Μοντέλα Βαθμονόμησης-Analytic Hierarchy Process
|
|
- Ματθίας Μιχαλολιάκος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μοντέλα Βαθμονόμησης-Analytic Hierarchy Process
2 Αναλυτική Ιεραρχική ιαδικασία Η Αναλυτική Ιεραρχική ιαδικασία ανήκει στην κατηγορία των μεθόδων συγκρίσεων σε ζεύγη και αναπτύχθηκε στα τέλη της δεκαετίας του 70 ως μέθοδος διαμόρφωσης αναλογικών κλιμάκων μέτρησης για την αξιολόγηση των παραμέτρων ημιδομημένων προβλημάτων απόφασης [Saaty 1977, Saaty 1978]. Παρά το γεγονός ότι η αξιωματική θεμελίωσή της παρουσιάστηκε μετά από σχεδόν μια δεκαετία [Saaty 1986], η μέθοδος είχε ήδη αρχίσει να γίνεται εξαιρετικά δημοφιλής μεταξύ ερευνητών και μελετητών [Vargas 1990, Saaty & Forman 1996]. Ενδεικτικό των παραπάνω είναι το γεγονός ότι ήδη μέχρι το 1987 η μέθοδος αποτέλεσε αντικείμενο 21 διδακτορικών διατριβών μόνο στις ΗΠΑ [Shim 1989].
3 Αναλυτική Ιεραρχική ιαδικασία-βασικές Αρχές Η χρήση ιεραρχικών δομών για την μοντελοποίηση του προβλήματος απόφασης. Η αξιολόγηση των παραμέτρων του προβλήματος απόφασης σε ζεύγη για κάθε επίπεδο της ιεραρχίας Η χρήση της θεμελιώδους κλίμακας των προτιμήσεων για την απόδοση της έντασης των σχέσεων επικράτησης Η χρήση του ιδιοδιανύσματος του πίνακα των ανά ζεύγος συγκρίσεων για τον υπολογισμό των τοπικών προτεραιοτήτων Ο έλεγχος της συνέπειας των κρίσεων
4 Μοντελοποίηση του προβλήματος απόφασης Η διαμόρφωση ιεραρχικών δομών για τη διατύπωση του προβλήματος απόφασης αποτελεί την πρώτη βασική αρχή της AHP και η οποία επιβάλλει την αποσύνθεση του προβλήματος απόφασης στα συστατικά του μέρη Θεμελιώδες όργανο της ανθρώπινης σκέψης, οι ιεραρχίες αφορούν την αναγνώριση και ομαδοποίηση των στοιχείων του προβλήματος απόφασης σε επίπεδα αναλόγως με τη σπουδαιότητά τους στο σύστημα αξιών του λήπτη απόφασης Ο αριθμός των επιπέδων της ιεραρχίας καθορίζει το βάθος της ανάλυσης, ενώ ο αριθμός των κριτηρίων το πλάτος της. εδομένου ότι τα στοιχεία της ιεραρχίας διαμορφώνουν επίπεδα, όταν ομαδοποιούνται ως προς κάποια παράμετρο υψηλότερου επιπέδου, θα πρέπει να αποδίδουν τον ίδιο βαθμό λεπτομέρειας στην ανάλυση. Η διαμόρφωση των ιεραρχιών δεν υπακούει σε συγκεκριμένους κανόνες και ως εκ τούτου ένα συγκεκριμένο πρόβλημα είναι δυνατό να μοντελοποιηθεί με διαφορετικές ιεραρχικές δομές. Είναι αποδεκτό ότι το μοντέλο απόφασης διαμορφώνεται αποκλειστικά από τους λήπτες απόφασης, έτσι ώστε να απηχεί την εμπειρία και τη διαίσθηση τους πάνω στο πρόβλημα
5 Μοντελοποίηση του προβλήματος απόφασης
6 Πίνακες ανά ζεύγος συγκρίσεων Η δεύτερη θεμελιώδης αρχή της μεθόδου αφορά τον προσδιορισμό των τοπικών προτεραιοτήτων τ.έ. οι σχετικές επικρατήσεις των παραμέτρων της ιεραρχίας που ανήκουν στο ίδιο επίπεδο (στοιχεία τέκνου), ως προς τα στοιχεία της ιεραρχίας στα οποία αναφέρονται (στοιχεία γονέα). Η διαδικασία υλοποιείται σε πίνακες ανά ζεύγος συγκρίσεων Η τιμή που αποκτά το στοιχείο a ij, υπολογίζεται με τη χρήση των δομών σαφούς προτίμησης (Α i PΑ j ) και αδιαφορίας (Α i IΑ j ) σύμφωνα με τις παρακάτω σχέσεις Ως συνέπεια των παραπάνω διαμορφώνονται συμμετρικά θετικοί πίνακες ως προς τα στοιχεία της διαγωνίου δηλώνοντας έτσι την αντίστροφη σχέση προτίμησης Όταν ικανοποιείται η μεταβατική ιδιότητα ο πίνακας λέγεται συνεπής
