ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΕΡΓΑΣΙΑ 4. Drone Localization ΣΠΟΥΔΑΣΤΕΣ:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΕΡΓΑΣΙΑ 4. Drone Localization ΣΠΟΥΔΑΣΤΕΣ:"

Transcript

1 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ 01 10/02/2017 Unknown ΕΡΓΑΣΙΑ 4 Drone Localization ΣΠΟΥΔΑΣΤΕΣ: ΓΕΡΜΕΝΗΣ ΕΥΑΓΓΕΛΟΣ (Α.Μ.: ΜΗ77) ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ (Α.Μ.:ΜΗ79) ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Δρ.ΑΛΕΞΑΝΔΡΟΣ ΜΑΚΡΗΣ ΗΡΑΚΛΕΙΟ 2017

2 Εισαγωγή Σκοπός Στόχος της παρούσας εργασίας είναι να εκτιμηθεί η τροχιά ενός UAV (Unmanned Air Vehicle, Drone) χρησιμοποιώντας οπτικές πληροφορίες. Υποθέτοντας ότι στο κέλυφος του Drone έχουμε προσαρτήσει σταθερή κάμερα το πρόβλημα ανάγεται στην εκτίμηση της κίνησης της κάμερας μεταξύ δύο διαδοχικών καρέ(frame).για την επαλήθευση της μεθόδου παρέχεται dataset από 80rgb/depth εικόνες και μία groundtruth διαδρομή. Υλοποίηση Για την επίλυση του προβλήματος δημιουργήθηκαν τρείς ενότητες που περιγράφουν τα βήματα που ακολουθήθηκαν αναλυτικά για την επίλυση του προβλήματος. Chapter 1 Chapter 2 Chapter 3 Preperation Intialization Step Analysis Step 0 : Load Frames Step 1: Feature Correspondences Step 2: Depth insert and Camera Calibration a) Load Depth b) Depth Insert c) Camera Calibration d) Prepare 3D Points for Calculation Step 3: SVD of Least Squares Step 4: Fit problem to Ransac Algorithm Step 5: Trajectory plot Trajectory Compare Ransac Svd of Least Squares Conclusion References 2

3 Chapter 1 Preparation Για την ασφαλή εισαγωγή δεδομένων σαυτό το βήμα αποφασίστηκε να αλλαχθούν τα filenames από τις depth εικόνες λόγω του ότι όλες rgb,depth βρίσκονται στο ίδιο path της Matlab με τα ίδια file name. Για την αποφυγή του σφάλματος αυτού αλλάχτηκαν όλες οι depth εικόνες κατά ένα χαρακτήρα από 0000.png σε 000.png Initialization Σαυτό το στάδιο παρουσιάζεται η πρώτη όψη του προγράμματος Ask4.m που περιέχει όλες τις αρχικοποιήσεις και καλούνται όλες οι κύριες συναρτήσεις. clc;clear all;close all; %% Rinitial Rtinit =[ ]; %% Frames Nframes=80; %% LEAST SQUARES: Trajectory Calculation [Rt_cellarray] = CalcTrajectory(Rtinit,Nframes); %% LEAST SQUARES: Trajectory Projection id='lsquare' groundtruth=dlmread('groundtruth.txt'); TrajectoryPlot(groundtruth,Rt_cellarray,id); %% RANSAC Calculation Niter=100; %Number of iterations dmax=0.03; %Maximum inlier distance Npoints=4; %Number of correspondences to use [maxr,track_points] = CalcRigidMotionRansac( Niter,dmax,Npoints,Nframes,Rtinit ); %% RANSAC Projection id='ransac' TrajectoryPlot(groundtruth,track_points,id); Section Rtinitial: Αρχικοποιείται ο ομογενής μετασχηματισμός Rtinit που περιέχει την αρχή της διαδρομής του Drone. Section Frames : Στην μεταβλητή Νframes εισάγεται ο αριθμός τον frames που πρέπει να χρησιμοποιούμαι κάθε φορά για τον υπολογισμό της διαδρομής. Καλύπτει Depth και RGB. Section Least Squares Trajectory Calculation : Καλείται η συνάρτηση [Rt_cellarray] = CalcTrajectory(Rtinit,Nframes) στην οποία εμπεριέχεται υπολογισμός της διαδρομής με βάση την αριθμητική επίλυση SVD Of LeastSquares [1]. 3

4 Section Least Squares Trajectory Projection : Καλείται η συνάρτηση TrajectoryPlot(groundtruth,Rt_cellarray,id); η οποία οπτικοποιεί κάθε φορά τα αποτελέσματα βάση του αλγορίθμου που υπολογίστηκαν(id= Ransac or Lsquare ). Section Ransac Calculation : Δημιουργήθηκε η συνάρτηση CalcRigidMotionRansac( Niter,dmax,Npoints,Nframes,Rtinit ); με τις κατάλληλες παραμέτρους για τον υπολογισμό της διαδρομής κατά Ransac. Section Ransac Projection : Καλείται η ίδια συνάρτηση όπως και προηγουμένως TrajectoryPlot(groundtruth,Rt_cellarray,id); για την γραφική απεικόνιση της διαδρομής αλλά αυτή την φόρα με id= Ransac. 4

5 Chapter 2 Step Analysis Σ αυτό το στάδιο δημιουργήθηκαν 5 αναλυτικά steps με υποενότητες.η ακολουθία τον παρακάτω βημάτων μας οδηγούν στην επίτευξη του σκοπού. Παρακάτω βλέπουμε ανοιγμένη την function [Rt_cellarray] = CalcTrajectory(Rtinit,Nframes) για να κατανοήσουμε καλύτερα το ρόλο των επόμενων step. function [track_points] = CalcTrajectory( Rtinit,Nframes) %% Drone Trajectory Computation with SVD of Least Squares(per frame) RealRt=Rtinit; %Initial Rt tra=[ ]; %Point of view track_points{1}=realrt*tra';% Initial point for n=0:nframes-1; %Frame Counter [I1,I2]=LoadFrames(n); %RGB frames (X,Y) [P1,P2] = match_features_surf(i1,i2); %Feature Match [I1z,I2z]=LoadDepth(n); %Depth frames (Z) dimension [ P1,P2 ] = DepthInsert( P1,P2,I1z,I2z ); %Insert z Dimension in 2D points [ P1,P2 ] = Camera( P1,P2 ); %Camera calibration [ Rt ] = CalcRigidMotionSVD(P1,P2); %Homogenous Matrix (Rotation&Translation) %% Drone Trajectory 3D points Computation (per frame) RealRt=RealRt*Rt; %Multiply Transform per frame track_points{n+2}=double(realrt*tra');% Trajectory points (for all Frames) Step 0 : Load Frames Function : [ I1,I2 ] = LoadFrames(n) Input: (n) αριθμός του τρέχων frame. Output : Δημιουργία ζεύγους πινάκων για 2 διαδοχικά frames [Ι1, Ι2]. function [ I1,I2 ] = LoadFrames(n) I1=num2str(n,'%04d'); %Read RGB images I2=num2str(n+1,'%04d'); I1 = strcat(i1,'.png'); I1=imread(I1); I1=rgb2gray(I1); I2 = strcat(i2,'.png'); I2=imread(I2); I2=rgb2gray(I2); Στην συνάρτηση χρησιμοποιήθηκε η εντολή num2string από matlab για την κατασκευή του filename της εικόνας. 5

6 Step 1: Feature Correspondences Function : [ P1, P2 ] = match_features_surf( Ι1,Ι2 ) Input: (I1,I2) Εικόνες από δύο διαδοχικά frames Output : Ζευγάρια όμοιων χαρακτηριστικών σε δυο διαδοχικά frames [P1, P2]. function [ P1, P2 ] = match_features_surf( li,ri ) lpoints = detectsurffeatures(li); rpoints = detectsurffeatures(ri); [lfeatures, lpoints] = extractfeatures(li, lpoints); [rfeatures, rpoints] = extractfeatures(ri, rpoints); Pairs = matchfeatures(lfeatures, rfeatures); matchedlpoints = lpoints(pairs(:, 1), :); matchedrpoints = rpoints(pairs(:, 2), :); P1 = (matchedlpoints.location)'; P2 = (matchedrpoints.location)'; % viz_features_surf( li, ri, matchedlpoints, matchedrpoints ); Σ αυτό το στάδιο υλοποιείται το Feature Matching με τη βοήθεια του αλγορίθμου Surf και της έτοιμης συνάρτηση απ το path match_features_surf.m. Η συνάρτηση μας επιστρέφει τους πίνακες με τα κοινά χαρακτηριστικά σε 2 διαστάσεις(x,y). P1=[u1;v1] και P2=[u2;v2] Step 2: Depth insert and Camera Calibration a) Load Depth Function : [I1z,I2z] = LoadDepth(n) Input: (n) αριθμός του τρέχων frame. Output : Φορτώνονται 2 διαδοχικές εικόνες depth απ το path στους πίνακες [I1z,I2z]. function [I1z,I2z] = LoadDepth(n) % [Z] Depth I1z=num2str(n,'%03d'); I2z=num2str(n+1,'%03d'); I1z = strcat(i1z,'.png'); I1z=imread(I1z); I2z = strcat(i2z,'.png'); I2z=imread(I2z); 6

7 b) Depth Insert Function : [ P1,P2 ] = DepthInsert( P1,P2,I1z,I2z ) Input: Ζευγάρια όμοιων χαρακτηριστικών σε δυο διαδοχικά frames [P1, P2] ως δείκτες και πίνακες [I1z,I2z] από (a). Output : [P1,P2] 3D. Τα σημεία μετατράπηκα σε P1=[x1,y1,z1] και P2=[x2,y2,z2] function [ P1,P2 ] = DepthInsert( P1,P2,I1z,I2z ) %insert depth Z dimension for i=1:length(p1); % P1(3,i)=I1z(round(P1(2,i)),round(P1(1,i))) P1(3,i)=I1z(floor(P1(2,i)),floor(P1(1,i))); P2(3,i)=I2z(floor(P2(2,i)),floor(P2(1,i))); c) Camera Calibration Function : [ P1,P2 ] = Camera( P1,P2 ) Input: [P1,P2] 3D σημεία από (b). Output : [P1,P2] 3D calibrated στις παραμέτρους τις κάμερας function [ P1,P2 ] = Camera( P1,P2 ) %% Camera Parameters: f=525.0; %focal length u0 = 319.5; %principal point v0 = 239.5; %principal point s = 5000; %depth scale %% Get 3d points from point/depth: %P1 P1(3,:) = P1(3,:)./s; P1(1,:) = (P1(1,:)-u0).*P1(3,:)./f; P1(2,:) = (P1(2,:)-v0).*P1(3,:)./f; %P2 P2(3,:) = P2(3,:)./s; P2(1,:) = (P2(1,:)-u0).*P2(3,:)./f; P2(2,:) = (P2(2,:)-v0).*P2(3,:)./f; % P1(3,:) is the measured depth. % P1(3,:) is the measured depth. Στο step c όλα τα σημεία προβάλλονται απ το κέντρο της κάμερας. 7

8 d) Prepare 3D Points for Calculation Function : [ P1,P2 ] = Camera( P1,P2 ) Input: [P1,P2] 3D σημεία από (c). Output : [P1,P2] πίνακες σε ομογενής συντεταγμένες. function [ P1,P2 ] = Hm( P1,P2) P2=[P2;ones(1,size(P2,2))]; P1=[P1;ones(1,size(P1,2))]; Στο βήμα αυτό τα σημεία μετατρέπονται σε ομογενή για να χρησιμοποιηθούν στη συνέχεια για τους απαιτούμενους υπολογισμούς. 8

9 Step 3: SVD of Least Squares Function : [ Rt ] = CalcRigidMotionSVD(P1,P2) Input: [P1,P2] 3D σημεία από (d). Output : [Rt] ομογενής μετασχηματισμός που σε πηγαίνει από την Ι2 εικόνα στην Ι1. function [ Rt ] = CalcRigidMotionSVD(P1,P2) %% Paper nn=length(p1);% n feature correspondences %Average Pmeso Avx=mean(P2(1,:)); Avy=mean(P2(2,:)); Avz=mean(P2(3,:)); Pmeso=[Avx;Avy;Avz]; %Average qmeso Avqx=mean(P1(1,:)); Avqy=mean(P1(2,:)); Avqz=mean(P1(3,:)); qmeso=[avqx;avqy;avqz]; %Define new xi & yi for i=1:nn-1; xi=p2(1:3,i)-pmeso; yi=p1(1:3,i)-qmeso; X(1:3,i)=xi; Y(1:3,i)=yi; %Singular Value Decomposition S1=X*Y'; %least square [U S V]=svd(S1); %svd of least square matr=[eye(size(u,1),size(u,2))]; matr(length(matr),length(matr))=det(v*u'); %% Rotation Rtn=V*matr*U'; %% translation t=qmeso-(rtn*pmeso); %% Homogenous Trans&rotation Matrix Rt=[Rtn t ]; Η συνάρτηση CalcRigidMotionSVD.m μας επιστρέφει τον ομογενή μετασχηματισμό που περιέχει την περιστροφή και την μετατόπιση που μας πάει από το Ι2 σύστημα συντεταγμένων στο Ι1. Τα βήματα για τον υπολογισμό του Rt βασίστηκαν στη δημοσίευση Least-Squares Rigid Motion Using SVD [1]. Αυτό το step είναι και ένα από τα βασικότερα γι αυτό στο σημείο αυτό έγινε έλεγχος αν η συνάρτηση δουλεύει όπως θα περιμέναμε πάνω σε τυχαία σημεία στο αρχείο SVD_Check.m. 9

10 Step 4: Fit problem to Ransac Algorithm Function : [maxr,track_points] = CalcRigidMotionRansac( Niter,dmax,Npoints,Nframes,Rtinit ) Input: Ransac Parameters: Niter: Number of iterations Dmax: Maximum inlier distance Npoints: Maximum number of correspondences to use Other Parameters: Nframes: Αριθμός συνολικών frame προς χρήση. Rtinit: Αρχή της διαδρομής του Drone (Μετασχηματιμός) Output : [maxr,track_points]. Ο πίνακας track_points περιέχει όλα τα 3D σημεία τα οποία έχουν προέλθει απ τον βέλτιστο μετασχηματισμό Rt κατά Ransac (max inlier Ratio) που προκύπτει μετά από Νiterations(Niter) ανά frame(nframes).ο πίνακας maxr περιέχει το current max inlier ratio. Παρακάτω παρουσιάζεται ανοιγμένη η συνάρτηση CalcRigidMotionRansac.m για να κατανοηθεί καλύτερα ο αλγόριθμος Ransac και τα βήματα επίλυσης,προσαρμοσμένος για το συγκεκριμένο πρόβλημα. 1) Αρχικά τρέχουν οι συναρτήσεις από τα step 1,2,3 2) Επιλέγονται από τα feature correspondences Npoints τυχαία(rp1,rp2) σημεία 3) Τα Rp1,Rp2 τυχαία σημεία γίνονται input της CalcRigidMotionSVD(Rp1,Rp2) 4) Από την CalcRigidMotionSVD παίρνουμε τυχαίο μετασχηματισμό Rt* 5) Μετασχηματίζουμε όλο το P2 βάση του Rt* δημιουργώντας τον πίνακα Pmet=Rt*P2. 6) Υπολογίζουμε την ευκλείδεια απόσταση του μετασχηματισμένου από το P1 και περιμένουμε να πέσουμε κοντά στον P1 με την σχέση d=sqrt(sum((pmet-p1).^2));. 7) Υπολογίζεται η παράμετρος του Ransac inliers βάση της σχέσης D=(d<=dmax);, inliers=sum(d);. Inlier θεωρείται ένα σημείο αν η απόσταση d είναι μικρότερη απ την μέγιστη που έχω αυθαίρετα θέση (dmax σε m). 8) Υπολογίζω τον inliers Ratio το οποίο θα μου καθορίσει και τον μετασχηματισμό Rt που θα κρατήσω. Ψάχνω πάντα το υψηλότερο Ratio. 9) Γίνεται έλεγχος ώστε σε κάθε iteration να κρατώ τον μετασχηματισμό με το max Ratio. if r>maxr; maxr=r; Rtmax=Rt; 10) Σε περίπτωση που κατά την εκτέλεση του Αλγορίθμου έχω λιγότερα Feature correspondences απ αυτά που έχω θέση ως όριο(npoints) τότε αυτόματα το πρόγραμμα σταματά στο συγκεκριμένο frame και η διαδρομή υπολογίζεται με βάση τα δεδομένα που έχει κρατήσει έως εκείνο το σημείο. elseif size(p1,2)<npoints break % In case of not sufficient Match Correspondences 10

11 function [maxr,track_points] = CalcRigidMotionRansac( Niter,dmax,Npoints,Nframes,Rtinit ) RealRt=Rtinit; %Initial tra=[ ]; %momment translation track_points{1}=realrt*tra';% Initial point for n=0:nframes-1 [I1,I2]=LoadFrames(n); %RGB frames (X,Y) [P1,P2] = match_features_surf(i1,i2); %Feature Match [I1z,I2z]=LoadDepth(n); %Depth frames (Z) dimension [ P1,P2 ] = DepthInsert( P1,P2,I1z,I2z ); %Insert z Dimension in 2D points [ P1,P2 ] = Camera( P1,P2 ); %Camera calibration [ P1,P2 ] = Hm(P1,P2);% zeros in last row %% Ransac %Random Points if size(p1,2)>=npoints; %minimum pair of correspondeces check %Max Ration Initialization maxr=0; for i=1:niter; %!!!!!Niter!!!!!!! Randcol=randperm(size(P1,2),Npoints) ; %!!!!!!!!!Npoints!!!!!!!!! for c=1:npoints; RandP1=P1(:,Randcol(c)); RandP2=P2(:,Randcol(c)); RandomP1{c}=RandP1; RandomP2{c}=RandP2; Rp1=cell2mat(RandomP1); % pairs of Random P1 points Rp2=cell2mat(RandomP2); % pairs of Random P2 points [ Rt ] = CalcRigidMotionSVD(Rp1,Rp2); %Rt* Least squares [Random Points] Pmet=Rt*P2;% P2 with Rt* Transformed %EFKLIDIA APOSTASH d=sqrt(sum((pmet-p1).^2)); %Inliers D=(d<=dmax); %!!!!!!dmax!!!!!!!!!! inliers=sum(d); %Ratio r=inliers/size(p1,2); % Ratio Test (Keep Max) if r>maxr; maxr=r; Rtmax=Rt; elseif size(p1,2)<npoints break % In case of not sufficient Match Correspondences %3D Points with optimal Rt RealRt=RealRt*Rtmax;% Multiply Transform per frame track_points{n+1}=double(realrt*tra');% Trajectory points (for all Frames) 11

12 Step 5: Trajectory plot Function : TrajectoryPlot(groundtruth,track_points,id); Input: [groundtruth,track_points,id] groundtruth: Το groundtrudth είναι το αρχείο με την πραγματική διαδρομή του Drone. track_points: O πίνακας track_points έχει πάντα τα σημεία της υπολογισμένης διαδρομής κατά Ransac ή Lsquare. id: Επιλογέας (switch) για την επιλογή κάθε φορά του κατάλληλου plot. Ransac ή Lsquare. Output : Γράφημα σε figure με την groundtruth διαδρομή σε σχέση με την υπολογισμένη κάθε φορά. function [ ] = TrajectoryPlot(groundtruth,Rt_cellarray,id) x=groundtruth(:,2); y=groundtruth(:,3); z=groundtruth(:,4); M=cell2mat(Rt_cellarray); x1=m(1,:); y1=m(2,:); z1=m(3,:); % scatter3(x,y,z); figure;plot3(x,y,z);grid on; hold on plot3(x1,y1,z1,'-r','markeredgecolor','blue','markerfacecolor','red'); switch id case 'Lsquare' title('svd Least Squares Approximation') case 'Ransac' title('svd Ransac Approximation') 12

13 Chapter 3 Trajectory Compare Ransac Με την SVD of Least Square σε συνδυασμό με τον αλγόριθμο Ransac,παρατηρούμε ότι ο Ransac έπεσε πολύ κοντά στην διαδρομή διορθώνοντας το μεγάλο σφάλμα που δημιουργείται συνήθως από τις λάθος μετρήσεις ή τον θόρυβο στα Least Squares. Εν τέλει ο Ransac με την σωστή ρύθμιση των παραμέτρων του επέλεξε τον βέλτιστο μετασχηματισμό Rt. Η απόκλιση από την διαδρομή που φαίνεται στην συνέχεια είναι θεμιτή και οφείλεται στο dataset δηλαδή στον αριθμό των frames που επιλέξαμε. Προς το τέλος τα frames της διαδρομής που επιλέχθηκαν δεν είχανε καλό sequence διότι έγινε μικρή δειγματοληψία από το σύνολο των frame για την επαλήθευση της μεθόδου. 13

14 SVD of Least Squares Στα Least Square δημιουργείται μεγάλο σφάλμα συνήθως από τις λάθος μετρήσεις ή τον θόρυβο. Αυτοί οι δύο παράγοντες δημιουργούν μεγάλες διαταραχές στην επιλογή της βέλτιστης ευθείας. Με αποτέλεσμα έστω και μια λάθος μέτρηση με μεγάλη βαρύτητα θα επηρεάσει όλο το μοντέλο προς διαφορετική κλίση. Όπως είναι φανερό και στο παρακάτω Figure τα Least Square αποκλίνουν πολύ απ την πραγματικότητα. 14

15 Conclusions Από την εφαρμογή των παραπάνω αλγορίθμων καταλήγουμε στα εξής συμπεράσματα. Αλγόριθμοι όπως ο Ransac χρησιμοποιούνται και προσαρμόζονται κάθε φορά στη φύση του προβλήματος. Ανεξάρτητα απ την απλή λογική του αλγορίθμου Ransac φαίνεται ότι έχει πολύ καλή απόκριση σε δύσκολα προβλήματα όπως το Tracking. Ο Ransac παρουσιάζει δυσκολίες λόγο των πολλών παραμέτρων που πρέπει να ρυθμιστούν. Συνήθως για την επίλυση προβλημάτων όπως το Tracking χρησιμοποιούνται αλγόριθμοι συνδυαστικά όπως SVD Least Squares με Ransac μεθοδολογία. Η Μηχανική όραση μπορεί να αντικαταστήσει ακριβούς και βαρέως τύπου εξοπλισμούς που χρησιμοποιούνται για Tracking μέχρι και σήμερα. 15

16 References [1] Olga Sorkine-Hornung and Michael Rabinovic, Least-Squares Rigid Motion Using SVD, Department of Computer Science, ETH Zurich (2016). 16

17 Annotations Drone Localization 01 Unknown Unknown Page 1 10/2/ :39 B:10/10!

Assignment 4 ΟΜΑΔΑ 2 ΕΠΙΒΛΕΠΩΝ ΚΑΘΘΓΘΣΘ ΔΠΜ-ΠΡΟΗΓΜΕΝΑ ΤΣΗΜΑΣΑ ΠΑΡΑΓΩΓΗ ΑΤΣΟΜΑΣΙΜΟΤ ΚΑΙ ΡΟΜΠΟΣΙΚΗ

Assignment 4 ΟΜΑΔΑ 2 ΕΠΙΒΛΕΠΩΝ ΚΑΘΘΓΘΣΘ ΔΠΜ-ΠΡΟΗΓΜΕΝΑ ΤΣΗΜΑΣΑ ΠΑΡΑΓΩΓΗ ΑΤΣΟΜΑΣΙΜΟΤ ΚΑΙ ΡΟΜΠΟΣΙΚΗ Assignment 4 01 10/02/2017 Unknown ΟΜΑΔΑ 2 Δθμιτρθσ Βοςκάκθσ (mth76@edu.teicrete.gr) Νικόλαοσ Βαρδάκθσ (mth75@edu.teicrete.gr) ΕΠΙΒΛΕΠΩΝ ΚΑΘΘΓΘΣΘ Κ.Αλζξανδροσ Μακρισ Page1 Contents Drone Localization...

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 1η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 1η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ 1η ΕΡΓΑΣΙΑ ΣΠΟΥΔΑΣΤΕΣ:

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 2η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 2η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ 2η ΕΡΓΑΣΙΑ ΣΠΟΥΔΑΣΤΕΣ:

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

References. Chapter 10 The Hough and Distance Transforms

References.   Chapter 10 The Hough and Distance Transforms References Chapter 10 The Hough and Distance Transforms An Introduction to Digital Image Processing with MATLAB https://en.wikipedia.org/wiki/circle_hough_transform Μετασχηματισμός HOUGH ΤΕΧΝΗΤΗ Kostas

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Προοπτικές Προβολές (Perspective Projections)

Γραφικά Υπολογιστών: Προοπτικές Προβολές (Perspective Projections) 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Προοπτικές Προβολές (Perspective Projections) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Contents Μια ματιά για

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Matlab GUI για FWSVM και Global SVM

ΚΕΦΑΛΑΙΟ 5. Matlab GUI για FWSVM και Global SVM ΚΕΦΑΛΑΙΟ 5 Matlab GUI για FWSVM και Global SVM Προκειμένου να γίνουν οι πειραματικές προσομοιώσεις του κεφαλαίου 4, αναπτύξαμε ένα γραφικό περιβάλλον (Graphical User Interface) που εξασφαλίζει την εύκολη

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire Αυτόνομοι Πράκτορες Εργασία εξαμήνου Value Iteration και Q- Learning για Peg Solitaire Μαρίνα Μαυρίκου 2007030102 1.Εισαγωγικά για το παιχνίδι Το Peg Solitaire είναι ένα παιχνίδι το οποίο παίζεται με ένα

Διαβάστε περισσότερα

Συστήματα Αναμονής (Queuing Systems)

Συστήματα Αναμονής (Queuing Systems) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΕΜΠ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 3η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 3η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ 01 ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ 3η ΕΡΓΑΣΙΑ ΣΠΟΥΔΑΣΤΕΣ:

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Εισαγωγή στη Matlab 2 Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής

Εισαγωγή στη Matlab 2 Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής Εισαγωγή στη Matlab 2 Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής email: dzavanti@cs.uoi.gr Περιεχόμενα Ορισμοί Λογικοί τελεστές f0r loops while loops if else

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης

Διαβάστε περισσότερα

Odometry Calibration by Least Square Estimation

Odometry Calibration by Least Square Estimation Robotics 2 Odometry Calibration by Least Square Estimation Giorgio Grisetti Kai Arras Gian Diego Tipaldi Cyrill Stachniss Wolfram Burgard SA-1 Least Squares Minimization The minimization algorithm proceeds

Διαβάστε περισσότερα

4. Αεροτριγωνισμός Προετοιμασία Δεδομένων Επίλυση Αεροτριγωνισμού

4. Αεροτριγωνισμός Προετοιμασία Δεδομένων Επίλυση Αεροτριγωνισμού 4. Αεροτριγωνισμός Δεδομένα 5 εικόνες κλίμακας 1:6000, δηλαδή όλες οι διαθέσιμες εικόνες) Σημεία σύνδεσης (που θα σκοπεύσετε στα επικαλυπτόμενα τμήματα) Συντεταγμένες Φωτοσταθερών σημείων (GCP) στο σύστημα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 22: Ανάπτυξη Κώδικα σε Matlab για την επίλυση Γραμμικών Προβλημάτων με τον Αναθεωρημένο Αλγόριθμο Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην Αριθμητική Ανάλυση

Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1

Συστήματα Αυτομάτου Ελέγχου 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 1: Βασικές έννοιες Μπλόκ διαγράμματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής Τμήματος Μηχανικών

Διαβάστε περισσότερα

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων Ένα δυσδιάστατο παράδειγμα με το λογισμικό MATLAB Θεωρούμε το εξής Π.Σ.Τ.: Να βρεθεί η u(x, y) έτσι ώστε όπου f (x, y) = 1. u u f ( x, y), x ( 1,1) ( 1,1) x

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ. ΜΗΤΣΟΤΑΚΗΣ ΑΘΗΝΑ 27 ΠΑΡΑ ΕΙΓΜΑ : ΜΕΘΟ ΟΣ NEWTON Πρόγραµµα Matlab για την προσέγγιση της ρίζας της εξίσωσης f(x)= µε την µέθοδο Newton. Συναρτήσεις f(x), f

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 4 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM. Ενότητα # 6: Γραφικά

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM. Ενότητα # 6: Γραφικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM Ενότητα # 6: Γραφικά Δημήτριος Τσελές Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

'Διερεύνηση αποτελεσματικότητας ασαφούς ελεγκτή για διαφορετικές θέσεις αισθητήρα-διεγέρτη'

'Διερεύνηση αποτελεσματικότητας ασαφούς ελεγκτή για διαφορετικές θέσεις αισθητήρα-διεγέρτη' 'Διερεύνηση αποτελεσματικότητας ασαφούς ελεγκτή για διαφορετικές θέσεις αισθητήρα-διεγέρτη' ΟΝΟΜΑ ΦΟΙΤΗΤΗ: ΣΕΛΛΗΣ ΗΛΙΑΣ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ: 2004010054 ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ

Διαβάστε περισσότερα

Εισαγωγή στον επιστημονικό προγραμματισμό 2 o Μάθημα

Εισαγωγή στον επιστημονικό προγραμματισμό 2 o Μάθημα Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στον επιστημονικό προγραμματισμό 2 o Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Μελάς Ιωάννης Υποψήφιος

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Ανάλυση εικόνων DSLR με το πρόγραμμα IRIS

Ανάλυση εικόνων DSLR με το πρόγραμμα IRIS Δεκέμβριος 2014: Θεματικός Μήνας Μεταβλητών Άστρων Μαραβέλιας Γρηγόρης Ανάλυση εικόνων DSLR με το πρόγραμμα IRIS v1.0 Πηγές Το υλικό προέρχεται από τις ακόλουθες πηγές (τις οποίες μπορείτε να συμβουλευτείτε

Διαβάστε περισσότερα

Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη

Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη Εργαστήρια Αριθμητικής Ανάλυσης Ι 9 ο Εργαστήριο Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη 2018 Απαλοιφή Gauss Με Μερική Οδήγηση Για την εύρεση του οδηγού στοιχείου στο k ο βήμα, αναζητούμε το μέγιστο

Διαβάστε περισσότερα

Γεωμετρικοί μετασχηματιμοί εικόνας

Γεωμετρικοί μετασχηματιμοί εικόνας Γεωμετρικοί μετασχηματιμοί εικόνας Μάθημα: Υπολογιστική Οραση Κ. Δελήμπασης Κ. Δελήμπασης 1 Γεωμετρικοί Μετασχηματισμοί Ορισμός σημείου στονευκλείδιοχώρο: p=[x p,y p,z p ] T, όπου x p, y p, z p πραγματικοί

Διαβάστε περισσότερα

Εισαγωγή στη Fortran. Μάθημα 3 ο. Ελευθερία Λιούκα

Εισαγωγή στη Fortran. Μάθημα 3 ο. Ελευθερία Λιούκα Εισαγωγή στη Fortran Μάθημα 3 ο Ελευθερία Λιούκα liouka.eleftheria@gmail.com Περιεχόμενα Loops External Functions Subroutines Arrays Common mistakes Loops Ανάγκη να εκτελέσουμε τις ίδιες εντολές πολλές

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #5: Διαγράμματα ροής (Flow Charts), Δομές επανάληψης Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Διαγράμματα ροής (Flow Charts), Δομές επανάληψης

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι

21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι 21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB Αλγόριθμος Διαδικασία Παράμετροι Τι είναι Αλγόριθμος; Οι οδηγίες που δίνουμε με λογική σειρά, ώστε να εκτελέσουμε μια διαδικασία ή να επιλύσουμε ένα

Διαβάστε περισσότερα

Ανάπτυξη Μεγάλων Εφαρµογών στη Γλώσσα C (2)

Ανάπτυξη Μεγάλων Εφαρµογών στη Γλώσσα C (2) Ανάπτυξη Μεγάλων Εφαρµογών στη Γλώσσα C (2) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Οργάνωση Προγράµµατος Header Files Μετάφραση και σύνδεση αρχείων προγράµµατος ΕΠΛ 132 Αρχές Προγραµµατισµού

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Προγραμματισμός στο Matlab

Προγραμματισμός στο Matlab Κλάδοι με την εντολή if Προγραμματισμός στο Matlab Σαν ένα απλό παράδειγμα κλάδου με την εντολή if ας θεωρήσουμε το παρακάτω παράδειγμα που υπολογίζει την απόλυτη τιμή ενός πραγματικού αριθμού. function

Διαβάστε περισσότερα

1 (15) 2 (25) 3 (20) 4 (25) 5 (15)

1 (15) 2 (25) 3 (20) 4 (25) 5 (15) Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 424: Συστηματα Ανοχης Σφαλματων Εαρινό Εξάμηνο 2016-2017 Καθηγητής: Χριστόφορος Χατζηκωστής Τελική Εξέταση Παρασκευή, 5 Μαΐου,

Διαβάστε περισσότερα

ADVANCES IN DIGITAL AND COMPUTER VISION

ADVANCES IN DIGITAL AND COMPUTER VISION ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ 01 10/02/2017 Unknown ΕΡΓΑΣΙΑ 3 ADVANCES IN DIGITAL AND COMPUTER VISION ΣΠΟΥΔΑΣΤΕΣ: ΓΕΡΜΕΝΗΣ ΕΥΑΓΓΕΛΟΣ

Διαβάστε περισσότερα

ADVANCES IN DIGITAL AND COMPUTER VISION

ADVANCES IN DIGITAL AND COMPUTER VISION ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΕΡΓΑΣΙΑ 1 η ADVANCES IN DIGITAL AND COMPUTER VISION ΣΠΟΥΔΑΣΤΕΣ: ΓΕΡΜΕΝΗΣ ΕΥΑΓΓΕΛΟΣ (Α.Μ.: ΜΗ77) ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 1 Ημερομηνία Ανάρτησης: 02/02/2017 Ημερομηνία Παράδοσης: 16/02/2017, 09:00 π.μ. Στόχος Ορισμός

ΕΡΓΑΣΙΑ 1 Ημερομηνία Ανάρτησης: 02/02/2017 Ημερομηνία Παράδοσης: 16/02/2017, 09:00 π.μ. Στόχος Ορισμός ΕΡΓΑΣΙΑ 1 Ημερομηνία Ανάρτησης: 02/02/2017 Ημερομηνία Παράδοσης: 16/02/2017, 09:00 π.μ. Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση δομών ελέγχου και βρόχων. Διαβάστε προσεχτικά το πρόβλημα

Διαβάστε περισσότερα

Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους.

Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους. Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους. ΓΕΝΙΚΟ ΤΜΗΜΑ ΦΥΣΙΚΗΣ, ΧΗΜΕΙΑΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑ ΦΥΣΙΚΗΣ ORIGIN ΕΙΣΑΓΩΓΙΚΟ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 Λήψη Αποφάσεων και Συναρτήσεις Ελέγχου

ΕΝΟΤΗΤΑ 4 Λήψη Αποφάσεων και Συναρτήσεις Ελέγχου ΕΝΟΤΗΤΑ 4 Λήψη Αποφάσεων και Συναρτήσεις Ελέγχου Σκοπός και περίγραμμα της Ενότητας 4 Σκοπός της παρουσίασης Να μελετήσουμε τις συναρτήσεις που ελέγχουν την ροή και την εκτέλεση ενός προγράμματος Σύνοψη

Διαβάστε περισσότερα

Σύντομες εισαγωγικές σημειώσεις για την. Matlab

Σύντομες εισαγωγικές σημειώσεις για την. Matlab Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας

Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας Να γραφεί script το οποίο να επιλύει αριθμητικά της γενική εξίσωση θερμότητας με χρήση της προς τα εμπρός παραγώγου ως προς το χρόνο,

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Καθ. Εφαρμογών: Σ. Βασιλειάδου Εργαστήριο Συστήματα Αυτομάτου Ελέγχου για Ηλεκτρολόγους Μηχανικούς Εργαστηριακές Ασκήσεις Χειμερινό

Διαβάστε περισσότερα

Σχηματίζοντας Γραφικές Παραστάσεις για Ημίτονο και Συνημίτονο και Ελέγχοντας Περιορισμούς σε Συστάδες Καρτών Τόμπολας

Σχηματίζοντας Γραφικές Παραστάσεις για Ημίτονο και Συνημίτονο και Ελέγχοντας Περιορισμούς σε Συστάδες Καρτών Τόμπολας ΕΡΓΑΣΙΑ 2 Σχηματίζοντας Γραφικές Παραστάσεις για Ημίτονο και Συνημίτονο και Ελέγχοντας Περιορισμούς σε Συστάδες Καρτών Τόμπολας Εισαγωγή Ημερομηνία Ανάρτησης: 16/02/2017 Ημερομηνία Παράδοσης: 06/03/2017,

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες

Διαβάστε περισσότερα

1. PHOTOMOD Montage Desktop (βασικό πρόγραμμα)

1. PHOTOMOD Montage Desktop (βασικό πρόγραμμα) PHOTOMOD 4.4 Lite Προσοχή: Πριν από την εκκίνηση του PHOTOMOD πρέπει να ενεργοποιηθεί η λειτουργία PHOTOMOD System Monitor (παρουσιάζεται με το εικονίδιο ) με την εντολή: START Programs PHOTOMOD Utility

Διαβάστε περισσότερα

Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών

Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών Εργασία Προσοµοίωσης ενός Τηλεπικοινωνιακού Συστήµατος και Εκτίµηση Απόκρισης Αραιού Καναλιού Εισαγωγή Στην παρούσα εργασία

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Εισαγωγή στην πληροφορική Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Παραδείγματα

Διαβάστε περισσότερα

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών. «Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και. Ρομποτικής» Assignment 2

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών. «Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και. Ρομποτικής» Assignment 2 Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και Ρομποτικής» ΜΑΘΗΜΑ Μηχανική Όραση ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Assignment 2 ΣΠΟΥΔΑΣΤΕΣ Λεμωνιά Κατερίνα Πορφυράκης Μανώλης

Διαβάστε περισσότερα

Consolidated Drained

Consolidated Drained Consolidated Drained q, 8 6 Max. Shear c' =.185 φ' =.8 tan φ' =.69 Deviator, 8 6 6 8 1 1 p', 5 1 15 5 Axial, Symbol Sample ID Depth Test Number Height, in Diameter, in Moisture Content (from Cuttings),

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12 «ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ» ΠΕΡΙΕΧΟΜΕΝΑ

ΚΕΦΑΛΑΙΟ 12 «ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ» ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ I. Scada Pro OCP 3 1. Βελτιστοποίηση 3 1.1 Βασικές Ρυθμίσεις 4 1.1.1 Αντικειμενικό Κόστος 4 1.1.2 Αντικειμενική Απόδοση 5 1.1.3 Όρια Σχεδιασμού 5 1.2 Παράμετροι Έργου 6 1.2.1 Περιορισμοί 6

Διαβάστε περισσότερα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 1: Βασικές έννοιες Μπλόκ διαγράμματα Δ. Δημογιαννόπουλος,

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν

Διαβάστε περισσότερα

Visual Flowchart Γενικά

Visual Flowchart Γενικά Visual Flowchart 3.020 -Γενικά Το Visual Flowchart ή «Data-Flow Visual Programming Language 3.020» (http://www. emu8086.com/fp) είναι ένα περιβάλλον ανάπτυξης και εκτέλεσης αλγορίθμων απευθείας σε μορφή

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (

Διαβάστε περισσότερα

Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ

Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ Διπλωματική Εργασία Μεταπτυχιακού Προγράμματος στην Εφαρμοσμένη Πληροφορική Κατεύθυνση: Συστήματα Υπολογιστών

Διαβάστε περισσότερα

1 (15) 2 (15) 3 (15) 4 (20) 5 (10) 6 (25)

1 (15) 2 (15) 3 (15) 4 (20) 5 (10) 6 (25) Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 424: Συστηματα Ανοχης Σφαλματων Εαρινό Εξάμηνο 2014-2015 Καθηγητής: Χριστόφορος Χατζηκωστής Τελική Εξέταση Δευτέρα, 11 Μαΐου,

Διαβάστε περισσότερα

4. Εισαγωγή στο Matlab

4. Εισαγωγή στο Matlab ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 4. Εισαγωγή στο Matlab Εαρινό εξάμηνο 2006 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www. www.eng. eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στο Matlab

Διαβάστε περισσότερα

Πληροφορική & Τηλεπικοινωνίες K18 - Υλοποίηση Συστημάτων Βάσεων Δεδομένων Χειμερινό Εξάμηνο M. Χατζόπουλος. Προθεσμία: 19/01/2015

Πληροφορική & Τηλεπικοινωνίες K18 - Υλοποίηση Συστημάτων Βάσεων Δεδομένων Χειμερινό Εξάμηνο M. Χατζόπουλος. Προθεσμία: 19/01/2015 Πληροφορική & Τηλεπικοινωνίες K18 - Υλοποίηση Συστημάτων Βάσεων Δεδομένων Χειμερινό Εξάμηνο 2013 2014 M. Χατζόπουλος Προθεσμία: 19/01/2015 Σκοπός της εργασίας είναι η κατανόηση της εσωτερικής λειτουργίας

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 3 ο ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα 3 ο Αριθμητική επίλυση εξισώσεων (μη

Διαβάστε περισσότερα

Υλοποίηση Mικροεπεξεργαστή MIPS -16

Υλοποίηση Mικροεπεξεργαστή MIPS -16 Υλοποίηση Mικροεπεξεργαστή MIPS -16 Διάδρομος Δεδομένων και Μονάδα Ελέγχου 1 Περίληψη Μνήμη RAM Εκτέλεση εντολών με πολλαπλούς κύκλους Σχεδιασμός Διαδρόμου Δεδομένων (Data Path) Καταχωρητής Εντολών (Instruction

Διαβάστε περισσότερα

Εργαστήριο Βιομηχανικής Πληροφορικής Τμήμα Πληροφορικής και Επικοινωνιών, ΤΕΙ Σερρών

Εργαστήριο Βιομηχανικής Πληροφορικής Τμήμα Πληροφορικής και Επικοινωνιών, ΤΕΙ Σερρών ΑΣΚΗΣΗ 1 Έστω ένας εργοστασιακός φούρνος. Το αν οι αντιστάσεις του φούρνου λειτουργούν ή όχι, εξαρτάται από μια μεταβλητή C η οποία παίρνει τιμές από 0 μέχρι και 10. Με μηδέν σημαίνει ότι δεν περνάει καθόλου

Διαβάστε περισσότερα

Μάθημα: Ακουστική και Ψυχοακουστική

Μάθημα: Ακουστική και Ψυχοακουστική Τμήμα Τεχνών Ήχου και Εικόνας Ιόνιο Πανεπιστήμιο Μάθημα: Ακουστική και Ψυχοακουστική Εργαστηριακή Άσκηση 3 «Ποσοτική εκτίμηση σφάλματος απωλεστικής συμπίεσης ηχητικών δεδομένων» Διδάσκων: Φλώρος Ανδρέας

Διαβάστε περισσότερα

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB 1. Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (Σ.Δ.Ε.) 1 ης τάξης έχει τη μορφή dy dt f ( t, y( t)) όπου η συνάρτηση f(t, y) είναι γνωστή,

Διαβάστε περισσότερα

Πολυτεχνείο Κρήτης Σχολή Ηλεκτρονικών Μηχανικών Και Μηχανικών Η/Υ. ΠΛΗ 513 Αυτόνομοι Πράκτορες

Πολυτεχνείο Κρήτης Σχολή Ηλεκτρονικών Μηχανικών Και Μηχανικών Η/Υ. ΠΛΗ 513 Αυτόνομοι Πράκτορες Πολυτεχνείο Κρήτης Σχολή Ηλεκτρονικών Μηχανικών Και Μηχανικών Η/Υ ΠΛΗ 53 Αυτόνομοι Πράκτορες Εύρεση του utility χρηστών με χρήση Markov chain Monte Carlo Παπίλαρης Μιχαήλ Άγγελος 29349 Περίληψη Η εργασία

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques)

Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques) Αναγνώριση Προτύπων Μη παραμετρικές τεχνικές Αριθμητικά Παραδείγματα (Non Parametric Techniques) Καθηγητής Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2017-2018 Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν

Διαβάστε περισσότερα

Στόχοι και αντικείμενο ενότητας. Προτάσεις επανάληψης. Έλεγχος ροής προγράμματος. #5.. Εντολές Επανάληψης

Στόχοι και αντικείμενο ενότητας. Προτάσεις επανάληψης. Έλεγχος ροής προγράμματος. #5.. Εντολές Επανάληψης Στόχοι και αντικείμενο ενότητας Έλεγχος ροής προγράμματος (βλ. ενότητα #4) Δομή επανάληψης #5.. Εντολές Επανάληψης Προτάσεις επανάληψης Εντολές while, do while Εντολή for Περί βρόχων (loops) Τελεστές,

Διαβάστε περισσότερα

Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1

Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1 Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 7/3/5 Σκοπός αυτού του εργαστηρίου είναι να δούμε πως μπορούμε να επιλύσουμε συστήματα διαφορικών εξισώσεων, με την χρήση του Matlab. Συστήματα

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων»

Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων» Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων» Οδηγίες: Σχετικά με την παράδοση της εργασίας θα πρέπει: Το κείμενο

Διαβάστε περισσότερα

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN: Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα

Διαβάστε περισσότερα

R k = r k x r k y r k z

R k = r k x r k y r k z Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες Καλογήρου Χαρίλαος Ηλ. Ταχυδροµείο : harkal@cs.uoi.gr Πανεπιστήµιο Ιωαννίνων Τµήµα Πληροφορικής Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.1/ Εισαγωγή

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι για την επίλυση γραμμικών συστημάτων. Μιχάλης Δρακόπουλος

Επαναληπτικές μέθοδοι για την επίλυση γραμμικών συστημάτων. Μιχάλης Δρακόπουλος Επαναληπτικές μέθοδοι για την επίλυση γραμμικών συστημάτων Μιχάλης Δρακόπουλος Σημειώσεις Αριθμητικής Γραμμικής Άλγεβρας 2012 2013 Εισαγωγή Στην αριθμητική επίλυση μαθηματικών εφαρμογών, όπως για παράδειγμα

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Συµπληρωµατικές Σηµειώσεις Προχωρηµένο Επίπεδο Επεξεργασίας Εικόνας Σύνθεση Οπτικού Μωσαϊκού ρ. Γ. Χ. Καρράς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τοµέας Μηχανολογικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

Experimental. ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ ΠΕΙΡΑΜΑΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 2 ΔΕΙΚΤΗΣ ΔΙΑΘΛΑΣΗΣ ΚΡΥΣΤΑΛΛΟΥ (MICA)

Experimental. ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ ΠΕΙΡΑΜΑΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 2 ΔΕΙΚΤΗΣ ΔΙΑΘΛΑΣΗΣ ΚΡΥΣΤΑΛΛΟΥ (MICA) ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ ΠΕΙΡΑΜΑΤΙΚΟ ΠΡΟΒΛΗΜΑ No. ΔΕΙΚΤΗΣ ΔΙΑΘΛΑΣΗΣ ΚΡΥΣΤΑΛΛΟΥ (MICA) Εργασία.1 a) Πειραματική διάταξη για την ένταση I P. (0.5 points) Εργασία.1 b) Πειραματική διάταξη για την ένταση I O. (0.5

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 2 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 2 η Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2017-2018 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ 035: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΗΛΕΚΤΡΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥΣ ΥΠΟΛΟΓΙΣΤΩΝ Χειμερινό Εξάμηνο 2018 ΑΣΚΗΣΗ 1 Βασικές Έννοιες της C (επανάληψη)

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 3: Έλεγχος ροής προγράμματος

ΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 3: Έλεγχος ροής προγράμματος ΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 3: Έλεγχος ροής προγράμματος Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (Java) Ενότητα 3 ΕΛΕΓΧΟΣ ΡΟΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Ι. Ελεγκτές συνθηκών ή περιπτώσεων:

Διαβάστε περισσότερα

Προσομοίωση (simulation) στο Matlab

Προσομοίωση (simulation) στο Matlab Προσομοίωση (simulation) στο Matlab Monte Carlo simulation: Μια γεννήτρια τυχαίων αριθμών μπορεί να χρησιμοποιηθεί για μια εκτίμηση του π ως εξής. Γράψτε ένα script που παράγει τυχαία σημεία σ'ένα τετράγωνο

Διαβάστε περισσότερα

Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων

Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Σχολή Χημικών Μηχανικών ΕΜΠ Ανάλυση Συστημάτων Χημικής Μηχανικής, ο εξάμηνο Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Διδάσκοντες: Χ. Κυρανούδης, Γ. Μαυρωτάς Εισαγωγή Με βάση κάποιο δείγμα

Διαβάστε περισσότερα

SÔntomec plhroforðec gia to glpsol (glpk)

SÔntomec plhroforðec gia to glpsol (glpk) SÔntomec plhroforðec gia to glpsol (glpk) gpol@di.uoa.gr Genikˆ gia to GLPK kai to glpsol Το GLPK (GNU Linear Programming Kit) είναι μια βιβλιοθήκη συναρτήσεων για τη γλώσσα C/C++ η οποία χρησιμοποιείται

Διαβάστε περισσότερα

Ασκήσεις Ρομποτικής με την χρήση του MATLAB

Ασκήσεις Ρομποτικής με την χρήση του MATLAB Ασκήσεις Ρομποτικής με την χρήση του MATLAB Δρ. Φασουλάς Ιωάννης Επίκουρος Καθηγητής Τ.Ε.Ι. Κρήτης Τµήµα Μηχανολόγων Μηχανικών Τ.Ε. 2 ~Μέρος 1 ο ~ Βασικές Δραστηριότητες με το MATLAB Δραστηριότητα 1: Εξοικείωση

Διαβάστε περισσότερα