπτει είναι: T T.0 = T
16 Από την επίλυση του προκύπτει το προφίλ ταχυτήτων r Αναλυτική λύση T Αριθμητική λύση * * T T T / T 00 % Στην συνέχεια παρουσιάζονται ενδεικτικά αποτελέσματα για ένα πυκνό πλέγμα με N = 00 υποδιαστήματα (0 κόμβοι) r Αναλυτική λύση T Αριθμητική λύση * * T T T / T 00 % E E E E E E E E E E E+00 Η γραφική παράσταση της θερμοκρασίας για το πλέγμα με N = 00 φαίνεται παρακάτω: - 6 -
Παράδειγμα #10 ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΜΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Άσκηση 1 Παράδειγμα #10 ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΜΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Να επιλυθεί η ροή ρευστού διαμέσου τετραγωνικού αγωγού η οποία εκφράζεται μέσω της διαφορικής εξίσωσης Poisson
Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό αγωγό περιγράφεται από την συνήθη διαφορική εξίσωση
Άσκηση ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ 08-09 5 Ο ΕΞΑΜΗΝΟ Ι ΑΣΚΩΝ:. Βαλουγεώργης ΕΡΓΑΣΙΑ: ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΟΡΙΑΚΩΝ ΤΙΜΩΝ (Σ Ε & Μ Ε Ηµεροµηνία παράδοσης: 8//09 Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό
Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k)
Παράδειγμα # EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί το παρακάτω μη γραμμικό σύστημα με την μέθοδο Newton: ( ) ( ) f, = + = 0 f, = + 8=
Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Τα ισοζύγια μάζας του συστήματος διανομή ατμού σε μονάδα διυλιστηρίου δίνονται από τις παρακάτω
Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών
Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα
Παράδειγμα #3 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΑΠΕΥΘΕΙΑΣ ΜΕΘΟΔΟΥΣ Επιμέλεια: Ν. Βασιλειάδης
Παράδειγμα #3 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΑΠΕΥΘΕΙΑΣ ΜΕΘΟΔΟΥΣ Επιμέλεια: Ν. Βασιλειάδης Άσκηση 1 Τα ισοζύγια μάζας του συστήματος διανομής ατμού σε μονάδα διυλιστηρίου δίνονται από τις παρακάτω
f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r
Άσκηση : πρόκειται για ΣΔΕ δύο οριακών τιμών με εφαρμογή του αλγόριθμου Thomas για επίλυση τριγωνικού συστήματος Έχουμε να επιλύσουμε την εξίσωση: du du u dr r dr με οριακές συνθήκες u () 0 και u(0) πεπερασμένη
Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια
Επιλύστε αριθμητικά με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών: ( )
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Επιλύστε αριθμητικά με τη μέθοδο
Επιλύστε αριθμητικά το με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών:
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 1-13, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ημερομηνίες παράδοσης: Ασκήσεις 1 και : -1-1, Ασκήσεις 3 και 4: 8-1-13 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ
Παράδειγµα #11 ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγµα # ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση ίδεται η διαφορική εξίσωση: dy dx y 0 = 0 x = y + e, Να επιλυθεί το πρόβληµα αρχικών τιµών µε τις µεθόδους Euler και Runge-Kutta
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
(συνθήκη συμμετρίας) (4) Το παραπάνω πρόβλημα μπορεί να περιγράψει τη μεταβατική πλήρως ανεπτυγμένη ροή σε κυλινδρικό αγωγό.
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 00-0, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ (αρχικών και οριακών τιμών) ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..00 ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Ζητείται να επιλυθεί η εξίσωση t
Κεφ. 6: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές προβλήματα οριακών τιμών
Κεφ 6: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές προβλήματα οριακών τιμών 61 Εισαγωγή στη μέθοδο των πεπερασμένων διαφορών 6 Προβλήματα δύο οριακών τιμών ΣΔΕ 63 Εξισώσεις πεπερασμένων
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0. ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Άσκηση Έστω ένα κύμα που κινείται εντός αγωγού με ταχύτητα c 0 m/s. Η κατανομή
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.
ΑΣΚΗΣΗ 1 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-1, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 15.1.9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 011-01, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5-1-011 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιλέξτε μία εκ των Ασκήσεων 1 και : ΑΣΚΗΣΗ 1 Να λυθεί το πρόβλημα οριακών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
Υπολογιστικές Μέθοδοι 2006-7
Υπολογιστικές Μέθοδοι 006-7 Άσκηση. (Επιμέλεια: Ιωάννης Λυχναρόπουλος) Θα επιλύσουμε την εξίσωση: urr ur u t, t t 0 και R i /Rout r r Έστω Ri 0.4 και Rout δηλαδή: Ri / Rout 0.4 με αρχική συνθήκη: ur (,0)
Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας
Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας Να γραφεί script το οποίο να επιλύει αριθμητικά της γενική εξίσωση θερμότητας με χρήση της προς τα εμπρός παραγώγου ως προς το χρόνο,
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
w 1, z = 2 και r = 1
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 0..009 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Δίδεται η διαφορική εξίσωση Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 6 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό
Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε
Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές
ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ
ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 009-010, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ 1 Έστω το πρόβλημα
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.