7 Η κλίμακα των προτιμήσεων Προκειμένου να διαμορφωθεί ένα κοινό πλαίσιο για τον καθορισμό του μέτρου των σχετικών επικρατήσεων στους πίνακες αξιολόγησης των παραμέτρων της ιεραρχίας παρέχεται από τη μέθοδο η θεμελιώδης κλίμακα των προτιμήσεων (fundamental scale of preferences) Πίνακας 4.1: Η θεμελιώδης και η εκθετική κλίμακα των προτιμήσεων της ΑΗΡ Κλίμακες Προτιμήσεων Θεμελιώδης Εκθετική Μεταβλητή Έκφρασης 1 0 = 1 Ισοδύναμη Επικράτηση (IE) 3 1 Μέτρια Επικράτηση (ΜΕ) 5 2 Ισχυρή Επικράτηση (ΙΧΕ) 7 3 Πολύ Ισχυρή Επικράτηση (ΠΙΕ) 9 4 Εξαιρετική Επικράτηση (ΕΕ) 2, 4, 6, 8 Αντίστροφοι των παραπάνω 0,5, 1,5, 2,5, 3,5 Για συμβιβασμό ανάμεσα στις παραπάνω τιμές Αν σε ένα στοιχείο i επισυνάπτεται ένας από τους παραπάνω αριθμούς κατά τη σύγκριση της με το στοιχείο j, τότε η j ως προς τη i έχει την αντίστροφη τιμή 1,1-1,9 Για συνδεδεμένες δραστηριότητες Ερμηνεία Τα δύο στοιχεία συνεισφέρουν εξίσου στον αντικειμενικό στόχο Η εμπειρία και η κρίση ευνοεί λίγο το στοιχείο γραμμής Η εμπειρία και η κρίση ευνοούν ισχυρά το στοιχείο γραμμής Το στοιχείο γραμμής είναι πολύ πιο ισχυρό σε σχέση με το στοιχείο στήλης Υπάρχουν ισχυρότατες ενδείξεις ότι το στοιχείο γραμμής είναι σημαντικότερο Για την απόδοση συμβιβαστικών θέσεων μεταξύ των παραπάνω Η σύγκριση γίνεται επιλέγοντας το μικρότερο στοιχείο ως μονάδα υπολογισμού (εκτίμησης) και το μεγαλύτερο ως πολλαπλάσιο αυτής της μονάδας Όταν τα στοιχεία είναι παραπλήσια και σχεδόν διακριτά τότε μέτρια τιμή είναι η 1,3 και πολύ ισχυρή η 1,9
8 Πίνακες ανά ζεύγος συγκρίσεων Έχοντας το μέτρο της επικράτησης κάθε στοιχείου έναντι των υπολοίπων στο ίδιο επίπεδο της ανάλυσης διαμορφώνονται οι πίνακες ανά ζεύγος συγκρίσεων Η συνεκτικότητα του τελικού αποτελέσματος εξαρτάται επιπροσθέτως από τις αρχές α/ της ομοιογένειας των παραμέτρων που αξιολογούνται σε έναν πίνακα ανά ζεύγος συγκρίσεων, δηλαδή τη διαμόρφωση ιεραρχικών επίπεδων, έτσι ώστε οι λεκτικές μεταβλητές της κλίμακας να επαρκούν για την διατύπωση των ανά ζεύγος συγκρίσεων. β/ της ανεξαρτησίας των στοιχείων μεταξύ των επιπέδων, δηλαδή οι αξιολογήσεις πρέπει να πραγματοποιούνται ανεξάρτητα από τη φύση και τις ιδιότητες των παραμέτρων που απαρτίζουν τα επόμενα επίπεδα της ιεραρχίας
9 Ο προσδιορισμός των τοπικών προτεραιοτήτων ως διαδικασία επιδιώκει να υπολογιστούν οι βαρύτητες των παραμέτρων του προβλήματος απόφασης, προσδιορίζοντας έτσι τον βαθμό ικανοποίησης του στοιχείου γονέα (π.χ. τα υποκριτήρια ως προς το κριτήριο στο οποίο ανήκουν, τα κριτήρια ως προς τον στόχο της ανάλυσης κ.ο.κ.) Σύμφωνα με την ΑΗΡ οι τοπικές προτεραιότητες ισούται με το χαρακτηριστικό ιδιοδιάνυσμα του πίνακα των προτιμήσεων ύο είναι οι κυρίαρχες προσεγγίσεις που υποστηρίζουν τον υπολογισμό του χαρακτηριστικού ιδιοδιανύσματος στους πίνακες ανά ζεύγος συγκρίσεων Η προσεγγιστική διαδικασία Η ακριβής μέθοδος Μέθοδος των δυνάμεων
10 Η προσεγγιστική μέθοδος Στην προσεγγιστική μέθοδο, γνωστή και ως μέθοδο της αθροιστικής ομαλοποίησης, το κύριο ιδιοδιάνυσμα υπολογίζεται από τον μέσο όρο των γραμμών ομαλοποιημένου με το άθροισμα των στηλών πίνακα των ανά ζεύγος συγκρίσεων [Saaty 2005]. Η μαθηματική διατύπωση της μεθόδου δίνεται από τις παρακάτω σχέσεις, όπου η βαρύτητα του κριτηρίου της γραμμής i, α ij το στοιχείο του πίνακα των ανά ζεύγος συγκρίσεων που ορίζεται από τη γραμμή i και τη στήλη j, και n η διάσταση του. Μολονότι η προσεγγιστική διαδικασία δεν στηρίζεται σε ικανοποιητικό μαθηματικό υπόβαθρο, πρόσφατες προσομοιώσεις δείχνουν ότι παρέχει ισοδύναμα αποτελέσματα με τη μέθοδο του ιδιοδιανύσματος [Srdjevic 2005].
11 Η προσεγγιστική μέθοδος Η διαδικασία σε βήματα Υπολογισμός των επιμέρους αθροισμάτων των στηλών του πίνακα Ομαλοποίηση των στοιχείων στήλης του πίνακα με το αντίστοιχο άθροισμα Το διάνυσμα της βαρύτητας των παραμέτρων προκύπτει από τον μέσο όρο των γραμμών του πίνακα του Βήματος 2. Παράδειγμα Υπολογισμού Τοπικών Προτεραιοτήτων
12 Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 1 ο : ιαμόρφωση μοντέλου απόφασης
13 Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 2 ο : Πίνακας Απόφασης ΚΡΙΤΗΡΙΑ 1 ΟΥ ΕΠΙΠΕ ΟΥ ΟΙΚΟΝΟΜΙΚΑ ΚΡΙΤΗΡΙΑ ΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΕΜΦΑΝΙΣΗ ΤΟΠΙΚΑ ΒΑΡΗ ΚΡΙΤΗΡΙΑ 2 ΟΥ ΕΠΙΠΕ ΟΥ ΑΡΧΙΚΟ ΚΟΣΤΟΣ ΚΑΤΑΝΑΛΩΣΗ ΦΟΡΟΛΟΓΙΑ (ΤΕΛΟΣ) ΙΠΠΟ ΥΝΑΜ Η ΧΩΡΗΤΙΚΟΤ. ΤΟΠΙΚΑ ΒΑΡΗ ALFA ROMEO ο ΒMW ο AUDI ο
14 Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 3 ο : Αξιολόγηση Κριτηρίων 1 ου επιπέδου
15 Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 4 ο : Αξιολόγηση Οικονομικών Υποκριτηρίων
16 Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 5 ο : Αξιολόγηση Τεχνικών Χαρακτηριστικών
17 Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 6 ο : Υπολογισμός Συνολικής Βαρύτητας ΚΡΙΤΗΡΙΑ 1 ΟΥ ΕΠΙΠΕ ΟΥ ΟΙΚΟΝΟΜΙΚΑ ΚΡΙΤΗΡΙΑ ΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΕΜΦΑΝΙΣΗ ΤΟΠΙΚΑ ΒΑΡΗ ,360 0,128 ΚΡΙΤΗΡΙΑ 2 ΟΥ ΕΠΙΠΕ ΟΥ ΑΡΧΙΚΟ ΚΟΣΤΟΣ ΚΑΤΑΝΑΛΩΣΗ ΦΟΡΟΛΟΓΙΑ (ΤΕΛΟΣ) ΙΠΠΟ ΥΝΑΜΗ ΧΩΡΗΤΙΚΟΤ. ΤΟΠΙΚΑ ΒΑΡΗ 0,640 0,154 0,206 0,875 0,125 0,128 ΣΥΝΟΛΙΚΑ ΒΑΡΗ 0,328 0,079 0,105 0,315 0,045 0,128 ALFA ROMEO ο ΒMW ο AUDI ο
18 Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 7 ο : Αξιολόγηση Εναλλακτικών Σεναρίων στα Κριτήρια της Ανάλυσης
19 Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 7 ο : Αξιολόγηση Εναλλακτικών Σεναρίων στα Κριτήρια της Ανάλυσης
20 Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 7 ο : Αξιολόγηση Εναλλακτικών Σεναρίων στα Κριτήρια της Ανάλυσης
21 Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 7 ο : Αξιολόγηση Εναλλακτικών Σεναρίων στα Κριτήρια της Ανάλυσης
22 Η προσεγγιστική μέθοδος Παράδειγμα επιλογής αυτοκινήτου Βήμα 8 ο : Στάθμιση εναλλακτικών σεναρίων στα κριτήρια της ανάλυσης
23 Τεχνολογική Οικονομική Ενδεικτική Βιβλιογραφία Κ.Π. Αναγνωστόπουλος (2004), Τεχνολογική Οικονομική, Εταιρεία Αξιοποίησης & ιαχείρισης της Περιουσίας του ημοκριτείου Πανεπιστημίου Θράκης. Saaty T.L. (1977), "A scaling method for priorities in hierarchical structures", Journal of Mathematical Psychology, Vol. 15, pp Saaty T.L. (1978), "Modeling unstructured decision problems-the theory of analytical hierarchies", Mathematics and Computers in Simulation, Vol. 20, pp Saaty T.L. (1986), "Axiomatic foundations of the Analytic Hierarchy Process", Management Science, vol. 32, Νο.7, pp Saaty T.L., Forman E.H. (1996), The Hierarchon: A Dictionary of Hierarchies, AHP series, volume V, RWS publications. Shim J.P. (1989), "Bibliographical research on the Analytic Hierarchy Process (AHP)", Socio- Economic Planning Sciences, Vol. 23, No. 3, pp Saaty, T.L (2005), "The Analytic Hierarchy and Analytic Network Process for the measurement of intangible criteria and for decision making", In Multiple Criteria Decision Analysis: State of the Art Surveys (eds. J. Figuera, S. Greco, M. Ehrgott), International Series in Operations Research Management Science, Springer, pp
24 Καλό διάβασμα
Συστήματα Στήριξης Αποφάσεων
Συστήματα Στήριξης Αποφάσεων Τμήμα: Μηχανικών Παραγωγής & Διοίκησης Διδάσκων: A.Π. Βαβάτσικος, Dip.Eg., PhD Αναλυτική Ιεραρχική Διαδικασία-Aalytic Hierarchy Process (AHP) Η Αναλυτική Ιεραρχική Διαδικασία
του Ανθρώπινου υναµικού µε το Πρότυπο ANALYTIC HIERARCHY PROCESS (AHP) School of Economics) ΤΕΙ ΑΘΗΝΑΣ E-MAIL : CFRAGOS@TEIATH.GR Τηλ..
H Εφαρµογή εικτών Απόδοσης ( K.P.I.) στην αξιολόγηση του Ανθρώπινου υναµικού µε το Πρότυπο της Αναλυτικής Ιεραρχικής ιαδικασίας (A.H.P.) Ο ΗΓΟΣ ΣΤΗ ΑΝΑΛΥΤΙΚΗ ΙΕΡΑΡΧΙΚΗ ΙΑ ΙΚΑΣΙΑ ANALYTIC HIERARCHY PROCESS
Εισαγωγή στη Διαδικασία Ιεραρχικής Ανάλυσης. Ρόκου Έλενα Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ.
Εισαγωγή στη Διαδικασία Ιεραρχικής Ανάλυσης Ρόκου Έλενα Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ιεραρχική αναλυση αποφασεων Analytic hierarchy process (AHP)
Ιεραρχική αναλυση αποφασεων Analytic hierarchy process (AHP) Εισαγωγή Παρουσιάστηκε από τον Thomas L. Saaty τη δεκαετία του 70 Μεθοδολογία που εφαρμόζεται στην περιοχή των Multicriteria Problems Δίνει
«Συστήματα Υποστήριξης Αποφάσεων» «Εφαρμογή Υποστήριξης Απόφασης με την Μέθοδο Ιεραρχικής Ανάλυσης Αποφάσεων AHP»
«Συστήματα Υποστήριξης Αποφάσεων» «Εφαρμογή Υποστήριξης Απόφασης με την Μέθοδο Ιεραρχικής Ανάλυσης Αποφάσεων AHP» Περιεχόμενα Εισαγωγή...3 Η μέθοδος της ιεραρχικής ανάλυσης αποφάσεων...3 Εφαρμογή Υποστήριξης
ΤΕΤΡΑ ΙΑ ΑΝΑΛΥΣΗΣ Ε ΟΜΕΝΩΝ, ΤΕΥΧΟΣ 15 (σσ ) DATA ANALYSIS BULLETIN, ISSUE 15 (pp ) Ιεραρχική Ανάλυση
ΤΕΤΡΑ ΙΑ ΑΝΑΛΥΣΗΣ Ε ΟΜΕΝΩΝ, ΤΕΥΧΟΣ 15 (σσ. 81-89) DATA ANALYSIS BULLETIN, ISSUE 15 (pp. 81-89) Ιεραρχική Ανάλυση ηµήτριος Καραπιστόλης Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυµα Θεσσαλονίκης Περίληψη
Στο στάδιο ανάλυσης των αποτελεσµάτων: ανάλυση ευαισθησίας της λύσης, προσδιορισµός της σύγκρουσης των κριτηρίων.
ΠΕΡΙΛΗΨΗ Η τεχνική αυτή έκθεση περιλαµβάνει αναλυτική περιγραφή των εναλλακτικών µεθόδων πολυκριτηριακής ανάλυσης που εξετάσθηκαν µε στόχο να επιλεγεί η µέθοδος εκείνη η οποία είναι η πιο κατάλληλη για
ΑΞΙΟΛΟΓΗΣΗ ΚΡΙΤΗΡΙΩΝ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΩΝ. Δ. Καραμανώλης Αν. Καθηγητής Τμ. Δασολογίας & Φυσικού Περιβάλλοντος
ΑΞΙΟΛΟΓΗΣΗ ΚΡΙΤΗΡΙΩΝ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΩΝ Δ. Καραμανώλης Αν. Καθηγητής Τμ. Δασολογίας & Φυσικού Περιβάλλοντος Συμπλήρωμα διδακτικών σημειώσεων για τη Δασικη Διαχειριστικη Ι Θεσσαλονίκη 2012 1 ΜΕΘΟΔΟΣ ΣΥΓΚΡΙΣΗΣ
Συστήματα Στήριξης Αποφάσεων
Συστήματα Στήριξης Αποφάσεων Τμήμα: Μηχανικών Παραγωγής & ιοίκησης ιδάσκων: A.Π. Βαβάτσικος, Dip.Eng., PhD H Μέθοδος PROMETHEE Η μέθοδος PROMETHEE (Preference Ranking Organization METHod for Enrichment
Μέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 6: Αναλυτική Ιεραρχική Διαδικασία Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
1.4 Μέθοδος Αναλυτικής Ιεράρχησης
1.4 Μέθοδος Αναλυτικής Ιεράρχησης Η μέθοδος Αναλυτικής Ιεράρχησης (Analytical Hierarchical Process, AHP) προτάθηκε από τον Thomas Saaty το 1977 και γνώρισε μεγάλη εξάπλωση και αποδοχή για την επίλυση πολυκριτηριακών
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη των Αποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο. Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη των Αποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο ηµήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών Ορισµός
Σημείωμα Αδειοδότησης
Μελέτη Περιπτώσεων στη Λήψη Αποφάσεων Σημείωμα Αδειοδότησης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Διαχείριση Περιβάλλοντος - Νομοθεσία
Διαχείριση Περιβάλλοντος - Νομοθεσία Ενότητα 3: Πολυκριτηριακή Ανάλυση και Λήψη Αποφάσεων Δ. Καλιαμπάκος - Δ. Δαμίγος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Περιεχόµενα µαθήµατος
Περιεχόµενα µαθήµατος Λήψη αποφάσεων Ειδικά θέµατα (προγραµµατισµός κι έλεγχος παραγωγής, ανάλυση χρονοσειρών, διαχείριση κι έλεγχος αποθεµάτων, κ.ά.) Ορισµός, στόχοι και µορφές επιχειρήσεων και Χρηµατοοικονοµικά
1/12/2016. Πλεονεκτήματα. Μειονεκτήματα. (Roy, 1994)
Πολυκριτηριακή Ανάλυση και Λήψη Αποφάσεων Δ. Καλιαμπάκος -Δ. Δαμίγος μγ Πολυκριτηριακή ανάλυση «Ο κύριος στόχος δεν είναι να ανακαλύψουμε μια λύση αλλά να δημιουργήσουμε ή να κατασκευάσουμε κάτι το οποίο
ΜΕΘΟΔΟΣ NAIADE ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΞΙΟΛΟΓΗΣΗ. Υπεύθυνη Μαθήματος Αναστασία Στρατηγέα Αναπλ. Καθηγ. Ε.Μ.Π.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΟΣ NAIADE Υπεύθυνη Μαθήματος
Κεφάλαιο 4: Μεθοδολογία Αναλυτικής Ιεράρχησης
Κεφάλαιο 4: Μεθοδολογία Αναλυτικής Ιεράρχησης Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η μεθοδολογία της αναλυτικής ιεράρχησης (AHP: Analytic Hierarchy Process) και αναλύονται τεχνικές αξιοποίησης αυτής
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό
Περιγραφή µεθόδων πολυκριτηριακής ανάλυσης/λήψης αποφάσεων και επιλογή της µεθόδου για εφαρµογή στα πλαίσια του προγράµµατος. 1.
Περιγραφή µεθόδων πολυκριτηριακής ανάλυσης/λήψης αποφάσεων και επιλογή της µεθόδου για εφαρµογή στα πλαίσια του προγράµµατος 1. Γενικά Η διαµόρφωση ολοκληρωµένης περιβαλλοντικής πολιτικής για τη διαχείριση
Πολυκριτήρια Ανάλυση και Λήψη Αποφάσεων
Πολυκριτήρια Ανάλυση και Λήψη Αποφάσεων Χριστίνα Ευαγγέλου, Νίκος Καρακαπιλίδης Industrial Management & Information Systems Lab MEAD, University of Patras, Greece {chriseva, nikos}@mech.upatras.gr ιάρθρωση
Παραδοτέο Π.1 (Π.1.1) Εκθέσεις για προµήθεια εκπαιδευτικού υλικού
1 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΕΑΕΚ ΙΙ Μέτρο 2.2 Αναµόρφωση Προγραµµάτων Προπτυχιακών Σπουδών ιεύρυνση Τριτοβάθµιας Κατ. Πράξης 2.2.2.α Αναµόρφωση Προγραµµάτων
ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός
ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να σχεδιάζει κύκλωμα αντιστάσεων σε παράλληλη σύνδεση και να μετράει
Αξιολόγηση και επιλογή δράσης (έργου)
Αξιολόγηση και επιλογή δράσης (έργου) Η διαδικασία για αξιολόγηση ξεχωριστών δράσεων, έργων ή ομάδων έργων και η επιλογή υλοποίησης μερικών από αυτών, για την επίτευξη του αντικειμενικού σκοπού της επιχείρησης.
«Ο κύριος στόχος δεν είναι να ανακαλύψουµε
Η Πολυκριτηριακή αξιολόγηση στη διαδικασία λήψης περιβαλλοντικών αποφάσεων Πολυκριτηριακή ανάλυση «Ο κύριος στόχος δεν είναι να ανακαλύψουµε µια λύση αλλά να δηµιουργήσουµε ή να κατασκευάσουµε κάτι το
ΧΩΡΟΤΑΞΙΑ H ΔΙΑΔΙΚΑΣΙΑ TOY ΣΧΕΔΙΑΣΜΟΥ. Αναστασία Στρατηγέα. Υπεύθυνη Μαθήματος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΧΩΡΟΤΑΞΙΑ H ΔΙΑΔΙΚΑΣΙΑ TOY ΣΧΕΔΙΑΣΜΟΥ Πηγή: Γενικό Πλαίσιο Χωροταξικού Σχεδιασμού και
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 10: Το πρόβλημα μεταφοράς: μαθηματικό μοντέλο και μεθοδολογία επίλυσης Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Στρατηγικές Επιλογής Προσωπικού: Η Περίπτωση του ΟΤΕ Α.Ε
Τμήμα Οικονομικής Επιστήμης Στρατηγικές Επιλογής Προσωπικού: Η Περίπτωση του Μητροπούλου Βασιλική Επιβλέπουσα Καθηγήτρια Χατζηδήμα Σταματίνα ΟΤΕ Α.Ε Σκοπός της Διπλωματικής Εργασίας Σκοπός της διπλωματικής
Εγχειρίδιο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Έργων
Εγχειρίδιο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Έργων Υπεύθυνος Καθηγητής: Γεώργιος Σαμαράς Άλλοι Διδάσκοντες Παντελής Υψηλάντης Γραφείο: Κτήριo ΔΔΕ/ Γραφείο 7 Τηλέφωνο: 2410684580/ 2410684508 E mail:
ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE
ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE ΚΑΤΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Τμήμα Διοικητικής Επιστήμης & Τεχνολογίας Οικονομικό Πανεπιστήμιο Αθηνών 1. Κ. Πραματάρη, Δ.Ε.Τ. / Ο.Π.Α. The
Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)
Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η μέθοδος PCA (Ανάλυση Κύριων Συνιστωσών), αποτελεί μία γραμμική μέθοδο συμπίεσης Δεδομένων η οποία συνίσταται από τον επαναπροσδιορισμό των συντεταγμένων ενός
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΠΡΩΤΟ - Διατύπωση προβλημάτων - Κατηγορίες εφαρμογών - Πράξεις με πίνακες ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ (in short) Που
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική
ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ
ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ Ενότητα 8 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε01 Εισαγωγή Χάρης
Σχολή Περιβάλλοντος, Γεωγραφίας & Εφαρμοσμένων Οικονομικών. Τμήμα Γεωγραφίας. Εφαρμοσμένη ανάλυση Γεωγραφικών Δεδομένων με την αξιοποίηση ΣΓΠ
Σχολή Περιβάλλοντος, Γεωγραφίας & Εφαρμοσμένων Οικονομικών Τμήμα Γεωγραφίας Εφαρμοσμένη ανάλυση Γεωγραφικών Δεδομένων με την αξιοποίηση ΣΓΠ Μοντέλο Αναλυτικής Ιεράρχησης Εργασία του Παπαδόπουλου Αλέξανδρου
Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων
Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της
Συστήματα Στήριξης Αποφάσεων
Συστήματα Στήριξης Αποφάσεων Τμήμα: Μηχανικών Παραγωγής & ιοίκησης ιδάσκων: A.Π. Βαβάτσικος, Dip.Eng., PhD Εισαγωγικά Ο σχεδιασμός τεχνολογικών συστημάτων βασίζεται στην ικανοποίηση των τεχνολογικών περιορισμών
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
«ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ» Ακαδημαϊκό έτος: Άσκηση : «Πολυκριτήρια Μέθοδος UTADIS»
«ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ» Ακαδημαϊκό έτος: 2006-2007 Άσκηση : «Πολυκριτήρια Μέθοδος UTADIS» Στοιχεία Φοιτητή: Ζυγομήτρος Αθανάσιος Π 0473 thor4bp@gmal.com Υπεύθυνος Καθηγητής: Σίσκος Ι. Φεβρουάριος
Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης
Πολυκριτηριακός Γραμμικός Προγραμματισμός Πολλαπλά κριτήρια στη λήψη απόφασης Λήψη Αποφάσεων με Πολλαπλά Κριτήρια Διακριτό σύνολο επιλογών Συνεχές σύνολο επιλογών Πολυκριτηριακή Ανάλυση (ELECTRE, Promethee,
Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων. Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ
Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ 1. Υπενθύμιση έννοιας νόρμας και βασικών ιδιοτήτων της 2. Σπουδαιότητα των ιδιοτιμών και ιδιοδιανυσμάτων πινάκων
Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης Σχολή Πολιτικών Μηχανικών, Αθήνα Άδεια
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού
Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος
6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου
Ταλμούδ. Πώς η θεωρία παιγνίων έλυσε ένα θρησκευτικό μυστήριο
Ταλμούδ Πώς η θεωρία παιγνίων έλυσε ένα θρησκευτικό μυστήριο Ταλμούδ [Wikipedia] ογκώδης εξωβιβλική συλλογή εβραϊκών κειμένων δημιουργήθηκε στο μεσαίωνα αποτελεί τη συνέχεια της ιουδαϊκής Βίβλου περιλαμβάνει
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Μαθηματικών Π.Μ.Σ. Θεωρητικής Πληροφορικής και Θεωρίας Συστημάτων και Ελέγχου
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Μαθηματικών Π.Μ.Σ. Θεωρητικής Πληροφορικής και Θεωρίας Συστημάτων και Ελέγχου Κάθε εικόνα μπορεί να αναπαρασταθεί με έναν πίνακα, κάθε κελί του οποίου αντιστοιχεί
ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: Η ιαδικασία Αναλυτικής Ιεράρχησης (AHP) και η εφαρµογή της στην αγορά κεφαλαίου µε τη χρήση νευρωνικού δικτύου.
Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
Μοντελοποίηση Προσομοίωση
Μοντελοποίηση Προσομοίωση Σχεδιασμός είναι η διαδικασία μετατροπής των φυσικών νόμων σε μαθηματικές εξισώσεις είναι το κατάλληλο λογισμικό το οποίο χρησιμοποιώντας το μαθηματικό μοντέλο προβλέπει τη συμπεριφορά
Οµάδες ψηφοφόρων Αρ. Μελών Οµάδων Προτιµήσεις Α 1 x > y > z Β 1 y > z >x Γ 1 z > x > y
0. Mη Μεταβατικές Συλλογικές Προτιµήσεις Το αξίωµα της µεταβατικότητας στην περίπτωση των προτιµήσεων ενός µεµονωµένου φορέα αποφάσεων, επιτρέπει την επέκταση της ικανότητας σύγκρισης ζευγών επιλογών στο
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ
ΜΕΘΟΔΟΣ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗΣ ΑΝΑΛΥΣΗΣ ELECTRE
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ ΜΕΘΟΔΟΣ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗΣ ΑΝΑΛΥΣΗΣ ELECTRE Υπεύθυνη Μαθήματος
ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΝΑΛΥΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΝΑΛΥΣΗ Υπεύθυνη Μαθήματος Στρατηγέα Αναστασία
ΙΕΡΑΡΧΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ (ΑΗΡ) Ένα Μοντέλο Λήψης Αποφάσεων σε Συνθήκες Πολλαπλών Κριτηρίων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ» ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2011-2012 ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΙΕΡΑΡΧΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΠΑΡΑΓΩΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΠΑΡΑΓΩΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ 711
ΣΥΣΤΗΜΑ ΥΠΟΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ ΓΙΑ ΑΡΙΣΤΟΠΟΙΗΣΗ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΝΕΡΟΥ
2ο Πανελλήνιο Συνέδριο Μηχανολόγων- Ηλεκτρολόγων, Αθήνα, Μάιος 2007 ΣΥΣΤΗΜΑ ΥΠΟΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ ΓΙΑ ΑΡΙΣΤΟΠΟΙΗΣΗ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΝΕΡΟΥ Κονδύλη Αιμ., Παπαποστόλου Χρ. Εργαστήριο Αριστοποίησης Παραγωγικών
ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ
1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού
1 ιαδικασία διαγωνιοποίησης
ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ
ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διπλωματική Εργασία ΠΟΛΥΚΡΙΤΗΡΙΑ ΑΝΑΛΥΣΗ ΤΩΝ ΜΗ ΕΠΑΝΔΡΩΜΕΝΩΝ ΙΠΤΑΜΕΝΩΝ ΟΧΗΜΑΤΩΝ ΜΕ ΤΙΣ ΜΕΘΟΔΟΥΣ PROMETHEE ΚΑΙ AHP της ΜΑΡΙΑΣ- ΣΟΦΙΑΣ
Ο ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Ο ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Οι κλασικές προσεγγίσεις αντιμετωπίζουν τη διαδικασία της επιλογής του τόπου εγκατάστασης των επιχειρήσεων ως αποτέλεσμα επίδρασης ορισμένων μεμονωμένων παραγόντων,
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
ΔΙΟΙΚΗΤΙΚΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ. Αναπλ. Καθηγητής Δ.Μ. Εμίρης Λέκτορας Ι. Γιαννατσής ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ
ΔΙΟΙΚΗΤΙΚΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ Αναπλ. Καθηγητής Δ.Μ. Εμίρης Λέκτορας Ι. Γιαννατσής ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ Όλοι παίρνουμε αποφάσεις συνεχώς σε διάφορα επίπεδα/ περιβάλλοντα αποφάσεων:
Διδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα
Διδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Διδακτική Μαθηματικών Ι: Ενδεικτικές οδηγίες για τη δραστηριότητα (εργασία) (To
Πολυκριτηριακά Συστήµατα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τοµέας Ηλ. Βιοµηχανικών Διατάξεων & Συστηµάτων Αποφάσεων Πολυκριτηριακά Συστήµατα Υποστήριξης Αποφάσεων Ε01 Εισαγωγή Χάρης
Μέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 8:Βασικές Αρχές Πολυκριτήριας Ανάλυσης Αποφάσεων Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε01 Εισαγωγή Χάρης
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Value at Risk (VaR) και Expected Shortfall
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Value at Risk (VaR) και Expected Shortfall Ορισμός του VaR VaR, Value at Risk, Αξία σε Κίνδυνο. Η JP Morgan εισήγαγε την χρήση του. Μας δίνει σε ένα μόνο νούμερο, την
Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής
Συστήματα Υποστήριξης Αποφάσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Υποστήριξης Αποφάσεων Ενότητα # 6: Συναρτησιακά Μοντέλα Αποφάσεων Διονύσης Γιαννακόπουλος Τμήμα Διοίκησης Επιχειρήσεων
Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί
Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα
Μάθημα: Συστήματα Υποστήριξης Αποφάσεων
Μάθημα: Συστήματα Υποστήριξης Αποφάσεων Αναλυτικό Διάγραμμα Μελέτης Χρονοδιάγραμμα Μελέτης- Διάθρωση της Ύλης 1η Εβδομάδα Ο ρόλος της Ανάλυσης Αποφάσεων Γνωστικές Λειτουργίες στη Λήψη Αποφάσεων Το Πολυκριτήριο
Διαχείριση Εφοδιαστικής Αλυσίδας II
Διαχείριση Εφοδιαστικής Αλυσίδας II 13 η Διάλεξη: Προχωρημένες μέθοδοι διαχείρισης προμηθειών 2019 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Αναφορές Οι σημειώσεις έχουν βασιστεί σε 1.
Συστήματα Υποστήριξης Αποφάσεων Ενότητα # 1: Μία Ανατομία των Αποφάσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Υποστήριξης Αποφάσεων Ενότητα # 1: Μία Ανατομία των Αποφάσεων Διονύσης Γιαννακόπουλος Τμήμα Διοίκησης Επιχειρήσεων Άδειες
Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής
Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των
ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ. Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ
ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ Όλοι παίρνουμε αποφάσεις συνεχώς σε διάφορα επίπεδα / περιβάλλοντα αποφάσεων: Προσωπικές
ΑΞΙΟΛΟΓΗΣΗ ΕΡΓΩΝ ΣΤΟΝ ΤΟΜΕΑ ΤΩΝ ΜΕΤΑΦΟΡΩΝ. Λ. Γιάνναρου, Ε. Ζέρβας Σχολή Θετικών Επιστημών & Τεχνολογίας, Ελληνικό Ανοιχτό Πανεπιστήμιο
ΑΞΙΟΛΟΓΗΣΗ ΕΡΓΩΝ ΣΤΟΝ ΤΟΜΕΑ ΤΩΝ ΜΕΤΑΦΟΡΩΝ Λ. Γιάνναρου, Ε. Ζέρβας Σχολή Θετικών Επιστημών & Τεχνολογίας, Ελληνικό Ανοιχτό Πανεπιστήμιο Λέξεις Κλειδιά: Διοίκηση Έργων, Διαχείριση Έργων, Λήψη Αποφάσεων,
3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι
Ο Δ Η Γ Ι Ε Σ Γ Ι Α Τ Ο M O D E L L U S 0.0 4. 0 5 Για να κατεβάσουμε το πρόγραμμα Επιλέγουμε Download στη διεύθυνση: http://modellus.co/index.php/en/download. Στη συνέχεια εκτελούμε το ModellusX_windows_0_4_05.exe
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος
Ένα υπόδειγμα επιλογών στη φαρμακευτική περίθαλψη για τη βελτίωση της ατομικής χρησιμότητας των καταναλωτών υγείας.
Ένα υπόδειγμα επιλογών στη φαρμακευτική περίθαλψη για τη βελτίωση της ατομικής χρησιμότητας των καταναλωτών υγείας Κώστας Αθανασάκης Η φαρμακευτική πολιτική και η αγορά του φαρμάκου στην Ελλάδα https://www.thestar.com/content/dam/thestar/opinion
Η βασική μας εκπαίδευση στο WISC-V GR αποτελείται από 2 μέρη:
Κ Υ Π Ρ Ι Α Κ Ο Ι Ν Σ Τ Ι Τ Ο Υ Τ Ο Ψ Υ Χ Ο Θ Ε Ρ Α Π Ε Ι Α Σ ΒΑΣΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΕΚΔΟΣΗ ΤΗΣ ΚΛΙΜΑΚΑΣ ΝΟΗΜΟΣΥΝΗΣ ΓΙΑ ΠΑΙΔΙΑ ΚΑΙ ΕΦΗΒΟΥΣ WISC-V G R Το WISC-V (Wechsler Intelligence Scale fr
Μάθηµα 11. Κεφάλαιο: Στατιστική
Μάθηµα Κεφάλαιο: Στατιστική Θεµατικές Ενότητες:. Παρουσίαση Στατιστικών εδοµένων (Στατιστικοί Πίνακες). Γενικά για στατιστικούς πίνακες. Τα στατιστικά δεδοµένα καταγράφονται σε στατιστικούς πίνακες (ή
Σεμινάριο Τελειοφοίτων. 6- Εμπειρική μέτρηση & ανάλυση
Σεμινάριο Τελειοφοίτων 6- Εμπειρική μέτρηση & ανάλυση Πόσο συχνά; Πόσο μεγάλο; Πόσο αντιπροσωπευτικό; Πως αλληλεπιδρούν οι μεταβλητές X και Y; Ποια είναι η αιτιώδης συνάφεια μεταξύ των φαινομένων Α και
ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ
ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α
Two projects Η συμβολή της Αστρονομίας στην ανάπτυξη των επιστημών: A) Το Ηλιακό μας Σύστημα και B) 2 ος Νόμος του Kepler!
Two projects Η συμβολή της Αστρονομίας στην ανάπτυξη των επιστημών: A) Το Ηλιακό μας Σύστημα και B) 2 ος Νόμος του Kepler! Διαλέξαμε θέματα της Αστρονομίας γιατί δεν διδάσκονται στην σχολική ύλη. Με στόχο
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Ονοματεπώνυμο Φοιτητή Αριθμός Μητρώου Επιβλέπων Υλοποίηση της Ιεραρχικής Ανάλυσης
Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο
Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας
E[ (x- ) ]= trace[(x-x)(x- ) ]
1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής Πανεπιστήµιο Πειραιώς, Καραολή ηµητρίου 80, 18534 Πειραιάς Τηλ. 210 414-2147, e-mail: sofianop@unipi.gr
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ. Διπλωματική Εργασία
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διπλωματική Εργασία ΣΥΓΚΡΙΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΠΟΛΥΚΡΙΤΗΡΙΕΣ ΜΕΘΟΔΟΥΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΖΩΗΣ ΤΩΝ ΧΩΡΩΝ ΤΗΣ ΕΥΡΩΠΑΙΚΗΣ ΕΝΩΣΗΣ της ΙΣΜΗΝΗΣ ΧΑΤΖΗΜΙΧΑΛΗ
Ανάλυση δικτύων διανομής
Υδραυλική & Υδραυλικά Έργα 5 ο εξάμηνο Σχολής Πολιτικών Μηχανικών Ανάλυση δικτύων διανομής Χρήστος Μακρόπουλος, Ανδρέας Ευστρατιάδης & Παναγιώτης Κοσσιέρης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες