Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών"

Transcript

1 Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα 1

2 1. Εισαγωγή Επιλύονται αριθμητικά προβλήματα δύο οριακών τιμών που περιγράφονται από συνήθεις διαφορικές εξισώσεις στο διάστημα x a, b με οριακές συνθήκες τύπου Dirichlet, Newmann ή μικτές με τη μέθοδο πεπερασμένων διαφορών. Η μέθοδος πεπερασμένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισμένες και διαδεδομένες υπολογιστικές τεχνικές επίλυσης διαφορικών εξισώσεων με πλήθος εφαρμογών στην φυσική, στην μηχανική και σε άλλες επιστήμες. Παρουσιάζεται μία εισαγωγή στη μέθοδο πεπερασμένων διαφορών, διατυπώνοντας και αναλύοντας τα κύρια βήματα και βασικά χαρακτηριστικά της μεθόδου σε σχέση με την επίλυση συνήθων διαφορικών εξισώσεων που περιγράφουν προβλήματα οριακών τιμών. Η συγκεκριμένη επιλογή είναι εκπαιδευτικά σκόπιμη, αφού πρόκειται για την απλούστερη ίσως εφαρμογή της μεθόδου των πεπερασμένων διαφορών.

3 Σύντομη και γενική περιγραφή της μεθόδου: a) Το συνεχές πεδίο ορισμού, όπου ορίζεται η διαφορική εξίσωση αντικαθίσταται από ένα πεπερασμένο αριθμό σημείων D, όπου D και παράλληλα το όριο του πεδίου ορισμού αντικαθίσταται από ένα πεπερασμένο αριθμό σημείων D που μπορεί να ανήκουν ή και να μην ανήκουν στο. b) Το νέο πεδίο ορισμού του προβλήματος ονομάζεται υπολογιστικό πλέγμα, δομικά στοιχεία του οποίου είναι τα επιλεγέντα σημεία που ονομάζονται κόμβοι. Για κάθε σημείο (κόμβο) P του D, διατυπώνεται μια αλγεβρική εξίσωση που περιλαμβάνει την τιμή της εξαρτημένης μεταβλητής στο σημείο P και σε γειτονικά σημεία του P εντός των και. D c) Η αλγεβρική εξίσωση ονομάζεται εξίσωση πεπερασμένων διαφορών και αποτελεί προσέγγιση της μερικής διαφορικής εξίσωσης στο σημείο P. Η συστηματική διατύπωση της αλγεβρικής εξίσωσης πεπερασμένων διαφορών εξαρτάται από τις πολλές εναλλακτικές δυνατότητες που προσφέρονται μέσω της μεθόδου των πεπερασμένων διαφορών. D 3

4 d) Εάν υπάρχουν N σημεία στο D προκύπτει ένα σύστημα N αλγεβρικών εξισώσεων με N αγνώστους. Εάν το σύστημα έχει μοναδική λύση, που συνήθως έχει, οι τιμές της εξαρτημένης μεταβλητής που προκύπτουν θεωρούνται προσεγγιστικές σε σχέση με αυτές της αναλυτικής λύσης. e) Η καλή ή κακή προσέγγιση ανάμεσα στην υπολογιστική (αριθμητική) και πραγματική (αναλυτική αν υπάρχει) λύση εξαρτάται από την συγκεκριμένη μεθοδολογία πεπερασμένων διαφορών που υιοθετείται και αξιολογείται μελετώντας την σύγκλιση, την ευστάθεια και την συνοχή του αριθμητικού σχήματος. f) Η διαδικασία αντικατάστασης της αναλυτικής διαφορικής εξίσωσης και του συνεχούς πεδίου ορισμού της με ένα σύστημα αλγεβρικών εξισώσεων πεπερασμένων διαφορών που ορίζονται στους κόμβους του υπολογιστικού πλέγματος ονομάζεται διακριτοποίηση. 4

5 . Προβλήματα δύο οριακών τιμών Ο αριθμός προβλημάτων οριακών τιμών που περιγράφονται από συνήθεις διαφορικές εξισώσεις είναι ιδιαίτερα μεγάλος. Στις περιπτώσεις αυτές, και σε αντίθεση με ότι συμβαίνει στα προβλήματα αρχικών τιμών, οι συνθήκες του προβλήματος ορίζονται σε δύο διαφορετικές τιμές της ανεξάρτητης μεταβλητής. Τα προβλήματα αυτά είναι γνωστά στη βιβλιογραφία σαν προβλήματα δύο οριακών τιμών. Μερικά κλασσικά παραδείγματα προβλημάτων δύο οριακών τιμών περιλαμβάνουν: o ροή Poiseuille ανάμεσα σε δύο πλάκες ή σε κυλινδρικό αγωγό o ροή θερμότητας σε μονοδιάστατη ράβδο o λυγισμό λεπτής μονοδιάστατης δοκού 5

6 d du dp Η ροή Poiseuille ανάμεσα σε πλάκες περιγράφεται από την ΣΔΕ: dy dy dx όπου 0 y L είναι η απόσταση ανάμεσα στις δύο πλάκες, dp / dx είναι η κλίση της πίεσης στην αξονική διεύθυνση x της ροής και u u y η άγνωστη κατανομή της ταχύτητας. Οι οριακές συνθήκες μη ολίσθησης είναι u L 0 0. Η ροή θερμότητας σε μονοδιάστατη ράβδο περιγράφεται από την ΣΔΕ: d dt k h T T dx dx 0 όπου 0 x L T T x η άγνωστη θερμοκρασιακή κατανομή κατά μήκος της ράβδου, T η θερμοκρασία του περιβάλλοντος χώρου και k και h οι συντελεστές θερμικής αγωγής και συναγωγής αντίστοιχα. Οι οριακές συνθήκες στην αρχή και στο τέλος της ράβδου είναι T0 TL και TL TR, όπου T L και T R είναι γνωστές θερμοκρασίες. είναι το μήκος της ράβδου, 6

7 Ο λυγισμός λεπτής μονοδιάστατης δοκού περιγράφεται από την ΣΔΕ d f k f 0 dx όπου 0 x L είναι το μήκος της δοκού και f f x (παραμόρφωση) από τη θέση ισορροπίας. Επίσης k P/ EI η απομάκρυνση, όπου P είναι το εξωτερικό αξονικό φορτίο, E το μέτρο ελαστικότητας και I η ροπή αδρανείας. Θεωρώντας ότι τα δύο άκρα της δοκού είναι πακτωμένα, προκύπτουν οι οριακές f 0 f L 0. συνθήκες Παρατηρούμε ότι το πρόβλημα του λυγισμού, όπως διατυπώνεται στη συγκεκριμένη περίπτωση, περιγράφεται από ομογενή διαφορική εξίσωση και ομογενείς οριακές συνθήκες. Επομένως, σε αντίθεση με τα δύο προηγούμενα προβλήματα, είναι ένα πρόβλημα ιδιοτιμών τύπου Sturm-Liouville που μπορεί να λυθεί, όπως και τα δύο προηγούμενα κλασσικά προβλήματα οριακών τιμών, με τη μέθοδο των πεπερασμένων διαφορών. 7

8 Στα παραπάνω παραδείγματα όταν οι συντελεστές των παραγώγων θεωρούνται σταθεροί τότε οι εξισώσεις είναι γραμμικές και μπορούν να επιλυθούν αναλυτικά και αριθμητικά. Στη περίπτωση αυτή τα αριθμητικά αποτελέσματα συγκρίνονται με τα αντίστοιχα αναλυτικά και είναι εφικτό να μελετήσουμε και να προσδιορίσουμε την ακρίβεια των αριθμητικών αποτελεσμάτων. Αντίθετα, όταν οι συντελεστές είναι συναρτήσεις της εξαρτημένης μεταβλητής (άμεσα ή έμμεσα) τότε οι εξισώσεις είναι μη γραμμικές και τις περισσότερες φορές επιλύονται μόνο αριθμητικά. Στις περιπτώσεις αυτές θα πρέπει να είμαστε πολύ προσεκτικοί σχετικά με την ακρίβεια των αριθμητικών αποτελεσμάτων. Σημειώνεται τέλος ότι είναι ιδιαίτερα χρήσιμο για τον μη μυημένο αναγνώστη να ανατρέξει και να εντοπίσει στη βιβλιογραφία προβλήματα δύο οριακών τιμών που περιγράφονται από γραμμικές και μη γραμμικές ΣΔΕ. 8

9 3. Η μέθοδος των πεπερασμένων διαφορών Θεωρούμε τη γραμμική ΣΔΕ ης τάξης στη γενική μορφή P x y'' Q x y' R x ys x 0 (*) στο διάστημα x x, x με οριακές συνθήκες y y L για x xl και y yr για x xr. L R Οριακές συνθήκες, που περιέχουν τιμές μόνο της εξαρτημένης μεταβλητής (και όχι των παραγώγων της) ονομάζονται οριακές συνθήκες τύπου Dirichlet και δύναται να είναι ομογενείς ή μη ομογενείς. 9

10 Το πρώτο βήμα, στη εφαρμογή της μεθόδου των πεπερασμένων διαφορών, είναι ο καθορισμός του υπολογιστικού πλέγματος και των κόμβων: Το διάστημα x x, x L R διαιρείται σε N ίσα τμήματα και το κάθε τμήμα έχει μήκος hxr xl/ N. Τα σημεία που ορίζουν την αρχή και το τέλος κάθε τμήματος ονομάζονται κόμβοι και η θέση τους στο υπολογιστικό πλέγμα προσδιορίζεται από τις x x i 1 h, i 1,, N 1. σχέσεις i L Είναι προφανές ότι x1 xl και xn 1 xr. Συνολικά, ορίζονται N 1 κόμβοι, εκ των οποίων οι N 1 κόμβοι x i, i,3,, N είναι εσωτερικοί κόμβοι, ενώ οι δύο κόμβοι x 1 και xn 1 ταυτίζονται με τα δύο όρια x L και x R αντίστοιχα. Επίσης οι τιμές της εξαρτημένης μεταβλητής στους κόμβους του πλέγματος ορίζονται από τις σχέσεις y x y, i 1,, N 1. i i 10

11 Οι τιμές της εξαρτημένης μεταβλητής στους εσωτερικούς κόμβους είναι άγνωστες και αποτελούν το αντικείμενο της υπολογιστικής επίλυσης του προβλήματος, ενώ οι αντίστοιχες τιμές στα όρια είναι γνωστές από τις οριακές συνθήκες. 1 3 i-1 i i+1 N-1 N N+1 x 1 x x 3 x i-1 x i x i+1 x N-1 x N x N+1+1 Υπολογιστικό πλέγμα και κόμβοι πλέγματος. 11

12 Το δεύτερο βήμα είναι η προσέγγιση της ΣΔΕ σε ένα τυχαίο εσωτερικό κόμβο, έστω x, του πλέγματος. Η πράξη αυτή συμβολίζεται ως εξής: i P x y'' Q x y' R x y S x 0 xx x x i xxi xx i i Η πρώτη και η δεύτερη παράγωγος της ΣΔΕ προσεγγίζονται με τις κεντρώες εκφράσεις πεπερασμένων διαφορών ης τάξης y ' xx i y y h y y y h i1 i1 i1 i i1 Oh και y '' O h xx i Οι εκφράσεις αυτές αντικαθίστανται στη εξίσωση που γράφεται στη μορφή yi 1 yi yi 1 yi 1 yi 1 Pi Q 0 i Riyi Si, i,, N. (**) h h 1

13 Οι δείκτες i 1, i και i 1 στις διάφορες ποσότητες συμβολίζουν τις ποσότητές αυτές στους αντίστοιχους κόμβους. Σημειώνεται ότι η εξίσωση (**) δεν ταυτίζεται αλλά αποτελεί προσέγγιση της ΣΔΕ (*) και το σφάλμα είναι Oh. Βλέπουμε επίσης ότι είναι αλγεβρική και ότι ισχύει για κάθε εσωτερικό κόμβο. Επομένως δημιουργείται ένα σύστημα αλγεβρικών εξισώσεων με αγνώστους τις τιμές της εξαρτημένης μεταβλητής στους εσωτερικούς κόμβους του πλέγματος. Η εξίσωση (**) ονομάζεται εξίσωση πεπερασμένων διαφορών. Αναδιατάσσοντας κατάλληλα τους όρους της (**), ξαναγράφεται στη μορφή Pi Qi Pi Pi Qi yi1ri y i y i1 Si, i,, N h h h h h Έχουμε N 1 αλγεβρικές εξισώσεις με αγνώστους τις N 1 τιμές της εξαρτημένης μεταβλητής y, y3,, yn. Οι τιμές y 1 και yn 1 που εμφανίζονται στην πρώτη ( i ) και τελευταία (i N) εξίσωση του συστήματος αντίστοιχα είναι γνωστές από τις οριακές συνθήκες. 13

14 Οι αντίστοιχοι όροι μετακινούνται στην δεξιά πλευρά του συστήματος που ξαναγράφεται στη παρακάτω γενική μορφή: P P Q P Q R y y S y h h h h h 3 1 Pi Qi Pi Pi Qi yi1ri y i y i1 Si, i 3,, N 1 (***) h h h h h P Q P P Q y R y S y h h h h h N N N N N N1 N N N N1. 14

15 Το τρίτο (και τελευταίο) βήμα είναι η επίλυση του συστήματος (***). Το σύστημα έχει τριδιαγώνια μορφή και γνωρίζουμε, ότι στη περίπτωση αυτή, η πλέον αποτελεσματική μέθοδος επίλυσης είναι ο αλγόριθμος Thomas. Τονίζεται ότι η λύση του συστήματος και ο υπολογισμός των αγνώστων y, y3,, yn αποτελεί προσέγγιση της αναλυτικής λύσης της αρχικής ΣΔΕ (*) στα σημεία x, x3,, xn. Λέμε ότι η αριθμητική μέθοδος συγκλίνει, εφόσον καθώς ο αριθμός N 1 των κόμβων αυξάνει και το διάστημα h 0, βελτιώνεται η ακρίβεια των αριθμητικών αποτελεσμάτων σε σχέση με τα αναλυτικά. Στο συγκεκριμένο πρόβλημα αφού οι εκφράσεις πεπερασμένων διαφορών είναι ης τάξης, αναμένεται η σύγκλιση να είναι τετραγωνική. Βέβαια αυτό δεν ισχύει γενικώς αλλά για μικρές τιμές του διαστήματος h και ακόμα καλύτερα για h 0. Είναι προφανές ότι καθώς αυξάνει ο αριθμός των κόμβων αυξάνει παράλληλα ο αριθμός των αλγεβρικών εξισώσεων του συστήματος και βεβαίως το υπολογιστικό κόστος (μνήμη υπολογιστή και χρόνος υπολογισμών). 15

16 Η επιλογή του κατάλληλου πλέγματος εξαρτάται από την εκάστοτε εφαρμογή. Είναι όμως χρήσιμο και τις περισσότερες φορές απαραίτητο να γίνονται δοκιμές με διαφορετικά πλέγματα ώστε να εξετάζεται η συμπεριφορά των αποτελεσμάτων για διαφορετικά h και να επιβεβαιώνεται η σύγκλισή τους. Όπως βλέπουμε το σύστημα (***) αλλά όπως θα δούμε και στη συνέχεια, ο πίνακας των συντελεστών των αλγεβρικών συστημάτων που προκύπτουν με την εφαρμογή της μεθόδου των πεπερασμένων διαφορών, περιέχει πολλά μηδενικά στοιχεία και μόνο ένας μικρός αριθμός συντελεστών, σε σχέση με τη τάξη του συστήματος, είναι μη μηδενικοί. Επομένως, πρόκειται για αραιούς πίνακες. Επίσης η απόλυτη τιμή των διαγωνίων στοιχείων είναι μεγαλύτερη ή ίση από το άθροισμα των απολύτων τιμών των υπολοίπων στοιχείων κάθε γραμμής. Άρα οι επαναληπτικές μέθοδοι επίλυσης συστημάτων (Jacobi, Gauss-Seidel, SOR) θα πρέπει να προτιμώνται αντί των άμεσων μεθόδων (απαλοιφή Gauss, παραγοντοποίηση LU), εκτός βεβαίως αν πρόκειται για ειδικές μορφές πινάκων όπως οι τριδιαγώνιοι ή οι συμμετρικοί πίνακες όπου ο αλγόριθμος Thomas και η μέθοδος Cholesky αντίστοιχα είναι οι πλέον αποτελεσματικές μέθοδοι επίλυσης. 16

17 4. Οριακές συνθήκες με παραγώγους Είναι πιθανό μία από τις δύο οριακές συνθήκες να προσδιορίζει την τιμή της παραγώγου της εξαρτημένης μεταβλητής (και όχι την ίδια την μεταβλητή) στο όριο αυτό. Στη περίπτωση αυτή οι οριακές συνθήκες της ΣΔΕ (*) δίδονται από τις σχέσεις: dy y y L για x xl και yr dx για x xr. Η οριακή συνθήκη στο όριο x xr ονομάζεται οριακή συνθήκη τύπου Newmann και δύναται να είναι ομογενής ή μη ομογενής. Επομένως, τώρα η τιμή yn 1 δεν είναι γνωστή και θα πρέπει να υπολογισθεί μαζί με τις υπόλοιπες τιμές της y i. Η τελευταία εξίσωση του συστήματος (***) τροποποιείται και γράφεται στη μορφή: P Q P P Q y R y y S h h h h h N N N N N N1 N N N1 N, i N 17

18 Επίσης, θα πρέπει να διατυπωθεί μία επιπλέον εξίσωση για τον κόμβο xn 1, ώστε ο αριθμός των εξισώσεων να ισούται με τον αριθμό των αγνώστων. Αυτό επιτυγχάνεται με δύο διαφορετικούς τρόπους: Ο πρώτος τρόπος εμπλέκει μόνο την οριακή συνθήκη Newmann στο x xr. Η παράγωγος στην οριακή συνθήκη προσεγγίζεται από την ανάδρομη έκφραση πεπερασμένων διαφορών 1 ης τάξης dy yn 1 yn Oh dx h N 1 και η οριακή συνθήκη στο όριο y y hy N N1 R. x x αντικαθίσταται από την αλγεβρική έκφραση R Το μειονέκτημα της μεθόδου είναι ότι η εξίσωση πεπερασμένων διαφορών στο κόμβο xn 1 είναι 1 ης τάξης, ενώ όλες οι άλλες εξισώσεις πεπερασμένων διαφορών για τους υπόλοιπους κόμβους είναι ης τάξης και επομένως η ακρίβεια του όλου σχήματος μειώνεται σε 1 η τάξη. 18

19 Ο δεύτερος τρόπος εμπλέκει την οριακή συνθήκη Newmann και την ΣΔΕ στο x x. R Η παράγωγος στην οριακή συνθήκη προσεγγίζεται από την κεντρώα έκφραση πεπερασμένων διαφορών ης τάξης dy dx y y N N O h ή yn yn hyr N 1 h Ο όρος yn αντιστοιχεί στο εικονικό κόμβο xn. N-1 N N+1 N+ x N-1 x N x N+1 x N+ Οριακή συνθήκη με παράγωγο - εικονικός κόμβος πλέγματος. 19

20 Στη συνέχεια η γενική έκφραση πεπερασμένων διαφορών (**) εφαρμόζεται στον κόμβο xn 1 και παίρνουμε την εξίσωση πεπερασμένων διαφορών P Q P P Q y R y y S h h h h h N1 N1 N1 N1 N1 N N1 N1 N N1 Συνδυάζοντας τις παραπάνω εκφράσεις προκύπτει, για το κόμβο xn 1, η εξίσωση πεπερασμένων διαφορών ης τάξης ( yn yn hyr) P P P Q y R y S hy h h h h N1 N1 N1 N1 N N1 N1 N1 R Το σύστημα είναι και πάλι τριδιαγώνιο και επιλύεται με τον αλγόριθμο Thomas, ενώ η ακρίβεια όλων των εξισώσεων πεπερασμένων διαφορών και επομένως ολόκληρου του αριθμητικού σχήματος είναι ης τάξης. Τέλος σημειώνεται ότι οι κεντρώες εκφράσεις πεπερασμένων διαφορών είναι η πλέον συνήθης προσέγγιση για προβλήματα οριακών τιμών τόσο για συνήθεις όσο και για μερικές διαφορικές εξισώσεις... 0

21 5. Παραδείγματα Παράδειγμα: Αριθμητική επίλυση του προβλήματος δύο οριακών τιμών du 1 du u 1 1, (1) 0 dr r dr Αναλυτική λύση: ur r u και du dr r 0 0 Αδιάστατη παροχή: 1 Q uda Q ru( r) dr

22 Διακριτοποίηση πεδίου ορισμού: Χωρίζουμε την ακτίνα σε Ν ίσα διαστήματα (Ν+1 κόμβους) πλάτους r 1/ N 0 r 1 1 N N+1 r=0 i-1 i i+1 r=1 Προσεγγίζουμε τη διαφορική εξίσωση (Α1) στον τυχαίο κόμβο i: u u u 1 u u i1 i i1 i1 i1 r ri r ui 1 ui u i1 1 r ri r r r rir για τους εσωτερικούς κόμβους i,..., N όπου r ( i1) r i

23 Για i N 1: u 1 0 N Για i 1 θα χρησιμοποιήσουμε την οριακή συνθήκη μαζί με την διαφορική εξίσωση: du d u 1 du d u Παρατηρούμε ότι limr 0 lim dr r 0 lim dr r0 rdr r 1 dr du u0 u1u 1 Η ΣΔΕ γράφεται στη μορφή: 1 dr r du u u0 Η οριακή συνθήκη: 0 0u u dr r r0 0 Ό κόμβος i 0 είναι φανταστικός. Συνδυάζοντας τις παραπάνω εξισώσεις προκύπτει: 4u 4u r 1 3

24 Το σύστημα που προκύπτει είναι τριδιαγώνιο και θα επιλυθεί με την μέθοδο Τhomas. Έστω ένα αραιό πλέγμα με 3 διαστήματα και 4 κόμβους ( r h 1/3). Τότε επιλύεται το σύστημα u1 1/ u u 3 1 u1 0.5 u 0. u u4 0 (από οριακή συνθήκη) Για το ολοκλήρωμα της παροχής Q χρησιμοποιούμε κανόνα τραπεζίου: R r Q ru( r) dr [ ru 1 1 ru... rnun rn 1uN1] 0 Q

25 Παράδειγμα: Δίδεται το πρόβλημα ιδιοτιμών dw 0 kw dx, w wl 0 0 Να υπολογισθούν αριθμητικά οι δέκα πρώτες ιδιοτιμές (ιδιοσυχνότητες). Οι πρώτες δύο να συγκριθούν με τις αντίστοιχες αναλυτικές. Έχουμε ένα πρόβλημα εύρεσης ιδιοτιμών k, δηλαδή οι διάφορες τιμές του για τις οποίες το πρόβλημα έχει την μη μηδενική τετριμμένη λύση. Αναλυτική γενική λύση: w x Acoskx Bsin kx, όπου Α και Β αυθαίρετες σταθερές. Εφαρμόζοντας τις οριακές συνθήκες προκύπτει w(0) 0 A 0 και wl ( ) 0 Bsin( kl) 0 Η λύση δεν είναι η μηδενική με B 0 και sin( kl) 0 kl n wx Bsin n x L k n, n 1,,... L 5

26 Αριθμητική επίλυση: Για να υπολογισθούν αριθμητικά οι δέκα πρώτες ιδιοτιμές απαιτούνται 10 εσωτερικοί κόμβοι. Επομένως 11 διαστήματα, αριθμός κόμβων Ν+1=1 και h L/11. w w w h i1 i i1 0 kwi 1 1 w i1 k w i w i1 h h h 0, i 3,...,10 Ειδικά για τους κόμβους i και i 11 θα είναι: 1 k w w 3 h h 0 και 1 w 10 k w 11 h h 0 Το σύστημα σε μορφή πινάκων θα έχει την μορφή: 0 και ο πίνακας A έχει την εξής μορφή: A w, όπου w w, w,..., w 3 11 T 6

27 . h k h h. h k h h. h k h h. h k h h. h k h h. h k h h. h k h h. h k h h. h k h. h k det 0. Επομένως γίνονται οι πράξεις και προκύπτει ένα πολυώνυμο ως προς k δεκάτου βαθμού. Στη συνέχεια με τη μέθοδο της διχοτόμησης υπολογίζονται οι 10 ρίζες του πολυωνύμου. Το σύστημα έχει μη μηδενική λύση εάν A 1 h 7

28 L=1;n=10; h=l/(n+1) t=table[0,{n},{n}]; Doti, i 1 N1h, i, 1, n 1 Doti, i Nh, i, n Doti, i 1 N1h, i,, n sol=sort[eigenvalues[t]] {9.807, ,83.537,141.47,07.56,76.44,34.53, , , } pn_ : N n Pi L real=table[p[i],{i,1,n}] {9.8696, ,88.864, ,46.74, , , , ,986.96} real sol error 100 real { ,.6895, , ,15.879,.1965,9.173, ,44.69, } 8

29 Αριθμός ιδιοτιμής Αριθμητική τιμή k Αναλυτική τιμή k Σχετικό σφάλμα (%)

30 Στη περίπτωση του προβλήματος λυγισμού λεπτής μονοδιάστατης δοκού k P/ EI, όπου P είναι το εξωτερικό αξονικό φορτίο, E το μέτρο ελαστικότητας και I η ροπή αδρανείας. Επομένως τα κρίσιμα φορτία λυγισμού που προκαλούν απομάκρυνση της ράβδου από n EI την αρχική θέση wx 0 είναι Pk EI L 30

31 Παράδειγμα: Ροή Hartmann ανάμεσα σε παράλληλες πλάκες db d u 1, dy dy y 1: 0 b u, 0 y du d b 0 dy dy, y 11,, y 1: 0 b u, 0 y Επιλέγουμε 3 κόμβους (μαζί με τους οριακούς), h 1: y 1: i 0, y 0: i 1, y 1: i Διακριτοποίηση ΣΔΕ στον κεντρικό κόμβο y 0: i 1 b b u u u 3 1 h h O h 0 1 u u b b b 3 0 h h 1.5b 1.5b u O h b b1 b0 0 Διακριτοποίηση μικτών οριακών συνθηκών στους κόμβους i 0 και i : 31

32 b 4b 3b by y h b 4b 3b h O h b b b 1.b b 4 b 3 b b y y h O h 1 b 4b 3b h 05.bb 05.b 0 b Από την επίλυση προκύπτει b 0 b 1 b 0 και u1 0.5 Επιλέξτε την μεθοδολογία με τους εικονικούς κόμβους στα δύο όρια και επαναλάβετε τους υπολογισμούς. 3

33 Παράδειγμα: Η ροπή M ανά μονάδα μήκους που απαιτείται για την περιστροφή ενός κυλινδρικού R άξονα, ακτίνας R, κατά γωνία δίδεται από το ολοκλήρωμα M 4G r rdr 0 0 r R όπου r η λύση της εξίσωσης 1 r με οριακές συνθήκες r r r 0. r R 0 και r0 Πρώτα υπολογίστε αριθμητικά τη συνάρτηση σας με την αναλυτική λύση του προβλήματος. r και συγκρίνετε τα αποτελέσματά Στη συνέχεια επιλέγοντας τιμές για τη ροπή M και τη παράμετρο G βρείτε την αντίστοιχη γωνία. 33

34 Παράδειγμα: Ροή Poiseuille ανάμεσα σε παράλληλες πλάκες d du dp dy dy dx, 0 y L, u L 0 0 Αδιαστατοποίηση: du 1 dy, 0 y 1, u Παράδειγμα: Ροή θερμότητας σε μονοδιάστατη ράβδο: d dt k h T T dx dx 0, 0 x L, T0 TL, TL TR 34

35 Παράδειγμα: Επιλύστε αριθμητικά με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών: 1 T r r r r 0, R1 r R, TR T, TR 1 1 T Συγκρίνετε τα αριθμητικά αποτελέσματα με τα αντίστοιχα αναλυτικά. Περιγράψτε ένα φυσικό πρόβλημα που θα μπορούσε να μοντελοποιείται με το παραπάνω πρόβλημα οριακών τιμών. 35

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφ. 6: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές προβλήματα οριακών τιμών

Κεφ. 6: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές προβλήματα οριακών τιμών Κεφ 6: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές προβλήματα οριακών τιμών 61 Εισαγωγή στη μέθοδο των πεπερασμένων διαφορών 6 Προβλήματα δύο οριακών τιμών ΣΔΕ 63 Εξισώσεις πεπερασμένων

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N

f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή . Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφ 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 71 Εισαγωγή πρότυπες εξισώσεις 7 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων 73 Οριακές συνθήκες μικτού τύπου και ακανόνιστα

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή 4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas)..

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU ειδικές περιπτώσεις: Cholesky, Thomas..

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r

πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r Άσκηση : πρόκειται για ΣΔΕ δύο οριακών τιμών με εφαρμογή του αλγόριθμου Thomas για επίλυση τριγωνικού συστήματος Έχουμε να επιλύσουμε την εξίσωση: du du u dr r dr με οριακές συνθήκες u () 0 και u(0) πεπερασμένη

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί η εξίσωση ροής διαμέσου ενός κυλινδρικού αγωγού λόγω διαφοράς πίεσης: d u du u = + = dr r dr du με

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφάλαιο 7 Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 7. Εξισώσεις κύματος ης ης τάξης Οι κλασσικές αντιπροσωπευτικές εξισώσεις της κατηγορίας των υπερβολικών εξισώσεων είναι οι

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε

Διαβάστε περισσότερα

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή Κεφ. 4: Ολοκλήρωση 4. Εισαγωγή 4. Εξισώσεις ολοκλήρωσης Newto Cotes 4.. Κανόνας τραπεζίου 4.. Πρώτος και δεύτερος κανόνας Simpso 4.. Πολλαπλά ολοκληρώματα 4. Ολοκλήρωση Gauss 4.. Πολυώνυμα Legedre, Chebyshev,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) 10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Διατύπωση εξισώσεων ΜΠΣ βάσει μετακινήσεων

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 009-010, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ 1 Έστω το πρόβλημα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΦΑΣΗ Β- CASE STUDIES ΕΦΑΡΜΟΓΗΣ ΕΜΠΟΡΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

Παράδειγμα #8 ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και β) για τη παράγωγο f

Παράδειγμα #8 ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και β) για τη παράγωγο f Παράδειγμα #8 ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση 1 Με βάση τη σειρά Taylor να βρεθεί α) για τη παράγωγο την κεντρώα έκφραση πεπερασμένων διαφορών ης τάξης και β) για τη παράγωγο την

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Πολυβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Συστήματα με Κατανεμημένη Μάζα και Δυσκαμψία 1. Εξίσωση Κίνησης χωρίς Απόσβεση: Επιβαλλόμενες

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος. Διάλεξη 10: Ολοκλήρωση Συνήθων Διαφορικών Εξισώσεων: Προβλήματα Συνοριακών Τιμών Μίας Διάστασης (1D)

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος. Διάλεξη 10: Ολοκλήρωση Συνήθων Διαφορικών Εξισώσεων: Προβλήματα Συνοριακών Τιμών Μίας Διάστασης (1D) ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος Διάλεξη : Ολοκλήρωση Συνήθων Διαφορικών Εξισώσεων: Προβλήματα Συνοριακών Τιμών Μίας Διάστασης D Γιάννης Δημακόπουλος & Γιάννης Τσαμόπουλος ΧΜ66 Εαρινό Εξάμηνο Πρόβλημα

Διαβάστε περισσότερα

w 1, z = 2 και r = 1

w 1, z = 2 και r = 1 ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 0..009 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Δίδεται η διαφορική εξίσωση Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Διαβάστε περισσότερα

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ IV.3 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ης ΤΑΞΕΩΣ.Γενική λύση.χωριζόμενων μεταβλητών 3.Ρυθμοί 4.Γραμμικές 5.Γραμμική αυτόνομη 6.Bernoulli αυτόνομη 7.Aσυμπτωτικές ιδιότητες 8.Αυτόνομες 9.Σταθερές τιμές.διάγραμμα ροής.ασυμπτωτική

Διαβάστε περισσότερα

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας.

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας. ΔΙΑΛΕΞΗ η : Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας Στόχος: Στο μάθημα αυτό θα ασχοληθούμε με την αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας, ενώ αργότερα θα γενικεύσουμε

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Να κατατάξετε τις διαφορικές εξισώσεις, δηλ να δώσετε την τάξη της, να πείτε αν είναι γραμμική ή όχι, να δώσετε την ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ Ασκήσεις ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ για Γενική Επανάληψη Πολυχρόνη Μωυσιάδη, Καθηγητή ΑΠΘ ΟΜΑΔΑ 1. Συναρτήσεις 1. Δείξτε ότι: και υπολογίστε την τιμή 2. 2. Να υπολογισθούν οι τιμές και 3. Υπολογίστε τις τιμές

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 21 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

Παραδείγματα (2) Διανυσματικοί Χώροι

Παραδείγματα (2) Διανυσματικοί Χώροι Παραδείγματα () Διανυσματικοί Χώροι Παράδειγμα 7 Ελέγξτε αν τα ακόλουθα σύνολα διανυσμάτων είναι γραμμικά ανεξάρτητα ή όχι: α) v=(,4,6), v=(,,), v=(7,,) b) v=(,4), v=(,), v=(4,) ) v=(,,), v=(5,,), v=(5,,)

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Κεφάλαιο 0: Εισαγωγή

Κεφάλαιο 0: Εισαγωγή Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου Δυναμική Μηχανών I 8 1 Δυναμικά Μοντέλα Συνεχούς Μέσου 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Μοντελοποίηση

Διαβάστε περισσότερα

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Μία ειδική κατηγορία διδιάστατων δυναμικών συστημάτων είναι τα λεγόμενα συντηρητικά συστήματα. Ο όρος προέρχεται από την μηχανική, όπου για υλικό σημείο που δέχεται δύναμη

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Ολοκλήρωση. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Βιομαθηματικά BIO-156. Ολοκλήρωση. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017 Βιομαθηματικά BIO-56 Ολοκλήρωση Ντίνα Λύκα Εαρινό Εξάμηνο, 07 lik@biology.uo.gr Ορισμός αντιπαραγώγου ή παράγουσας ή αρχικής συνάρτησης Μια συνάρτηση F ονομάζεται αντιπαράγωγος της σε ένα διάστημα Ι, αν

Διαβάστε περισσότερα

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί. O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 2. H εξίσωση θερμότητας.

KΕΦΑΛΑΙΟ 2. H εξίσωση θερμότητας. 1 Εισαγωγή KΕΦΑΛΑΙΟ H εξίσωση θερμότητας Εστω είναι ανοικτό σύνολο του με γνωστή θερμοκρασία στο σύνορό του κάθε χρονική στιγμή και γνωστή αρχική θερμοκρασία σε κάθε σημείο του Τότε οι φυσικοί νόμοι μας

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Υψηλών Τάσεων ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ (Αριθμητικές μέθοδοι υπολογισμού

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2 Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΑΣΥΜΠΤΩΤΙΚΗΣ ΣΕΙΡΑΣ Εστω μη ϰενά διαστήματα J, I R, με 0 Ī. Ονομάζουμε μεταβλητή το x J ϰαι ασυμπτωτιϰή (ή διαταραϰτιϰή) παράμετρο

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jodan Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y 6 με απαλοιφή Gauss. Ο επαυξημένος πίνακας του συστήματος

Διαβάστε περισσότερα

Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων

Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/ E-mail: gloudos@teiath.gr ΚΑΤΑΝΕΜΗΜΕΝΕΣ ΔΥΝΑΜΕΙΣ Κέντρο βάρους μάζας

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26

Διαβάστε περισσότερα

Εξίσωση Laplace Θεωρήματα Μοναδικότητας

Εξίσωση Laplace Θεωρήματα Μοναδικότητας Εξίσωση Laplace Θεωρήματα Μοναδικότητας Δομή Διάλεξης Εξίσωση Laplace πλεονεκτήματα μεθόδου επίλυσης της για εύρεση ηλεκτρικού δυναμικού Ιδιότητες λύσεων εξίσωσης Laplace σε 1, 2 και 3 διαστάσεις Θεώρημα

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 24-25, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: ΜΔΕ ο φύλλο προβλημάτων Α. Τόγκας

Διαβάστε περισσότερα