Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων
|
|
- Λίγεια Αθανασιάδης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
2 Σημαντική Υπενθύμιση: Δεν υπάρχουν χαζές ερωτήσεις και δεν θα με προσβάλετε αν διακόπτετε με ρωτήσεις το μάθημα Διάλεξη 7/ 2
3 Άντε και βρίσκουμε ότι υπάρχει συσχέτιση ανάμεσα σε δύο μεταβλητές. Το επόμενο ερώτημα είναι: η σχέση αυτή είναι πραγματική ή μήπως είναι ένα τυχαίο αποτέλεσμα? Με άλλα λόγια πως μπορούμε να ξέρουμε αν το αποτέλεσμα από μια στατιστική διαδικασία είναι στατιστικά σημαντικό; Διάλεξη 7/ 3
4 Στατιστικά σημαντικό αποτέλεσμα = Όταν το αποτέλεσμα δεν έχει προέλθει από τυχαίους παράγοντες Στατιστικά μη σημαντικό αποτέλεσμα = Όταν το αποτέλεσμα έχει προέλθει από τυχαίους παράγοντες Όλα τα στατιστικά κριτήρια που θα μάθουμε, μας πληροφορούν για την πιθανότητα που υπάρχει τα αποτελέσματά μας να έχουν προκύψει από τυχαίους παράγοντες. Αν η πιθανότητα είναι μικρή >>>>>>>>>> ΟΧΙ ΤΥΧΑΙΑ Αν πιθανότητα είναι μεγάλη>>>>>>>>>>>>>>> ΤΥΧΑΙΑ Διάλεξη 7/ 4
5 Το επόμενο ερώτημα είναι: Πόσο μικρή θα πρέπει να είναι η πιθανότητα για να μην έχουμε τυχαία αποτελέσματα; Στις κοινωνικές επιστήμες έχει καθοριστεί ότι για να έχουμε στατιστικά σημαντικά αποτελέσματα η πιθανότητα σφάλματος θα πρέπει να είναι το πολύ 0,05 (5%) (συμβολίζεται με p<0.05) Βέβαια έχουμε και άλλα επίπεδα στατιστικής σημαντικότητας: 0,01 (1%)>>>> (p<0.01) αλλά και 0,001 (1%ο) >>> (p < 0.001). Διάλεξη 7/ 5
6 Στατιστικός Έλεγχος Υποθέσεων Πρόκειται για μια διαδικασία μέσω της οποίας ο αντικειμενικός στόχος είναι, χρησιμοποιώντας τη στατιστική, να ελέγξουμε αν η υπόθεση που έχουμε διατυπώσει είναι αποδεκτή ή όχι. Με άλλα λόγια, είναι ένα μοντέλο λήψης απόφασης με τη βοήθεια του οποίου αποφασίζουμε αν θα δεχθούμε ή θα απορρίψουμε την υπόθεση που έχουμε διατυπώσει. Διάλεξη 7/ 6
7 Τι σημαίνει η έννοια της υπόθεσης; Είναι μια σύντομη και ακριβής πρόταση στην οποία περιγράφουμε τι πιστεύουμε ότι θα συμβεί στην έρευνα ή το πείραμά μας. Σε κάθε έρευνα διατυπώνουμε 2 υποθέσεις: Μηδενική Υπόθεση (Η 0 ) Εναλλακτική ή Πειραματική Υπόθεση (Η 1 ) Διάλεξη 7/ 7
8 Είναι η υπόθεση που υποστηρίζει ότι δεν υπάρχει σχέση μεταξύ των μεταβλητών που μελετώνται Μηδενική Υπόθεση (Η 0 ) Διατυπώνεται με σκοπό να λειτουργήσει ως κριτήριο σύγκρισης για την εναλλακτική υπόθεση Στη διαδικασία του ελέγχου των υποθέσεων πάντοτε ελέγχουμε τη μηδενική υπόθεση έναντι της εναλλακτικής Διάλεξη 7/ 8
9 Εναλλακτική ή Πειραματική Υπόθεση (Η 1 ) Είναι η υπόθεση που αναφέρεται στην εκτίμηση που κάνει ο υπεύθυνος της έρευνας αναφορικά με τη σχέση που υπάρχει μεταξύ των μεταβλητών που μελετά Ουσιαστικά πρόκειται για την ερευνητική του υπόθεση Διάλεξη 7/ 9
10 Υπόθεση. Μονής Κατεύθυνσης; (one tailed) ή Διπλής Κατεύθυνσης; (two tailed) Διάλεξη 7/ 10
11 Υπόθεση Μονής Κατεύθυνσης: Είναι η υπόθεση που διατυπώνεται με κάποια σαφή πρόβλεψη για το αποτέλεσμα της έρευνάς μας προτού συλλέξουμε τα δεδομένα μας Διάλεξη 7/ 11
12 Υπόθεση Διπλής Κατεύθυνσης: Είναι η υπόθεση που διατυπώνεται χωρίς να επιχειρείται κάποια συγκεκριμένη πρόβλεψη Διάλεξη 7/ 12
13 ΠΑΡΑΔΕΙΓΜΑ Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο ομάδες ατόμων (τμήματα) και δίδαξε μια συγκεκριμένη ύλη τόσο εξ αποστάσεως όσο και δια ζώσης. Στο τέλος του χρόνου σύγκρινε τις επιδόσεις των φοιτητών των δύο ομάδων στο ίδιο τεστ ώστε να διαπιστώσει ποια μέθοδος είχε καλύτερα αποτελέσματα Διάλεξη 7/ 13
14 ΠΑΡΑΔΕΙΓΜΑ Κοιτώντας τα δεδομένα φαίνεται ότι οι δύο ομάδες παρουσιάζουν διαφορές στην επίδοση. Είναι όμως οι διαφορές αυτές πραγματικές (εξαιτίας της μεθόδου διδασκαλίας) ή οφείλονται σε τυχαίους παράγοντες (πχ εξαιτίας της δειγματοληψίας μας;) Διάλεξη 7/ 14
15 Στατιστικός Έλεγχος Υποθέσεων Σε κάθε έρευνα διατυπώνουμε 2 υποθέσεις: Μηδενική Υπόθεση (Η 0 ) = Οι επιδόσεις των μαθητών που διδάχθηκαν την ύλη με την εξ αποστάσεως μέθοδο ΔΕΝ θα είναι διαφορετικές από τις επιδόσεις των μαθητών που διδάχθηκαν την ύλη με τη δια ζώσης μέθοδο Εναλλακτική Υπόθεση (Η 1 ) = Οι επιδόσεις των μαθητών που διδάχθηκαν την ύλη με την εξ αποστάσεως μέθοδο θα είναι διαφορετικές από τις επιδόσεις των μαθητών που διδάχθηκαν την ύλη με τη δια ζώσης μέθοδο ΔΕΝ επιχειρούμε κάποια συγκεκριμένη πρόβλεψη, οπότε αναφερόμαστε σε ΥΠΟΘΕΣΗ ΔΙΠΛΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Διάλεξη 7/ 15
16 Στατιστικός Έλεγχος Υποθέσεων Αν όμως έχουμε γνώση από προηγούμενες έρευνες μπορούμε να κάνουμε την υπόθεση μας πιο συγκεκριμένη δηλ. ΥΠΟΘΕΣΗ ΜΟΝΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μηδενική Υπόθεση (Η 0 ) = Οι επιδόσεις των μαθητών που διδάχθηκαν την ύλη με την εξ αποστάσεως μέθοδο ΔΕΝ θα είναι καλύτερες από τις επιδόσεις των μαθητών που διδάχθηκαν την ύλη με τη δια ζώσης μέθοδο Εναλλακτική Υπόθεση (Η 1 ) = Οι επιδόσεις των μαθητών που διδάχθηκαν την ύλη με την εξ αποστάσεως μέθοδο θα είναι καλύτερες από τις επιδόσεις των μαθητών που διδάχθηκαν την ύλη με τη δια ζώσης μέθοδο Διάλεξη 7/ 16
17 Αφού διατυπώσουμε τις υποθέσεις μας ο Στατιστικός Έλεγχος Υποθέσεων έχει ως σκοπό να Απορρίψουμε ή να Αποδεχτούμε τη μηδενική υπόθεση Διάλεξη 7/ 17
18 Γενική διαδικασία για τον έλεγχο υποθέσεων: 1. Πρώτα βρίσκουμε το αποτέλεσμα (δηλ. τη στατιστική τιμή) που προκύπτει από τη χρήση του στατιστικού κριτηρίου που εφαρμόσαμε. Το στατιστικό κριτήριο εξαρτάται από το πρόβλημα που μελετάμε (μπορεί να είναι μια απλή συσχέτιση, ή στην περίπτωση μας το κριτήριο τ για το έλεγχο της διαφοράς των μέσων όρων 2 διαφορετικών δειγμάτων) 2. Για κάθε πιθανή στατιστική τιμή έχει οριστεί από τους στατιστικολόγους και η πιθανότητα εμφάνισης μιας τιμής τουλάχιστον ίδιας με αυτή, όταν η Η0 είναι αληθινή ( η λεγόμενη κρίσιμη τιμή) 3. Στη συνέχεια, και με βάση την κρίσιμη τιμή, καθορίζουμε την περιοχή απόρριψης της Η0 4. Τέλος, εφόσον η στατιστική τιμή βρίσκεται μέσα στα όρια αυτής της περιοχής, θα πρέπει να απορρίψουμε την Η0. Σε αντίθετη περίπτωση θα πρέπει να την αποδεχθούμε Διάλεξη 7/ 18
19 Γενική διαδικασία για τον έλεγχο υποθέσεων: 1. Ας υποθέσουμε ότι από τη χρήση του στατιστικού κριτηρίου που χρησιμοποιήσαμε βρήκαμε τη στατιστική τιμή = 3,67 2. Από τους αντίστοιχους πίνακες βρίσκουμε ότι για επίπεδο στατιστικής σημαντικότητας α=0,05 και για υπόθεση διπλής κατεύθυνσης, η κρίσιμη τιμή είναι 2,09 Διάλεξη 7/ 19
20 3. Στη συνέχεια, και με βάση την κρίσιμη τιμή, καθορίζουμε την περιοχή απόρριψης της Η0 4. Η στατιστική τιμή πέφτει μέσα στην περιοχή απόρριψης της Η0 (γκρι περιοχή). Επομένως θα πρέπει να απορρίψουμε την Η0 και να δεχθούμε την Η1 Διάλεξη 7/ 20
21 Διάλεξη 7/ 21
22 Συνοψίζοντας για τον έλεγχο υποθέσεων 1. Κάθε φορά που επιθυμούμε να προσδιορίσουμε μια συσχέτιση, η μια διαφορά, στο δείγμα μας (ή σε διαφορετικά δείγματα), χρησιμοποιούμε ένα κατάλληλο στατιστικό κριτήριο (πχ το δείκτη συσχέτισης, ή το t- test) 2. To στατιστικό κριτήριο που χρησιμοποιούμε έχει εκ των προτέρων γνωστές ιδιότητες (ιδιαιτέρα η κατανομή συχνοτήτων του) 3. Αφού γνωρίζουμε την κατανομή του, μπορούμε να εκτιμήσουμε την πιθανότητα να λάβει το στατιστικό κριτήριο, την τιμή που έλαβε 4. Εφόσον η πιθανότητα να λάβει το στατιστικό κριτήριο την τιμή που έλαβε είναι μικρότερη από το επίπεδο στατιστικής σημαντικότητας που έχουμε ορίσει (συνήθως 0,05) τότε δεχόμαστε την εναλλακτική υπόθεση. Διάλεξη 7/ 22
23 Δηλ. έχοντας τα δεδομένα από το δείγμα μας: Εξετάζουμε ( με κατάλληλο στατιστικό τεστ) αν θα δεχτούμε Τη μηδενική υπόθεση Για τον πληθυσμό Διάλεξη 7/ 23
24 Σημαντική παρατήρηση: Ποτέ μα ποτέ δεν μπορούμε να είμαστε σίγουροι για το ποια από τις 2 υποθέσεις είναι η σωστή. Συνήθως λοιπόν, οι ερευνητές δουλεύουν με πιθανότητες. Συγκεκριμένα εξετάζουμε την πιθανότητα τα αποτελέσματα μας να είναι τυχαία. Όσο η πιθανότητα αυτή μειώνεται τόσο μεγαλύτερη είναι η εμπιστοσύνη μας προς την αποδοχή της εναλλακτικής υπόθεσης. Στην ψυχολογία, έχει επικρατήσει να χρησιμοποιούμε το όριο του 95% αναφορικά με τη βεβαιότητα: μόνο όταν είμαστε 95% βέβαιοι ότι τα αποτελέσματα μας δεν είναι τυχαία, μόνο τότε δεχόμαστε ότι τα αποτελέσματα μας είναι πραγματικά Διάλεξη 7/ 24
25 Υπάρχουν δύο πιθανά σφάλματα. Σφάλμα Τύπου Ι (Τype I error) συμβαίνει όταν απορρίπτουμε μία αληθής μηδενική υπόθεση (πχ ένα σφάλμα τύπου Ι συμβαίνει όταν ο δικαστής καταδικάσει κάποιον αθώο). Σφάλμα Τύπου ΙΙ (Type II error) συμβαίνει όταν δεχόμαστε τη μηδενική υπόθεση ενώ δεν είναι αληθινή (πχ ένοχος κατηγορούμενος αθωώνεται). Ισχύς (power) = η ικανότητα του κριτηρίου να απορρίπτει τη μηδενική υπόθεση ενώ αυτή είναι πράγματι λανθασμένη. (δείτε το video: errortypes.avi) Διάλεξη 7/ 25
26 Required Sample Size (N) (Algorithm: Fisher Z Refined) One Correlation: Sample Size Calculation One Correlation, t-test (H0: Rho = 0 N vs. Rho (Power = 0.9, Alpha = Population Correlation (Rho) Διάλεξη 7/ 26
27 Correlation is not causation Ο δείκτης συσχέτισης είναι ένα στατιστικό κριτήριο που μας πληροφορεί μόνο για τη συμμεταβολή των δύο μεταβλητών που μελετώνται και όχι για το εάν υπάρχει αιτιώδης σχέση μεταξύ τους Η υψηλή συσχέτιση δεν δηλώνει σχέσεις αιτίου και αποτελέσματος. Μπορεί να οφείλεται σε μια τρίτη μεταβλητή, την οποία δεν έχουμε συμπεριλάβει στην έρευνά μας, και η οποία να λειτουργεί ως αίτιο Διάλεξη 7/ 27
28 Διάλεξη 7/ 28
Διαδικασία Ελέγχου Μηδενικών Υποθέσεων
Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το
Διάλεξη 1 Βασικές έννοιες
Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη
Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα
Κεφάλαιο 7 Έλεγχος Υποθέσεων 1 Ένα παράδειγµα Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο οµάδες
Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών ΠΑΝΕΠΙΣΤΗΜΙΟ
Στατιστική Ι (ΨΥΧ-1202) ΑΣΚΗΣΕΙΣ
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή
(ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 1 Εισαγωγή ΠΑΝΕΠΙΣΤΗΜΙΟ
Στατιστική Ι (ΨΥΧ-122) Διάλεξη 5
(ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 5 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ
ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ
Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras
Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική
ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική Ενότητα 3: Έλεγχοι υποθέσεων - Διαστήματα εμπιστοσύνης Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Οι ερευνητικές υποθέσεις Στην έρευνα ελέγχουμε
Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 :
Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 : 1. Να χρησιμοποιηθεί το αρχείο gssft.sav για να γίνει έλεγχος της υπόθεσης ότι στους εργαζόμενους με πλήρη απασχόληση η τιμή του μέσου
Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών
ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17
ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής
Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων
Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Ένα Ερευνητικό Παράδειγμα Σκοπός της έρευνας ήταν να διαπιστωθεί εάν ο τρόπος αντίδρασης μιας γυναίκας απέναντι σε φαινόμενα
Ενότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 2: Έλεγχοι Υποθέσεων
Στατιστική Ι (ΨΥΧ-122) Διάλεξη 2
(ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: lzabetak@dpem.tuc.gr Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ 28210 37323 Διάλεξη 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ
Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες
Επαγωγική Στατιστική Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Πως μπορούμε να συγκρίνουμε μεταβλητές μεταξύ τους? Διαφορά συγκρίνοντας το μέσο μιας μεταβλητής (λόγος ή διάστημα) στις ομάδες πχ. t-test
Κεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές
Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2
Έλεγχοι Υποθέσεων 7-2 7 Έλεγχοι Υποθέσεων Χρήση της Στατιστικής Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-3 7 Μαθησιακοί Στόχοι Όταν θα έχετε ολοκληρώσει την μελέτη του κεφαλαίου θα πρέπει να
Εισαγωγή στην Ανάλυση Δεδομένων
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική
Κεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test
1 Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου One-Sample t-test 2 Μια σύντομη αναδρομή Στα τέλη του 19 ου αιώνα μια μεγάλη αλλαγή για την επιστήμη ζυμώνονταν στην ζυθοποιία Guinness. Ο William Gosset
Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών
Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά
Αναλυτική Στατιστική
Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων
Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων
Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων Επαγωγική Στατιστική Ο έλεγχος υποθέσεων είναι η δεύτερη μορφή της επαγωγικής στατιστικής. Έχει επίσης μεγαλύτερη δυνατότητα εφαρμογής. Για να κατανοήσουμε την
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών
Οικονομετρία. Απλή Παλινδρόμηση. Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική
Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι
Σκοπός του μαθήματος. Έλεγχος μηδενικής υπόθεσης OR-RR. Έλεγχος μηδενικής υπόθεσης. Σφάλαμα τύπου Ι -Σφάλμα τύπου ΙΙ 20/4/2013
Σκοπός του μαθήματος Έλεγχος μηδενικής υπόθεσης OR-RR Μαρία Γκριζιώτη Μsc Ιατρικής Ερευνητικής Μεθοδολογίας Μηδενική υπόθεση p value 95% Διαστήματα Εμπιστοσύνης Odds Ratio Relative Risk Έλεγχος μηδενικής
Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας
Κλωνάρης Στάθης ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Η Υπόθεση είναι μία πεποίθηση σχετικά με μία παράμετρο Παράμετρος μπορεί να είναι ο μέσος ενός πληθυσμού, ένα ποσοστό, ένας συντελεστής
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού
Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 7-8 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
Έλεγχος Υποθέσεων (Hypothesis Testing)
Έλεγχος Υποθέσεων (Hypothesis Testig) Ορισμοί Μορφές στατιστικού ελέγχου Πιθανότητες σφάλματος τύπου Ι και ΙΙ Ισχύς (Power) ενός ελέγχου Η P-τιμή (P-vlue) Στατιστικοί έλεγχοι υποθέσεων για ειδικές περιπτώσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ
ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που
T-tests One Way Anova
William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά
ΕΙΔΗ ΕΡΕΥΝΑΣ I: ΠΕΙΡΑΜΑΤΙΚΗ ΕΡΕΥΝΑ & ΠΕΙΡΑΜΑΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ
ΤΕΧΝΙΚΕΣ ΕΡΕΥΝΑΣ (# 252) Ε ΕΞΑΜΗΝΟ 9 η ΕΙΣΗΓΗΣΗ ΣΗΜΕΙΩΣΕΙΣ ΕΙΔΗ ΕΡΕΥΝΑΣ I: ΠΕΙΡΑΜΑΤΙΚΗ ΕΡΕΥΝΑ & ΠΕΙΡΑΜΑΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΛΙΓΗ ΘΕΩΡΙΑ Στην προηγούμενη διάλεξη μάθαμε ότι υπάρχουν διάφορες μορφές έρευνας
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 6 η :Έλεγχοι Υποθέσεων V. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 6 η :Έλεγχοι Υποθέσεων V Διδάσκουσα: Κοντογιάννη Αριστούλα Έλεγχος υποθέσεων για τους μέσους εξαρτημένων δειγμάτων Επίδραση παρέμβασης:
Πειραματική έρευνα: Δειγματοληψία, μεταβλητές, υποθέσεις
Πειραματική έρευνα: Δειγματοληψία, μεταβλητές, υποθέσεις Καμπάς Αντώνης Πρόγραμμα Μεταπτυχιακών Σπουδών Εξειδίκευσης του Τμήματος Ελληνικής Φιλολογίας του Δημοκριτείου Πανεπιστημίου Θράκης σε συνεργασία
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων
ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών
Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης
Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος
Το σύμβολο μ απεικονίζει 92.4% το μέσο όρο του πληθυσμού 121 92.4% το μέσο όρο του δείγματος 8 6.1% το μέσο όρο της κατανομής t 0 0% το μέσο όρο της κανονικής κατανομής 2 1.5% Το σύμβολο X απεικονίζει
5. Έλεγχοι Υποθέσεων
5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Α: Απλή Τυχαία Δειγματοληψία Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες
Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ερωτήσεις Πολλαπλών Επιλογών στο Μάθημα «Μέθοδοι Έρευνας»
Ερωτήσεις Πολλαπλών Επιλογών στο Μάθημα «Μέθοδοι Έρευνας» 1) Στη δειγματοληψία με πιθανότητα α) η πιθανότητα κάθε περίπτωσης να επιλεγεί στο δείγμα είναι άγνωστη β) η πιθανότητα κάθε περίπτωσης να επιλεγεί
ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2
1 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2 Β. ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΕΥΝΑ 1. Γενικά Έννοιες.. 2 2. Πρακτικός Οδηγός Ανάλυσης εδοµένων.. 4 α. Οδηγός Λύσεων στο πλαίσιο
Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας
Κλωνάρης Στάθης ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Μέχρι τώρα ασχοληθήκαμε με τις τεχνικές εκτίμησης παραμέτρων για ένα πληθυσμό όπως: τον Μέσο µ και το ποσοστό p Θα συνεχίσουμε
Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης
Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
Κεφάλαιο 16. Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 2. Προϋποθέσεις για τη χρήση του τεστ. ιαφορές ή συσχέτιση.
Κεφάλαιο 16 Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 1 Προϋποθέσεις για τη χρήση του τεστ ιαφορές ή συσχέτιση Κλίµακα µέτρησης Σχεδιασµός Σηµείωση ιαφορές Κατηγορική Ανεξάρτητα δείγµατα
Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα
Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια
Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων
Ασκήσεις Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων ΑΣΚΗΣΗ 1: Έλεγχος για τη μέση τιμή ενός πληθυσμού Η αντικαπνιστική νομοθεσία υποχρεώνει τους καπνιστές που εργάζονται σε
Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017
Κεφάλαιο 12. Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t
Κεφάλαιο 12 Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t 1 Πώς δημιουργήθηκε W. S. Gosset (1908) Χημικός στη βιομηχανία Μπύρας Guiness Σύγκριση διαφόρων δειγμάτων μπύρας Δημοσίευση αποτελεσμάτων ως Student
«ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ» Μάθημα 5 «Βασικές μέθοδοι ποσοτικής έρευνας» (II)
«ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ» Μάθημα 5 «Βασικές μέθοδοι ποσοτικής έρευνας» (II) Τα θέματά μας Μέθοδοι ποσοτικής έρευνας - - «Πειραματική έρευνα» (μέθοδοι: πείραμα, οιονεί πείραμα,
5 o Μάθημα Έλεγχοι Υποθέσεων
5 o Μάθημα Έλεγχοι Υποθέσεων 5 Το Πρόβλημα του Ελέγχου Υποθέσεων Ας υποθέσουμε ότι σχεδιάζονται κάποιες κυκλοφοριακές ρυθμίσεις με στόχο ο μέσος χρόνος μετακίνησης των εργαζομένων που χρησιμοποιούν το
Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας
Στατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
Μέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing)
Μέρος IV. Ελεγχοι Υποθέσεων (ypothesis Testig) Βασικές έννοιες Γενική μεθοδολογία Σφάλμα τύπου Ι και -vlue Στατιστικοί έλεγχοι υποθέσεων για ειδικές περιπτώσεις Εφαρμοσμένη Στατιστική Μέρος 4 ο - Κ. Μπλέκας
Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation. Σταμάτης Πουλακιδάκος
Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation Σταμάτης Πουλακιδάκος Μερικά εισαγωγικά λόγια Οι έλεγχοι των ερευνητικών υποθέσεων πραγματοποιούνται με διάφορους στατιστικούς ελέγχους,
Συνάφεια μεταξύ ποιοτικών μεταβλητών. Εκδ. #3,
Συνάφεια μεταξύ ποιοτικών μεταβλητών Εκδ. #3, 19.03.2016 Ο έλεγχος ανεξαρτησίας χ 2 Ο έλεγχος ανεξαρτησίας χ 2 εφαρμόζεται για να εξετάσουμε τη συνάφεια μεταξύ δύο ποιοτικών μεταβλητών με την έννοια της
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test) Σε ορισμένες περιπτώσεις απαιτείται ο έλεγχος της ύπαρξης στατιστικά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Γ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Όπως αναφέρθηκε στο προηγούμενο κεφάλαιο σε ορισμένες
Περιγραφική Ανάλυση ποσοτικών μεταβλητών
Περιγραφική Ανάλυση ποσοτικών μεταβλητών Στο data file Worldsales.sav (αρχείο υποθετικών πωλήσεων ανά ήπειρο και προϊόν) Analyze Descriptive Statistics Frequencies Επιλογή μεταβλητής Revenue Πατάμε στο
Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση
Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση Οι επιδόσεις δέκα μαθητών σε τέσσερα μαθήματα Μαθητής Άλγεβρα Φυσική Νέα Ελληνικά Μουσική Α 65 63 35 61 Β 60 58 38 35 Γ 60 60 40 46
Ερευνητική υπόθεση. Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές.
Ερευνητική υπόθεση Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές. Στα πειραματικά ερευνητικά σχέδια, η ερευνητική υπόθεση αναφέρεται
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ Εξάμηνο Υ/Ε Ώρες Θεωρίας Ώρες Ασκήσης Διδακτικές μονάδες ECTS A Υ 3 3 4 6 Διδάσκουσα Μ. Αλεξίου Χατζάκη, Επίκ. Καθηγήτρια Γεν. Βιολογίας. Aντικειμενικοί στόχοι του μαθήματος Οι στόχοι
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ
συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;
Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται
Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Σειρά Β Εξέταση Φεβρουαρίου (0/) στο Μάθηµα: Γεωργικός Πειραµατισµός Θεσσαλονίκη: 4/0/0 Επώνυµο Όνοµα Αρ. Μητρώου Κατεύθυνση Ζήτηµα ο ( µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Στατιστική. Ανάλυση ιασποράς με ένα Παράγοντα. One-Way Anova. 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς
Στατιστική Ανάλυση ιασποράς με ένα Παράγοντα One-Way Anova Χατζόπουλος Σταύρος Κεφάλαιο 8ο. Ανάλυση ιασποράς 8.1 Εισαγωγή 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς 8.3 Ανάλυση ιασποράς με
Είδη Έρευνας Ι: Πειραματική Έρευνα & Πειραματικοί Σχεδιασμοί
εισήγηση 9η Είδη Έρευνας Ι: Πειραματική Έρευνα & Πειραματικοί Σχεδιασμοί (252) Τεχνικές Έρευνας Συστατικά ενός πειράματος Ανεξάρτητη μεταβλητή - Παρέμβαση Εξαρτημένη μεταβλητή Πειραματική ομάδα Ομάδα ελέγχου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Mann Whitney U τεστ)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Mann Whitney U τεστ) Σε ορισμένες περιπτώσεις απαιτείται ο έλεγχος της ύπαρξης
Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας
A. Montgomery Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας Καρολίνα Δουλουγέρη, ΜSc Υποψ. Διαδάκτωρ Σήμερα Αναζήτηση βιβλιογραφίας Επιλογή μεθοδολογίας Ερευνητικός σχεδιασμός Εγκυρότητα και αξιοπιστία
Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών