Συστήματα Στήριξης Αποφάσεων
|
|
- Καϊάφας Θεοτόκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Συστήματα Στήριξης Αποφάσεων Τμήμα: Μηχανικών Παραγωγής & ιοίκησης ιδάσκων: A.Π. Βαβάτσικος, Di.Eng., PhD
2 Μέθοδοι ιδεατού σημείου Είναι μέθοδος συμβιβαστικού προγραμματισμού Υλοποιείται με την μέτρηση της απόστασης από το υποθετικό ιδεατό σημείο της ανάλυσης Το ιδεατό σημείο διαμορφώνεται από τις μέγιστες επιδόσεις που καταγράφουν οι εναλλακτικές λύσεις στα κριτήρια απόφασης Η μέτρηση της απόστασης υλοποιείται με τη χρήση των μέτρων Minowsi L L m 1 1 x, ό 1
3 Μέθοδοι ιδεατού σημείου ιακρίνονται τρεις οριακές καταστάσεις α/ Απόσταση του οικοδομικού τετραγώνου-manhattan Distance Metric β/ Ευκλείδεια απόσταση Απόστασης Cheychev L L 1 m x m 2 2 x 1 L max x
4 Μέθοδοι ιδεατού σημείου ιακρίνονται τρεις οριακές καταστάσεις α/ Απόσταση του οικοδομικού τετραγώνου-manhattan Distance Metric β/ Ευκλείδεια απόσταση Απόστασης Cheychev L L 1 m x m 2 2 x 1 L max x
5 Κατόπιν προτυποποίησης η τελική μορφή δίνεται από τις σχέσεις α/ Μέθοδος μέθοδος μέγιστης επίδοσης β/ Μέθοδος του εύρους των τιμών Μέθοδοι ιδεατού σημείου m S x L 1 1 m S x L 1 1
6 Μέθοδοι ιδεατού σημείου-η μέθοδος TOPSIS Στην μέθοδο συνυπολογίζεται και η απόσταση από το αντι-ιδεατό σημείοεναλλακτικό σενάριο Χρησιμοποιείται η Ευκλείδεια απόσταση max ( or min) t x ( or x ), t ( or ) B ( and K) min ( or max) t x ( or x ), t ( or ) B ( and K)
7 Απόσταση από το ιδεατό σημείο Απόσταση από το αντι-ιδεατό σημείο Σύνθεση με υπολογισμό της συγγενούς εγγύτητας Μέθοδοι ιδεατού σημείου-η μέθοδος TOPSIS K B PIS x w x w L 1 K B NIS x w x w L 1 1 0, i i i i i c S S S c
8 Μέθοδοι ιδεατού σημείου-η μέθοδος TOPSIS
9 Μέθοδοι ιδεατού σημείου-παράδειγμα Κριτήριο 1 Κριτήριο 2 Κριτήριο 3 Εναλλακτική Εναλλακτική Εναλλακτική Εναλλακτική
10 Μέθοδοι ιδεατού σημείου- Υπολογισμός Βαρύτητας Κριτηρίων c1 c2 c3 c1 c2 c3 c c c3 1 1 A c c2 1/ / c3 1/3 1/4 1 1/3 1/ A^2 A^4 A^4 A^4 W AxW λmax=axw/w c c c CI= λmax N ΑΘΡΟΙΣΜΑ N 1 W AxW λmax c CI CR= c RI c ΑΘΡΟΙΣΜΑ W AxW λmax CI RI CR c c c ΑΘΡΟΙΣΜΑ count 3.00 W AxW λmax CI RI CR c c c ΑΘΡΟΙΣΜΑ count 3.00
11 Μέθοδοι ιδεατού σημείου Προτυποποίηση Εναλλακτικών Σεναρίων Προτυποποίηση Εναλλακτικών Xs Επιδόσεις Εναλλακτικών Σεναρίων Xi (Μέθοδος Εύρους των επιδόσεων) c1 c2 c3 c1 c2 c3 w w a a Xs = Xi Xmin a a Xmax Xmin a a Xs = Xmax Xi a a Xmax Xmin max min
12 Μέθοδοι ιδεατού σημείου Προτυποποίηση Εναλλακτικών Σεναρίων Προτυποποίηση Εναλλακτικών Xs Επιδόσεις Εναλλακτικών Σεναρίων Xi (Μέθοδος Εύρους των επιδόσεων) c1 c2 c3 c1 c2 c3 w w a a Xs = Xi Xmin a a Xmax Xmin a a Xs = Xmax Xi a a Xmax Xmin max min
13 Μέθοδοι ιδεατού σημείου Στάθμιση Προτυποιημένων Σεναρίων Στάθμιση Wi x Xs Διαφορά από το Ιδεατό Σημείο c1 c2 c3 c1 c2 c3 w w a a a a a a a a max min
14 Μέθοδοι ιδεατού σημείου Manhattan Distance Metric Απόσταση από το Ιδεατό Σημείο Συνολική Απόσταση A. Manhattan Distan =1 A. Manhattan Distan =1 c1 c2 c3 w Άθροισμα Ran a a th a a st a a nd a a rd
15 Μέθοδοι ιδεατού σημείου Euclidean Distance Metric Απόσταση από το Ιδεατό Σημείο Συνολική Απόσταση B. Euclidean Distan =2 B. Euclidean Distan =2 c1 c2 c3 w Άθροισμα Ran a a th a a st a a rd a a nd
16 Μέθοδοι ιδεατού σημείου 4 th Distance Metric Απόσταση από το Ιδεατό Σημείο Συνολική Απόσταση C. 4th Distan =4 C. 4th Distan =4 c1 c2 c3 w Άθροισμα Ran a a th a a st a a rd a a nd
17 Μέθοδοι ιδεατού σημείου Cheychev Distance Metric Απόσταση από το Ιδεατό Σημείο Συνολική Απόσταση D. Cheychev Distan =10 D. Cheychev Distan =4 c1 c2 c3 w Άθροισμα Ran a a th a a st a a rd a a nd
18 Μέθοδοι ιδεατού σημείου Cheychev Distance Metric Απόσταση από το Ιδεατό Σημείο Συνολική Απόσταση D. Cheychev Distan =10 D. Cheychev Distan =4 c1 c2 c3 w Άθροισμα Ran a a th a a st a a rd a a nd
19 Βήμα 7ο: Εφαρμογή του κανόνα απόφασης Μέθοδοι ιδεατού σημείου Σύνοψη Συνολική Απόσταση A. Manhattan Distan =1 Άθροισμα a a a a Συνολική Απόσταση =2 B. Euclidean Distan Άθροισμα a a a a Συνολική Απόσταση C. 4th Distan =4 Άθροισμα a a a a Συνολική Απόσταση D. Cheychev Distan =4 Άθροισμα a a a a Ran 4th 1st 2nd 3rd Ran 4th 1st 3rd 2nd Ran 4th 1st 3rd 2nd Ran 4th 1st 3rd 2nd
20 Μέθοδοι ιδεατού σημείου TOPSIS-Εκπαιδευτικό παράδειγμα
21 Μέθοδοι ιδεατού σημείου TOPSIS Στάθμιση Wi x Xs Διαφορά από το Ιδεατό Σημείο c1 c2 c3 c1 c2 c3 w w a a a a a a a a max min Απόσταση από το Ιδεατό Σημείο Συνολική Απόσταση S+ B. Euclidean B. Euclidean Distan =2 Distan =2 c1 c2 c3 w Άθροισμα Ran a a th a a st a a rd a a nd Συγγενής Εγγύτητα S Ci= S+ (+) S Διαφορά από το Αντι Ιδεατό Στάθμιση Wi x Xs Σημείο c1 c2 c3 c1 c2 c3 w w a a a a a a a a max min Απόσταση από το Αντι Ιδεατό Σημείο Συνολική Απόσταση S B. Euclidean B. Euclidean Distan =2 Distan =2 c1 c2 c3 w Άθροισμα Ran a a rd a a st a a nd a a th Ci Ran a th a st a nd a rd
22 Μέθοδοι ιδεατού σημείου TOPSIS Συγγενής Εγγύτητα S Ci= S+ (+) S Ci Ran a th a st a nd a rd
23 Καλό διάβασμα
Συστήματα Στήριξης Αποφάσεων
Συστήματα Στήριξης Αποφάσεων Τμήμα: Μηχανικών Παραγωγής & Διοίκησης Διδάσκων: A.Π. Βαβάτσικος, Dip.Eg., PhD Αναλυτική Ιεραρχική Διαδικασία-Aalytic Hierarchy Process (AHP) Η Αναλυτική Ιεραρχική Διαδικασία
Συστήματα Στήριξης Αποφάσεων
Συστήματα Στήριξης Αποφάσεων Τμήμα: Μηχανικών Παραγωγής & ιοίκησης ιδάσκων: A.Π. Βαβάτσικος, Dip.Eng., PhD H Μέθοδος PROMETHEE Η μέθοδος PROMETHEE (Preference Ranking Organization METHod for Enrichment
Συστήματα Στήριξης Αποφάσεων
Συστήματα Στήριξης Αποφάσεων Τμήμα: Μηχανικών Παραγωγής & ιοίκησης ιδάσκων: A.Π. Βαβάτσικος, Dip.Eg., PhD Πολυκριτήρια Αξιολόγηση Έργων Επιλογή Επενδύσεων Υπό Περιορισμένο Προϋπολογισμό Στις περιπτώσεις
Αβεβαιότητα (Uncertainty)
Αβεβαιότητα (Uncertainty) Παράδειγμα κατασκευής μοντέλου προβλήματος στο Excel και διαχείρισης της αβεβαιότητας που το ίδιο το πρόβλημα εμπεριέχει. Ανάλυση προβλήματος Βήμα 1: Καθορισμός του προβλήματος
Θεώρηση πολλαπλών κριτηρίων στη ΔΥΠ (3) Επανάληψη Μέθοδος Promethee II
Θεώρηση πολλαπλών κριτηρίων στη ΔΥΠ (3) Επανάληψη Μέθοδος Promethee II Διαχείριση υδατικών πόρων Ανάγκη σύνθεσης επιστημών Σημερινό μάθημα: έμφαση στη χρήση εννοιών και μεθόδων από την επιχειρησιακή έρευνα
ΟΜΟΙΟΤΗΤΑ ΒΙΟΚΟΙΝΟΤΗΤΩΝ
ΟΜΟΙΟΤΗΤΑ ΒΙΟΚΟΙΝΟΤΗΤΩΝ Είναι δυνατόν δύο βιοκοινότητες να έχουν τον ίδιο (ή σχεδόν τον ίδιο) δείκτη ποικιλότητας ειδών αν και τα είδη που συνθέτουν τη μία βιοκοινότητα να είναι -σε μεγάλο βαθμό ή και
Πολυκριτήρια Ανάλυση Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης TOPSIS
2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Ο Αλγόριθµος της Simplex
Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Αρχικοποίηση : Επέλεξε έναν αντιστρέψιµο πίνακα B (m m) έτσι ώστε x
Ομαδοποίηση Ι (Clustering)
Ομαδοποίηση Ι (Clustering) Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Αλγόριθμοι ομαδοποίησης Επίπεδοι αλγόριθμοι Αρχίζουμε με μια τυχαία ομαδοποίηση Βελτιώνουμε επαναληπτικά KMeans Ομαδοποίηση
Λήψη αποφάσεων υπό αβεβαιότητα
Διαχείριση Αβεβαιότητας Λήψη αποφάσεων υπό αβεβαιότητα Όταν έχω να αντιμετωπίσω ένα πρόβλημα λήψης αποφάσεων υπό αβεβαιότητα, μπορώ να ακολουθήσω τις ακόλουθες στρατηγικές: 1. Η λάθος προσέγγιση: «Βελτιστοποίηση
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων E02 Πολυκριτήρια
Λήψη αποφάσεων υπό αβεβαιότητα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΕΧΝΟΟΙΚΟΝΟΜΙΚΑ Λήψη αποφάσεων υπό αβεβαιότητα ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Διαχείριση
Μέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 8:Βασικές Αρχές Πολυκριτήριας Ανάλυσης Αποφάσεων Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Στο στάδιο ανάλυσης των αποτελεσµάτων: ανάλυση ευαισθησίας της λύσης, προσδιορισµός της σύγκρουσης των κριτηρίων.
ΠΕΡΙΛΗΨΗ Η τεχνική αυτή έκθεση περιλαµβάνει αναλυτική περιγραφή των εναλλακτικών µεθόδων πολυκριτηριακής ανάλυσης που εξετάσθηκαν µε στόχο να επιλεγεί η µέθοδος εκείνη η οποία είναι η πιο κατάλληλη για
Θεώρηση π ολ πο λ λ α λ πλών απλών κρι κρ τ ι ηρίων τηρίων στη Δ η ΥΠ (1 ( )
Θεώρηση πολλαπλών κριτηρίων στη ΔΥΠ (1) Μέθοδοι πολλαπλών κριτηρίων Οι πολυκριτηριακέςμέθοδοι έθ αποτελούν μια ομάδα μεθόδων αξιολόγησης σχεδίων, προγραμμάτων ανάπτυξης και πολιτικών αποφάσεων. Όλες οι
Διδάσκων: Φοίβος Μυλωνάς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #08 Αποκοπή (εισαγωγή) Σημειακή Αποκοπή Αποκοπή Ευθύγραμμων Τμημάτων (line
RALLY GREECE OFF ROAD «Όπως παλιά!»
1 RALLY GREECE OFF ROAD «Όπως παλιά!» 2 4 έμπειροι Συνδιοργανωτές! 3 Γενικές Πληροφορίες Έδρα: τα Καλάβρυτα Διάρκεια: 3 ημέρες Ο αγώνας προσμετρά: στο Πρωτάθλημα Αντοχής 2013 με συντελεστή 1,5. Συμμετέχουν:
Διαχείριση Περιβάλλοντος - Νομοθεσία
Διαχείριση Περιβάλλοντος - Νομοθεσία Ενότητα 3: Πολυκριτηριακή Ανάλυση και Λήψη Αποφάσεων Δ. Καλιαμπάκος - Δ. Δαμίγος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Έτος : Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική
Έτος 2017-2018: Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Επανάληψη βασικών εννοιών Στατιστικής- Χρήση gretl/excel 1
Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις
Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 7.1.2 Παράδειγμα προβλήματος χρονικού προγραμματισμού
Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ποσοτικές Μέθοδοι Ανάλυσης στις Ενότητα 5: Ανάλυση στοιχείων. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
1/12/2016. Πλεονεκτήματα. Μειονεκτήματα. (Roy, 1994)
Πολυκριτηριακή Ανάλυση και Λήψη Αποφάσεων Δ. Καλιαμπάκος -Δ. Δαμίγος μγ Πολυκριτηριακή ανάλυση «Ο κύριος στόχος δεν είναι να ανακαλύψουμε μια λύση αλλά να δημιουργήσουμε ή να κατασκευάσουμε κάτι το οποίο
Στο Κεφάλαιο 5 µελετώντας την προβολή του τρισδιάστατου χώρου στο επίπεδο της κάµερας εξετάστηκε
Κεφάλαιο 6 Αποκοπή (clipping) Στο Κεφάλαιο 5 µελετώντας την προβολή του τρισδιάστατου χώρου στο επίπεδο της κάµερας εξετάστηκε η διαδικασία προβολής µεµονωµένων σηµείων και µόνο προς το τέλος του κεφαλαίου
Σχεδίαση με Ηλεκτρονικούς Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 13: Τεχνικές απεικόνισης στην οθόνη του ΗΥ Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων
Διαχείριση Εφοδιαστικής Αλυσίδας II
Διαχείριση Εφοδιαστικής Αλυσίδας II 13 η Διάλεξη: Προχωρημένες μέθοδοι διαχείρισης προμηθειών 2019 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Αναφορές Οι σημειώσεις έχουν βασιστεί σε 1.
Μέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 6: Αναλυτική Ιεραρχική Διαδικασία Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
Mέτρα (παράμετροι) θέσεως
Mέτρα (παράμετροι) θέσεως Είδη παραμέτρων Σκοπός μέτρων θέσεως Μέτρα θέσεως Αριθμητικός μέσος Επικρατούσα τιμή Διάμεσος Τεταρτημόρια Σύντομη περιγραφή Το πρώτο βήμα της ανάλυσης των δεδομένων, είναι η
«Ανάλυση κινδύνων και λήψη αποφάσεων: Αναμενόμενη τιμή»
«Ανάλυση κινδύνων και λήψη αποφάσεων: Αναμενόμενη τιμή» Κηρυττόπουλος Κωνσταντίνος PhD, Dipl. Eng., PMP Η αναφορά σε αυτές τις διαφάνειες είναι: Κηρυττόπουλος, Κ. 213, Ανάλυση κινδύνων και λήψη αποφάσεων:
Μόνος Εναντίον Όλων. Διευθυντής Εργαστηρίου Βιομηχανικών Σχέσεων και Διαπραγματεύσεων (CIRN)
Η Στρατηγική των Διαπραγματεύσεων: Μόνος Εναντίον Όλων Καθηγητής Ανδρέας Νικολόπουλος Διευθυντής Εργαστηρίου Βιομηχανικών Σχέσεων και Διαπραγματεύσεων (CIRN) Οικονομικό Πανεπιστήμιο Αθηνών Center of Industrial
Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις.
C:\Documens nd Seings\kpig\Deskop\-------- ------G---- ----S 6.doc Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις. Στα υποδείγματα με πολυωνυμικά κατανεμημένες διαχρονικές επιδράσεις υποθέτουμε
Ενσωμάτωση της αβεβαιότητας Ασαφή δεδομένα Ανάλυση της αβεβαιότητας στο μοντέλο της απόφασης (π.χ. σύγκρουση στόχων)
Συστημική αντιμετώπιση Μέθοδοι Πολυκριτηριακής ανάλυσης Σχολές Πολυκριτηριακής ανάλυσης Πολυκριτηριακή θεωρία χρησιμότητας Σχέσεις υπεροχής (διμερείς συγκρίσεις) Πολυκριτηριακός προγραμματισμός δε μπορούν
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2013-2014 ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΔΥΙΚΟΤΗΤΑ Κάθε πρόβλημα γραμμικού προγραμματισμού συνδέεται με εάν άλλο πρόβλημα γραμμικού προγραμματισμού
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 4η Σειρά Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - 4η Σειρά Ασκήσεων Ασκηση.. Χρησιµοποιούµε το κριτήριο ολοκλήρωσης : dx x( x +
ΚΕΦΑΛΑΙΟ 5 Το Πρόβλημα της Συνάντησης Πολλών Πρακτόρων
k 2 n k n k n n k n k k S S k 2 n O(n) O(k n) O(kn) O( n) ) O(k n) O(n) O( n) O(n) O( k) O(n k) O( k) O( n n n k n k > 2 Ω( n + k) k n n k k n n n/2 S = d 1,..., d k m > 1 j 1 m, j k k S S O(k n) k n k
Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης Σχολή Πολιτικών Μηχανικών, Αθήνα Άδεια
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Εισαγωγή στην ανάλυση SWOT. Χρήστος Θ. Κουσιδώνης, Νοέμβριος 2014
Εισαγωγή στην ανάλυση SWOT Χρήστος Θ. Κουσιδώνης, Νοέμβριος 2014 Βασικά βήματα μιας στρατηγικής προσέγγισης τύπου SWOT Βήμα 1 Διερεύνηση του περιβάλλοντος Επισημαίνονται οι βασικότερες τάσεις, ζητήματα
Τεχνικό Τοπογραφικό Σχέδιο
Τεχνικό Τοπογραφικό Σχέδιο Γ. Καριώτου ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ & ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ενότητα 8: Μοντέλα χωροθέτησης και ανάθεσης δυναμικότητας - Μέρος ΙΙ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative
Λήψη αποφάσεων υπό αβεβαιότητα. Παίγνια Αποφάσεων 9 ο Εξάμηνο
Λήψη αποφάσεων υπό αβεβαιότητα Παίγνια Αποφάσεων 9 ο Εξάμηνο Επιχειρηματική Αβεβαιότητα Αβεβαιότητα είναι, η περίπτωση η οποία τα ενδεχόμενα μελλοντικά γεγονότα είναι αόριστα και αδύνατον να υπολογιστούν
Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων Γεώργιος Θεοδωρόπουλος Επιβλέπων
Οδηγίες χρήσης του R, μέρος 2 ο
ΟδηγίεςχρήσηςτουR,μέρος2 ο Ελληνικά Ανπροσπαθήσουμεναγράψουμεελληνικάήναανοίξουμεκάποιοαρχείοδεδομένωνμε ελληνικούςχαρακτήρεςστοr,μπορείαντίγιαελληνικάναδούμελατινικούςχαρακτήρεςμε τόνουςήάλλακαλλικαντζαράκια.τότεδίνουμετηνπαρακάτωεντολήγιαναγυρίσειτοrστα
Histogram list, 11 RANDOM NUMBERS & HISTOGRAMS. r : RandomReal. ri : RandomInteger. rd : RandomInteger 1, 6
In[1]:= In[2]:= RANDOM NUMBERS & HISTOGRAMS r : RandomReal In[3]:= In[4]:= In[5]:= ri : RandomInteger In[6]:= rd : RandomInteger 1, 6 In[7]:= list Table rd rd, 100 2 dice Out[7]= 7, 11, 7, 10, 7, 8, 3,
Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις
Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 7.1.2 Παράδειγμα προβλήματος χρονικού προγραμματισμού
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version Εκφράζοντας τον ταξινομητή Bayes (a) Με χρήση συναρτήσεων διάκρισης (discriminant functions) - Έστω g q (x)=f(p(ω q )p(x ω q )), q=,,m, όπου f γνησίως
Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες
Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 41 Αγορές Χρήματος & Κεφαλαίου. Ακαδημαϊκό έτος:
Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 41 Αγορές Χρήματος & Κεφαλαίου Ακαδημαϊκό έτος: 2017 2018 Ασκήσεις 3 ης ΟΣΣ Άσκηση 1 η. Έστω οι προσδοκώμενες αποδόσεις και ο
Apì ton diakritì kôbo ston q ro tou Gauss
Apì ton diaritì Ôbo ston q ro tou Gauss 1 Isoperimetri anisìthta sto diaritì Ôbo Θεωρούμε την οικογένεια J των συναρτήσεων J : [0 1] [0 ) που ικανοποιούν τα εξής: J0) = J1) = 0. Για κάθε a b [0 1] a +
Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης
Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. Κατηγοριοποίηση. Αριστείδης Γ. Βραχάτης, Dipl-Ing, M.Sc, PhD
Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Σχολή Θετικών Επιστημών Πανεπιστήμιο Θεσσαλίας ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Κατηγοριοποίηση Αριστείδης Γ. Βραχάτης, Dipl-Ing, M.Sc, PhD Κατηγοριοποιητής K πλησιέστερων
5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Μοντέλα Βαθμονόμησης-Analytic Hierarchy Process
Μοντέλα Βαθμονόμησης-Analytic Hierarchy Process Αναλυτική Ιεραρχική ιαδικασία Η Αναλυτική Ιεραρχική ιαδικασία ανήκει στην κατηγορία των μεθόδων συγκρίσεων σε ζεύγη και αναπτύχθηκε στα τέλη της δεκαετίας
ΣΕΜΙΝΑΡΙΟ Ο.Ε.Ε ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ & RISK MANAGEMENT (ΠΑΡΑΓΩΓΑ) Άσκηση 1. Άσκηση 2. $ 1,685,000 ( $ 1,695,000) = $ 10,000 (κέρδος)
ΣΕΜΙΝΑΡΙΟ Ο.Ε.Ε ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ & RISK MANAGEMENT (ΠΑΡΑΓΩΓΑ) ιδάσκων: ρ. Χρήστος Φλώρος (ΑΤΕΙ ΚΡΗΤΗΣ) Άσκηση 1 Είναι Ιούλιος. Εταιρεία εισαγωγών στις ΗΠΑ θα χρειαστεί να πληρώσει 1 εκ. το Σεπτέµβριο
ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 2o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil
ΕΑΠ/ΠΛΗ22/ΑΘΗ.4. Έκτακτη ΟΣΣ 28/05/2016. Νίκος Δημητρίου.
ΕΑΠ/ΠΛΗ22/ΑΘΗ.4 Έκτακτη ΟΣΣ 28/05/2016 Νίκος Δημητρίου nikodim@iit.demokritos.gr Περιεχόμενα Λύσεις 5 ης Εργασίας Επαναληπτικές Ασκήσεις Σημείωση: Η έκτακτη ΟΣΣ έχει ως σκοπούς: να αναλυθεί η φετινή ΓΕ5,
ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ. Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ
ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ Όλοι παίρνουμε αποφάσεις συνεχώς σε διάφορα επίπεδα / περιβάλλοντα αποφάσεων: Προσωπικές
Εισαγωγή στη Διαδικασία Ιεραρχικής Ανάλυσης. Ρόκου Έλενα Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ.
Εισαγωγή στη Διαδικασία Ιεραρχικής Ανάλυσης Ρόκου Έλενα Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Βάσεις Δεδομένων Ι 8. Ερωτήματα (B) Τμήμα Διοίκησης Επιχειρήσεων (Μεσολόγγι) ΤΕΙ Δυτικής Ελλάδας
Βάσεις Δεδομένων Ι 8 Ερωτήματα (B) Τμήμα Διοίκησης Επιχειρήσεων (Μεσολόγγι) ΤΕΙ Δυτικής Ελλάδας ΝΙΚΟΣ ΚΑΡΟΥΣΟΣ - ΔΙΟΝΥΣΗΣ ΚΑΡΟΥΣΟΣ XE 2015-2016 Λογικά κριτήρια σε κείμενο Ίσο = " _" Διάφορο " _ " ή
Επίλυση. 1) Αγωγός βαρύτητας
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τομέας Υδατικών Πόρων & Περιβάλλοντος Μάθημα: Υδραυλική και Υδραυλικά Έργα - Μέρος 3: Υδρεύσεις Άσκηση Δ2: Υπολογισμός όγκου δεξαμενής με τροφοδοτικό
Ανάπτυξη και αποτελέσµατα πολυκριτηριακής ανάλυσης Κατάταξη εναλλακτικών σεναρίων διαχείρισης ΟΤΚΖ Επιλογή βέλτιστου σεναρίου διαχείρισης
Ανάπτυξη και αποτελέσµατα πολυκριτηριακής ανάλυσης Κατάταξη εναλλακτικών σεναρίων διαχείρισης ΟΤΚΖ Επιλογή βέλτιστου σεναρίου διαχείρισης 1. Εισαγωγή Στην τεχνική αυτή έκθεση περιγράφεται αναλυτικά η εφαρµογή
Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες Ενότητα 4: Ανάλυση κατά Συστάδες. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΘΕΣΗ ΟΜΑΔΑ ΟΜΑΔΑ ή ΣΧΟΛΗ - ΧΩΡΑ ΚΡΙΤΗΡΙΟ ΕΥΡΟΣ ΚΡΙΤΕΣ-JUDGE ΒΑΘΜΟΙ PLACE TEAM TEAM or SCHOOL - COUNTRY CRITERION RANGE A B SCORE
HIP-HOP SHOW 2vs2 JUVENILE ΘΕΣΗ ΟΜΑΔΑ ΟΜΑΔΑ ή ΣΧΟΛΗ - ΧΩΡΑ ΚΡΙΤΗΡΙΟ ΕΥΡΟΣ ΚΡΙΤΕΣ-JUDGE ΒΑΘΜΟΙ CHOREOGRAPHY 1...20 12 15 27 ΤΑ ΡΟΜΠΟΤ TECHNIQUE 1 15 9 9 18 ΣΧΟΛΗ ΧΟΡΟΥ ARAESQUE STYLE-FORMATION 1 10 8 6
ΣYΣKEYEΣ ΘEPMIKΩN ΔIEPΓAΣIΩN
ΠANEΠIΣTHMIO ΘEΣΣAΛIAΣ TMHMA MHXANOΛOΓΩN MHXANIKΩN EPΓAΣTHPIO ΦYΣIKΩN & XHMIKΩN ΔIEPΓAΣIΩN ΣYΣKEYEΣ ΘEPMIKΩN ΔIEPΓAΣIΩN Tεύχος 1ο: Eναλλάκτες μονοφασικής ροής B. Mποντόζογλου BOΛOΣ ΝΟΕΜΒΡΙΟΣ 2013 1. ΠΡΟΚΑΤΑΡΚΤΙΚΟΣ
θέμα, βασικές έννοιες, ομοιόμορφη Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014
Υδραυλική ανοικτών αγωγών θέμα, βασικές έννοιες, ομοιόμορφη ροή Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014 Σκαρίφημα Σκελετοποίηση Διάταξη έργων: 3 περιοχές
Διαχείριση Ηλεκτρικής Ενέργειας Οικονομική Κατανομή Παραγόμενης Ενέργειας
Διαχείριση Ηλεκτρικής Ενέργειας Οικονομική Κατανομή Παραγόμενης Ενέργειας Αλέξανδρος Φλάμος Επίκουρος Καθηγητής e-mail: aflamos@unipi.gr Τσίλη Μαρίνα Δρ Ηλ/γος Μηχ/κος e-mail: marina.tsili@gmail.com Γραφείο
Διδάσκων: Νίκος Λαγαρός
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 5 η Σειρά Ασκήσεων του Μαθήματος «ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ» Διδάσκων: Νίκος Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr
ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία
ΔΙΟΙΚΗΤΙΚΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ. Αναπλ. Καθηγητής Δ.Μ. Εμίρης Λέκτορας Ι. Γιαννατσής ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ
ΔΙΟΙΚΗΤΙΚΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ Αναπλ. Καθηγητής Δ.Μ. Εμίρης Λέκτορας Ι. Γιαννατσής ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ Όλοι παίρνουμε αποφάσεις συνεχώς σε διάφορα επίπεδα/ περιβάλλοντα αποφάσεων:
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΛΗΨΗ ΑΠΟΦΑΣΗΣ ΒΑΣΕΙ ΤΗΣ ΜΕΘΟΔΟΥ TOPSIS ΚΑΙ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ MULTICRITERIA DECISION MAKING USING
Ζητήματα ηήμ με τα δεδομένα
Ζητήματα ηήμ με τα δεδομένα Ποιότητα Απαλοιφή θορύβου Εντοπισμός ανωμαλιών λώ Ελλιπείς τιμές Μετασχηματισμός Κβάντωση Μείωση μεγέθους Γραμμών: ειγματοληψία Στηλών: Ιδιοδιανύσματα, Επιλογή χαρακτηριστικών
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Αξιολόγηση στο Σχεδιασμό του Χώρου
Αξιολόγηση στο Σχεδιασμό του Χώρου Ενότητα: Παράδειγμα εφαρμογής μεθόδου ELECTRE II Τρίτη άσκηση μαθήματος Υπεύθυνη Μαθήματος: Αναστασία Στρατηγέα Σχολή: Αγρονόμων Τοπογράφων Μηχανικών Τομέας: Γεωγραφίας
Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα
Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Προγραμματισμός Η/Υ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Προγραμματισμός Η/Υ Ενότητα 3 η : Η Γλώσσα Προγραμματισμού VB.NET (2 ο Μέρος) Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα Λογιστικής & Χρηματοοικονομικής
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #: Δυναμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
ΕΠΛ 001: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασκήσεις Επανάληψης
ΕΠΛ 001: ΕΙΣΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ σκήσεις Επανάληψης Ενότητα 1 Επαναληπτικές ασκήσεις προγραμματισμού Για τις ακόλουθες ασκήσεις, να δώσετε: νάλυση της εισόδου & εξόδου Διάγραμμα ροής Ψευδοκώδικα
ΠΑΡΑΡΣΗΜΑ 11 ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΠΟΛΙΣΙΜΟΤ ΓΙΔΤΘΤΝΗ ΜΔΗ ΣΔΥΝΙΚΗ ΚΑΙ ΔΠΑΓΓΔΛΜΑΣΙΙΚΗ ΔΚΠΑΙΓΔΤΗ
263 555604 ΣΔΥΝΗΚΖ ΥΟΛΖ ΛΑΡΝΑΚΑ Α001:Μεραλνπξγείν/Δθαξκνζηήξην 57,0 215 575555 Α' ΣΔΥΝΗΚΖ ΥΟΛΖ ΛΔΜΔΟΤ Α001:Μεραλνπξγείν/Δθαξκνζηήξην 54,5 215 575555 ΣΔΥΝΗΚΖ ΥΟΛΖ ΠΑΦΟΤ Α001:Μεραλνπξγείν/Δθαξκνζηήξην 54,5
Ανάλυση Χρόνου, Πόρων & Κόστους
ΠΜΣ: «Παραγωγή και ιαχείριση Ενέργειας» ιαχείριση Ενέργειας και ιοίκηση Έργων Ανάλυση Χρόνου, Πόρων & Κόστους Επ. Καθηγητής Χάρης ούκας, Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης
Δομές Επανάληψης. Όσο μέχρις ότου για. 22/11/08 Ανάπτυξη εφαρμογών 1
Δομές Επανάληψης Όσο μέχρις ότου για 22/11/08 Ανάπτυξη εφαρμογών 1 Όσο. επανάλαβε Όσο Συνθήκη επανάλαβε Εντολή1 Εντολή2.. Ομάδα εντολών Συνθήκη Αληθής Ομάδα εντολών Εντολή Ν Τέλος_Επανάληψης Ψευδής 1.
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Δυναμικός Προγραμματισμός με Μεθόδους Monte Carlo: 1. Μάθηση Χρονικών Διαφορών (Temporal-Difference Learning) 2. Στοχαστικός
Ένας απλός και γρήγορος αλγόριθμος για την αποκοπή γραμμών στο Scratch
Ένας απλός και γρήγορος αλγόριθμος για την αποκοπή γραμμών στο Scratch Ματθές Δημήτριος 1, Μαγουλάς Αντώνιος 2 1 Εκπαιδευτικός Πληροφορικής ΠΕ86, dimmat@gmail.com 2 Εκπαιδευτικός Πληροφορικής ΠΕ03, amagul@yahoo.com
Το µαθηµατικό µοντέλο του Υδρονοµέα
Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας
Πληροφορική ΙΙ Θεματική Ενότητα 7
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 7 Δομές επανάληψης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Οι διαθέσιμες μέθοδοι σε γενικές γραμμές είναι:
Χωρική Ανάλυση Ο σκοπός χρήσης των ΣΓΠ δεν είναι μόνο η δημιουργία μίας Β.Δ. για ψηφιακές αναπαραστάσεις των φαινομένων του χώρου, αλλά κυρίως, η βοήθειά του προς την κατεύθυνση της υπόδειξης τρόπων διαχείρισής
ΕΑΠ/ΠΛΗ22/ΑΘΗ.3. Έκτακτη ΟΣΣ 31/05/2014. Νίκος Δημητρίου.
ΕΑΠ/ΠΛΗ22/ΑΘΗ.3 Έκτακτη ΟΣΣ 31/05/2014 Νίκος Δημητρίου nikodim@phys.uoa.gr Περιεχόμενα Λύσεις 5 ης Εργασίας Επαναληπτικές Ασκήσεις Σημείωση: Η έκτακτη ΟΣΣ έχει ως σκοπούς: να αναλυθεί η φετινή ΓΕ5, να
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex
Πατώντας το πλήκτρο Enter ή το κουμπί Enter από την γραμμή τύπων εκτελείται η μαθηματική πράξη και παρουσιάζει το αποτέλεσμα του κελιού.
ΜΑΘΗΜΑ 4 ΣΤΟΧΟΙ: 1. Δημιουργία Μαθηματικών Τύπων 2. Τελεστές (Operators) 3. Τιμές (Value) 4. Τιμές Σφάλματος 5. Συναρτήσεις 6. Συνάρτηση Sum 7. Συνάρτηση Max 8. Συνάρτηση Min 9. Συνάρτηση Average 10. Συνάρτηση
Από την απλή στη σύνθετη και πολλαπλή δομή επιλογής
Από την απλή στη σύνθετη και πολλαπλή δομή επιλογής Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Πληροφορική Δημιουργός: ΑΦΡΟΔΙΤΗ ΜΙΧΑΗΛΙΔΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ
Η γλώσσα προγραμματισμού C
Η γλώσσα προγραμματισμού C Πίνακες 2 διαστάσεων Δήλωση δισδιάστατου πινακα Οι δισδιάστατοι πίνακες χαρακτηρίζονται από τις γραμμές και τις στήλες (οι διαστάσεις) τους. Πίνακας 2 διαστάσεων: 3 γραμών και
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε01 Εισαγωγή Χάρης
Ένταξη διανομών Υπ. Γεωργίας στο ΕΓΣΑ 87 μέσω μετρήσεων GNSS: η περίπτωση του Συνοικισμού Δασοχωρίου Σερρών
4 ο Πανελλήνιο Συνέδριο Αγρονόμων Τοπογράφων Μηχανικών Ένταξη διανομών Υπ. Γεωργίας στο ΕΓΣΑ 87 μέσω μετρήσεων GNSS: η περίπτωση του Συνοικισμού Δασοχωρίου Σερρών Ν. Ασλανίδης, Χ. Κωτσάκης Τομέας Γεωδαισίας
ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ. ΑΣΚΗΣΗ 3 η ΜΕΘΟΔΟΣ ELECTRE II ΠΑΡΑΔΕΙΓΜΑ ΕΦΑΡΜΟΓΗΣ. Υπεύθυνη μαθήματος Αναστασία Στρατηγέα Αναπλ. Καθηγ. Ε.Μ.Π.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ ΑΣΚΗΣΗ 3 η ΜΕΘΟΔΟΣ ELECTRE II ΠΑΡΑΔΕΙΓΜΑ ΕΦΑΡΜΟΓΗΣ Υπεύθυνη
Μοντελοποίησης και Βελτιστοποίηση Εφοδιαστικών Αλυσίδων 7 Ο εξάμηνο
Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μοντελοποίησης και Βελτιστοποίηση Εφοδιαστικών Αλυσίδων 7 Ο εξάμηνο 2 η ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ ΔΕΚΕΜΒΡΙΟΣ 2012 Μιχαήλ Γεωργιάδης
ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Ν.Δημητρίου 1
(*) Οι σημειώσεις αυτές συνοψίζουν τα βασικά σημεία της παρουσίασης PLH22_OSS4_slides_2015_2016 που είναι διαθέσιμη στο study.eap.gr ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Ν.Δημητρίου 1 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Ν.Δημητρίου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΥΔΡΑΥΛΙΚΩΝ & ΘΑΛΑΣΣΙΩΝ ΕΡΓΩΝ ΜΑΘΗΜΑ: ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΣΚΗΣΗ 2 ΚΕΜΕΡΙΔΗΣ
Θέματα Προγραμματισμού Η/Υ
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 7: Θεματική Ενότητα: Δομές επανάληψης ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική Ενότητα 7 Δομές επανάληψης