y 1 και με οριακές συνθήκες w
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Η εξίσωση Laplace σε
Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση α. Να στρογγυλοποιηθούν οι παρακάτω αριθμοί σε 4 σημαντικά ψηφία. 3 8 7.0045, 79.830, 73448,,, 7 9 3 Στρογγυλοποίηση σε 4 σημαντικά
Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
ΠΑΡΑΔΕΙΓΜΑ 17 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 005-006, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Ομάδα Α: Άσκηση Έχουμε να επιλύσουμε
Παράδειγμα #5 ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ & ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης
Παράδειγμα #5 ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ & ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Το παρακάτω αλγεβρικό τρι-διαγώνιο σύστημα έχει προκύψει από την επίλυση µιας συνήθους διαφορικής εξίσωσης που περιγράφει
την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία παράδοσης --0 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Με βάση τη σειρά Taylor βρείτε για τη παράγωγο
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε
Παράδειγμα #6 ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να γίνει σύγκριση των μεθόδων παρεμβολής Newton και agrange: Απάντηση: Παρεμβολή Newton: N ( ) ( )( ) ( ) P a a a a () N Παρεμβολή agrange:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΦΑΣΗ Β- CASE STUDIES ΕΦΑΡΜΟΓΗΣ ΕΜΠΟΡΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση 1 Δίνοντας το ολοκλήρωμα στη Mathematica παίρνουμε την τιμή του: 0 40 100 140558 z 2z 15
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις
Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων
Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,
Εφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑ ΟΣΗΣ:..6 Επιµέλεια απαντήσεων: Ι. Λυχναρόπουλος. Έστω το πρόβληµα αρχικών τιµών: ( dx( d x
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4 ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 009-00, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ # ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5..00 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Να επιλυθεί η εξίσωση
Λύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 05-06 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0-03-06 Ημερομηνία
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι
Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων:
ΠΑΡΑΔΕΙΓΜΑ 6 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Η διατήρηση μάζας σε ένα σύστημα τριών
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2008-2009 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 07.01.2009 Δίνονται τα ακόλουθα ζεύγη τιμών: Να προσδιοριστεί πολυώνυμο παρεμβολής
Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων
Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas)..
Επιµέλεια: Γιάννης Λυχναρόπουλος Οµάδα Α: Άσκηση 2 Έχουµε να επιλύσουµε την εξίσωση: 2
Οµάδα Α: Άσκηση Έχουµε να επιλύσουµε την εξίσωση: du du u = dr + r dr = (Α) du µε οριακές συνθήκες u () = 0 και u(0) πεπερασµένη ή = 0 (συνθήκη dr r = 0 συµµετρίας). Η αναλυτική λύση της διαφορική ς εξίσωσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2011-2012 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 26.10.2011 Άσκηση 1. Να μετατραπεί
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό
x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα:
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0 05, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0 Ημερομηνία παράδοσης εργασίας: 9 0 Επιμέλεια απαντήσεων:
Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines
Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.
Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές
Κεφ 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 71 Εισαγωγή πρότυπες εξισώσεις 7 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων 73 Οριακές συνθήκες μικτού τύπου και ακανόνιστα
ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).
ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους
Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0.008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Άσκηση Επιμέλεια απαντήσεων:
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2008-2009 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 14.10.2008 Να μετατραπεί ο αριθμός στο δυαδικό σύστημα.! " Ο αριθμός μετατρέπεται αρχικά
Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές
Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2010-2011 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 3 η Σειρά Ασκήσεων 07.12.2010 Άσκηση 1. Δίνονται τα
4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή
. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,
Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή
Κεφ. 4: Ολοκλήρωση 4. Εισαγωγή 4. Εξισώσεις ολοκλήρωσης Newto Cotes 4.. Κανόνας τραπεζίου 4.. Πρώτος και δεύτερος κανόνας Simpso 4.. Πολλαπλά ολοκληρώματα 4. Ολοκλήρωση Gauss 4.. Πολυώνυμα Legedre, Chebyshev,
Άσκηση 1. Δίδεται η διαφορική εξίσωση dy. Λύση. Έχουμε dy
Άσκηση ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική εξίσωση dy x =
Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων
Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU ειδικές περιπτώσεις: Cholesky, Thomas..
Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines
Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 1 ο 1 Εισαγωγή Έντυπα εγχειρίδια ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, ΑΚΡΙΒΗΣ Γ.Δ., ΔΟΥΓΑΛΗΣ Β.Α. Αριθμητική ανάλυση με εφαρμογές σε matlab & mathematica,
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
f x και τέσσερα ζευγάρια σημείων
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 6--6, ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Βιβλίο Ν.Μ. Βραχάτη: σελίδα 6, Ασκήσεις 8. και 8.. Άσκηση 8. x I f( x) dx h f( x ah) da x aa ( )
Οι παρακάτω ασκήσεις είναι από το βιβλίο των S. C. Chapra και R. P. Canale με τίτλο Numerical Methods for Engineers, 6 th edition.
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 04-05, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΣ ΕΞΙΣΩΣΕΙΣ: Α) ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Β) ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος:
Ενότητα 4. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 4 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό
4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή
4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,
ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ & ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΥΨΗΛΗΣ ΤΑΞΗΣ ODE ΜΕ ΥΨΗΛΗΣ ΤΑΞΗΣ
Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων
Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο
ΚΩ ΙΚΑΣ ΕΠΙΛΥΣΗΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΚΤΙΝΟΒΟΛΙΑ ΣΕ ΚΛΕΙΣΤΕΣ ΚΟΙΛΟΤΗΤΕΣ ΜΕ ΙΑΧΥΤΙΚΕΣ ΚΑΙ ΓΚΡΙΖΕΣ ΕΠΙΦΑΝΕΙΕΣ
ΚΩ ΙΚΑΣ ΕΠΙΛΥΣΗΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΚΤΙΝΟΒΟΛΙΑ ΣΕ ΚΛΕΙΣΤΕΣ ΚΟΙΛΟΤΗΤΕΣ ΜΕ ΙΑΧΥΤΙΚΕΣ ΚΑΙ ΓΚΡΙΖΕΣ ΕΠΙΦΑΝΕΙΕΣ Επιµέλεια: Νίκος Βασιλειάδης (φοιτητής ΤΜΜ, 6 ο εξάµηνο) 1 η έκδοση προγράµµατος (Μάιος 2014)
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι
Κεφάλαιο 4. Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές
Κεφάλαιο 4 Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές 4 Εισαγωγή πρότυπες εξισώσεις Οι πλέον συνηθισµένες ελλειπτικές εξισώσεις µε πλήθος εφαρµογών σε πολλά επιστηµονικά και τεχνολογικά
i. Επιλύστε με απαλοιφή Gauss μερικής οδήγησης το σύστημα:
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 04 0, Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑ #: ΕΠΙΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΞΙΣΩΣΕΩΝ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 8 0 04 Ημερομηνία παράδοσης εργασίας: 0 04 Επιμέλεια
Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος
Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος 1. Πως ορίζεται και τι σημαίνει ο όρος flop στους επιστημονικούς υπολογισμούς. Απάντηση: Ο όρος flop σημαίνει floating point operation
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων
Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος. Προσεγγίστε τo ολοκλήρωμα ( + ) I d d με αθροίσματα iemann χωρίζοντας το πεδίο ολοκλήρωσης σε ίσα ορθογώνια.
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.
Πίνακας Περιεχομένων
Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB 1. Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (Σ.Δ.Ε.) 1 ης τάξης έχει τη μορφή dy dt f ( t, y( t)) όπου η συνάρτηση f(t, y) είναι γνωστή,
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 2 ο Μάθημα 2 ο Αριθμητική επίλυση εξισώσεων (μη γραμμικές) Μέθοδοι με διαδοχικές δοκιμές σε διάστημα (Διχοτόμησης, Regula-Falsi) Μέθοδοι με επαναληπτικούς
Παράδειγμα #4 ΑΛΓΕΒΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
Παράδειγμα #4 ΑΛΓΕΒΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση 1 Τα ισοζύγια µάζας του συστήµατος διανοµής ατµού σε µονάδα διυλιστηρίου δίνονται από τις παρακάτω εξισώσεις: 181.60
y 1 (x) f(x) W (y 1, y 2 )(x) dx,
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x
Υπολογισμός Παροχής Μάζας σε Αγωγό Τετραγωνικής Διατομής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΝΕΡΓΕΙΑΣ, ΑΕΡΟΝΑΥΤΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ I Υπολογισμός
A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου
A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο
Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11
Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...
0.5, Μεταφορά θερμότητας ανάμεσα σε κυλίνδρους μεγάλου μήκους (χωρίς ασπίδα):
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 0-05 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 6-03-05 Ημερομηνία
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο
Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville
Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Εργαστήριο 2 - Απαντήσεις. Επίλυση Γραμμικών Συστημάτων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΟ Ι Ιστοσελίδα : http://www.math.ntua.gr/~fargyriou Εργαστήριο 2 - Απαντήσεις Επίλυση
Παράδειγμα #2 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ. ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης
Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σημαίνει ο όρος lop στους επιστημονικούς υπολογισμούς. Ο όρος lop (loatig poit operatio) συναντάται
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (
Πεπερασμένες Διαφορές.
Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ (3) Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας