ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 7:
|
|
- Σάββας Ζαΐμης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 7: Ανάλυση σύνθετων ηλεκτρικών κυκλωμάτων Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο TEI Δυτικής Μακεδονίας και στην Ανώτατη Εκκλησιαστική Ακαδημία Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
4 Σκοποί ενότητας (1) Σύντομη εισαγωγή στα συστήματα εξισώσεων Μέθοδοι ανάλυσης κυκλωμάτων 4
5 Περιεχόμενα ενότητας Συστήματα εξισώσεων στην ανάλυση κυκλωμάτων. Η μέθοδος των ρευμάτων βρόχων. Η μεθοδος των ρευμάτων των κλάδων. 5
6 Συστήματα εξισώσεων Τα συστήματα εξισώσεων αποτελούνται από μια ομάδα N εξισώσεων οι οποίες περιλαμβάνουν N αγνώστους. N είναι ένας αριθμός με τιμή 2 ή μεγαλύτερη. 6
7 Η στάνταρ μορφή ενός συστήματος εξισώσεων 2 ης τάξης Ένα σύστημα εξισώσεων 2 ης τάξης γραμμένο σε στάνταρ μορφή είναι: όπου: a 1,1 x 1 + a 1,2 x 2 = b 1 a 2,1 x 1 + a 2,2 x 2 = b 2 τα a είναι οι συντελεστές των αγνώστων μεταβλητών x 1 και x 2 και αντιπροσωπεύουν τις τιμές των συνιστωσών ενός κυκλώματος, όπως, π.χ., τιμές αντιστάσεων και τα b είναι οι σταθερές και αντιπροσωπεύουν τις τιμές των πηγών τάσης. 7
8 Ένα σύστημα εξισώσεων 2 ης τάξης ΠΑΡΑΔΕΙΓΜΑ 1: Υποθέστε ότι οι παρακάτω δύο εξισώσεις. 2I 1 = 8-5I 2 4I 2-5I = 0 περιγράφουν ένα ορισμένο κύκλωμα με δύο άγνωστα ρεύματα I 1 και I 2 (οι συντελεστές είναι τιμές αντιστάσεων και οι σταθερές είναι τάσεις στο κύκλωμα). Γράψτε τις εξισώσεις σε στάνταρ μορφή. ΛΥΣΗ Αναδιατάσουμε τις εξισώσεις σε στάνταρ μορφή ως εξής: 2I 1 + 5I 2 = 8-5I 1 + 4I 2 = -6 8
9 Η στάνταρ μορφή ενός συστήματος εξισώσεων 3 ης τάξης Ένα σύστημα εξισώσεων 3 ης τάξης γραμμένο σε στάνταρ μορφή είναι: a 1,1 x 1 + a 1,2 x 2 + a 1,3 x 3 = b 1 a 2,1 x 1 + a 2,2 x 2 + a 2,3 x 3 = b 2 a 3,1 x 1 + a 3,2 x 2 + a 3,3 x 3 = b 3 9
10 Ένα σύστημα εξισώσεων 3 ου βαθμού ΠΑΡΑΔΕΙΓΜΑ 2: Υποθέστε ότι οι παρακάτω τρεις εξισώσεις. 4I 3 + 2I 2 + 7I 1 = 0 5I 1 + 6I 2 + 9I 3-7 = 0 8 = I 1 + 2I 2 + 5I 3 περιγράφουν ένα ορισμένο κύκλωμα με τρία άγνωστα ρεύματα I 1, I 2 και I 3. Γράψτε τις εξισώσεις σε στάνταρ μορφή. ΛΥΣΗ Αναδιατάσουμε τις εξισώσεις σε στάνταρ μορφή ως εξής: 7I 1 + 2I 2 + 4I 3 = 0 5I 1 + 6I 2 + 9I 3 = 7 I 1 + 2I 2 + 5I 3 = 8 10
11 Λύση ενός συστήματος εξισώσεων Λύση με αντικατάσταση. Λύση με ορίζουσες. Λύση με τη βοήθεια υπολογιστή (PC ή χειρός). 11
12 Λύση ενός συστήματος εξισώσεων με αντικατάσταση Θεωρήστε το παρακάτω σύστημα δύο εξισώσεων. 2x 1 + 6x 2 = 8 (Εξ. 1) 3x 1 + 6x 2 = 2 (Εξ. 2) 12
13 Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (1/6) Για να δείξουμε τη μέθοδο των οριζουσών στη λύση ενός συστήματος εξισώσεων, ας βρούμε τις τιμές των ρευμάτων I 1 και I 2 στο παρακάτω σύστημα δύο εξισώσεων. 10I 1 + 5I 2 = 15 2I 1 + 4I 2 = 8 Πρώτα, φτιάξτε τη χαρακτηριστική ορίζουσα για τον πίνακα των συντελεστών των άγνωστων ρευμάτων. 13
14 Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (2/6) 14
15 Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (3/6) Βήμα 1: Yπολογίστε την τιμή της ορίζουσας των συντελεστών ως εξής: πολλαπλασιάστε τον πρώτο αριθμό της πρώτης στήλης επί το δεύτερο αριθμό της δεύτερης στήλης (10 4 = 40). πολλαπλασιάστε τον δεύτερο αριθμό της πρώτης στήλης επί το πρώτο αριθμό της δεύτερης στήλης (2 5 = 10). αφαιρέστε το δεύτερο γινόμενο από το πρώτο (40 10 = 30)
16 Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (4/6) Βήμα 2: Φτιάξτε την ορίζουσα του I 1, αντικαθιστώντας τους συντελεστές του I 1 στην 1 η στήλη της ορίζουσας των συντελεστών με τους σταθερούς αριθμούς που είναι στο δεξιό μέλος των εξισώσεων. και υπολογίστε την 16
17 Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (5/6) Βήμα 3: Λύνουμε για το ρεύμα I 1 διαιρώντας την ορίζουσα του I 1 με την ορίζουσα των συντελεστων A
18 Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (6/6) Βήμα 4: Κατασκευάζουμε την ορίζουσα του I 2, αντικαθιστώντας τους συντελεστές του I 2 στη 2 η στήλης της χαρακτηριστικής ορίζουσας με τους σταθερούς αριθμούς που είναι στο δεξιό μέλος των εξισώσεων. την υπολογίζουμε : και λύνουμε για το ρεύμα I 2 : 18
19 Ένα παράδειγμα σύστηματος εξισώσεων 2 ης τάξης (1/2) ΠΑΡΑΔΕΙΓΜΑ 3: Λύστε το παρακάτω σύστημα εξισώσεων για τα άγνωστα ρεύματα: 2I 1-5I 2 = 106I I 2 =20. ΛΥΣΗ Υπολογίζουμε την τιμή της χαρακτηριστικής ορίζουσας των συντελεστών: Λύνουμε για το ρεύμα I 1 : 19
20 Ένα παράδειγμα σύστηματος εξισώσεων 2 ης τάξης (2/2) Ομοίως, λύνουμε για το ρεύμα I 2 : (2)(20) (6)(10) A 20
21 Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (1/5) Ας βρούμε τα άγνωστα ρεύματα I 1, I 2 και I 3 στο παρακάτω σύστημα τριων εξισώσεων. I 1 + 3I 2-2I 3 = 7 4I 2 + I 3 = 8-5I 1 + I 2 + 6I 3 = 9 Η στάνταρ μορφή του συστήματος είναι: 1I 1 + 3I 2-2I 3 = 7 0I 1 +4I 2 + 1I 3 = 8-5I 1 + 1I 2 + 6I 3 = 9 Η χαρακτηριστική ορίζουσα των συντελεστών των άγνωστων ρευμάτων. 21
22 Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (2/5) 22
23 Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (3/5) Βήμα 1: Ξαναγράψτε τις πρώτες δύο στήλες αμέσως στα δεξιά της ορίζουσας. Βήμα 2: Πολλαπλασιάστε τους τρεις αριθμούς στην κάθε μια από τις τρεις προς τα κάτω διαγωνίους και προσθέστε τα τρία γινόμενο, (1)(4)(6) + (3)(1)(-5) + (-2)(0)(1) = 9. Πολλαπλασιάστε τους τρεις αριθμούς στην κάθε μια από τις τρεις προς τα πάνω διαγωνίους και προσθέστε τα τρία γινόμενο, (-5)(4)(-2) + (1)(1)(1) + (6)(0)(3) =
24 Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (4/5) 24
25 Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (5/5) Βήμα 4: Λύνουμε για το ρεύμα I 1 διαιρώντας την ορίζουσα του I 1 με την ορίζουσα των συντελεστων A Με όμοιο τρόπο υπολογίζουμε τα ρεύματα I 2 και I 3. 25
26 Ένα παράδειγμα σύστηματος εξισώσεων 3 ης τάξης (1/2) ΠΑΡΑΔΕΙΓΜΑ 4: Βρείτε την τιμή του ρεύματος I 2 από το παρακάτω σύστημα εξισώσεων α: 2I I 2 + I 3 = I 1 +0I 2 + 2I 3 = 1.5 3I I 2 + 0I 3 = -1 ΛΥΣΗ Υπολογίζουμε την τιμή της χαρακτηριστικής ορίζουσας των συντελεστών ως εξής: = (2)(0)(0) + (0.5)(2)(3) + (1)(0.75)(0.2) (3)(0)(1) (0.2)(2)(2) + (0)(0.75)(0.5) = =
27 Ένα παράδειγμα σύστηματος εξισώσεων 3 ης τάξης (2/2) Υπολογίζουμε την ορίζουσα για το ρεύμα I 2. = (2)(1.5)(0) + (0)(2)(3) + (1)(0.75)( 1) (3)(1.5)(1) ( 1)(2)(2) (0)(0.75)(0) = = 1.25 Τελικά, βρίσκουμε το I 2 διαιρώντας τις δύο ορίζουσες. 27
28 Μέθοδοι ανάλυσης κυκλωμάτων Η μέθοδος των ρευμάτων βρόχων 28
29 Η μέθοδος των ρευμάτων βρόχων Εργαζόμαστε με τα ρεύματα βρόχων αντί για τα πραγματικά ρεύματα των κλάδων. I 1, I 2 και Ι 3 : πραγματικά ρεύματα κλάδων. I A και Ι B : ρεύματα βρόχων. Τα ρεύματα βρόχων είναι μαθηματικές ποσότητες. Χρησιμεύουν για την ευκολότερη ανάλυση του κυκλώματος. 29
30 Η μέθοδος των ρευμάτων βρόχων: Τα βήματα (1/4) Βήμα 1.Σημειώνουμε ένα ρεύμα σε κάθε έναν βρόχο του κυκλώματος. Η διεύθυνση είναι αυθαίρετη (συνηθίζουμε διεύθυνση CW) Μπορεί να μην είναι η πραγματική φορά του ρεύματος Ο αριθμός των ρευμάτων βρόχων πρέπει να είναι επαρκής, όχι μεγαλύτερος. 30
31 Η μέθοδος των ρευμάτων βρόχων: Τα βήματα (2/4) Βήμα 2. Σημειώνουμε την πολικότητα ( και ) της πτώσης τάσης σε κάθε αντίσταση. Καθορίζεται από τις διευθύνσεις των ρευμάτων βρόχων. Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 31
32 Η μέθοδος των ρευμάτων βρόχων: Τα βήματα (3/4) Βήμα 3.Εφαρμόζουμε το νόμο των τάσεων του Kirchhoff σε κάθε βρόχο. Αν ένα στοιχείο (π.χ., R 2 ) διαρρέεται από περισσότερα από ένα ρεύματα βρόχων, τα περιλαμβάνουμε όλα. Προκύπτει μια εξίσωση για κάθε βρόχο. Για βρόχο Α: V S1 R 1 I A R 2 I A R 2 I B = 0 Για βρόχο Β: V S2 R 2 I B R 2 I A R 3 I B = 0 Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 32
33 Η μέθοδος των ρευμάτων βρόχων: Τα βήματα (4/4) Βήμα 4. Συνδυάζουμε τους όμοιους όρους. Φέρνουμε το σύστημα των εξισώσεων σε στάνταρ μορφή. Δεν ξεχνάμε: oι άγνωστες ποσότητες είναι τα ρεύματα βρόχων I A και I B. Τέλος, λύνουμε το σύστημα και υπολογίζουμε τα ρεύματα των βρόχων. Συνοπτικός κανόνας για την εφαρμογή των βημάτων 1 4: (Άθροισμα αντιστάσεων στο βρόχο) (ρεύμα βρόχου) (κάθε αντίσταση κοινή σε δύο βρόχους) (ρεύμα γειτονικού βρόχου ) = (τάση πηγής στο βρόχο). 33
34 Ένα παράδειγμα της μεθόδου των βρόχων (1/4) ΠΑΡΑΔΕΙΓΜΑ 5: Βρείτε τα ρεύματα των κλάδων στο παρακάτω κύκλωμα, χρησιμοποιώντας τη μέθοδο των ρευμάτων βρόχων. Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 34
35 ΛΥΣΗ Ένα παράδειγμα της μεθόδου των βρόχων (2/4) Σημειώνουμε τα ρεύματα βρόχων I A και I B δεξιόστροφα (CW). Οι τιμές των αντιστάσεων είναι σε Ohm και των τάσεων σε Volts. Χρησιμοποιούμε τον κανόνα για να φτιάξουμε τις εξισώσεις των δύο βρόχων: ( )I A 220I B = I A 220I B = 10 για το βρόχο Α. 220I A ( )I B = I A 1040I B = 5 για το βρόχο Β. 35
36 Ένα παράδειγμα της μεθόδου των βρόχων (3/4) 36
37 Ένα παράδειγμα της μεθόδου των βρόχων (4/4) Βρίσκουμε τα πραγματικά ρεύματα των κλάδων. Στην R1, I 1 = I A = 13.9 ma Στην R3, I 3 = I B = 1.87 ma. Το αρνητικό πρόσημο δηλώνει αντίθετη φορά από αυτή που σχεδιάσαμε αρχικά για το I B. Στην R2, I 2 = I A I B = 13.9 ma ( 1.87 ma) = 15.8 ma. Γνωρίζοντας τα ρεύματα των κλάδων, μπορούμε να βρούμε τις τάσεις από το νόμο του Ohm. Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 37
38 Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους (1/6) ΠΑΡΑΔΕΙΓΜΑ 6: Για το κύκλωμα γέφυρας Wheatstone της εικόνας, βρείτε το ρεύμα σε κάθε αντίσταση (ρεύμα κλάδου), χρησιμοποιώντας τη μέθοδο των ρευμάτων βρόχων. Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 38
39 Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους (2/6) ΛΥΣΗ Σημειώνουμε τρία δεξιόστροφα (CW) ρεύματα βρόχων I A, I B και I C. Χρησιμοποιώντας τον κανόνα, γράφουμε τις εξισώσεις των τριών βρόχων. 39
40 Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους (3/6) Για το βρόχο Α: ( )I A 330I B 300I C = I A 330I B 300I C = 12 Για το βρόχο B: 330I A ( )I B 1000I C = 0 330I A 1690I B 1000I C = 0 Για το βρόχο C: 300I A 1000I B ( )I C = 0 300I A 1000I B 1690I C = 0 H χαρακτηριστική ορίζουσα των συντελεστών είναι:
41 Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους (4/6) 41
42 Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους (5/6) 42
43 Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους (6/6) Έχουμε: I A = 35.1 ma I B = 16.2 ma I C = 15.8 ma Το ρεύμα στην αντίσταση R1 είναι: Ι 1 = Ι Α Ι Β = 35.1 ma 16.2 ma = 18.9 ma. Το ρεύμα στην R2 είναι: Ι 2 = Ι Α Ι C = 35.1 ma 15.8 ma = 19.3 ma. Το ρεύμα στην R3 είναι: Ι 3 = Ι B = 16.2 ma. Το ρεύμα στην R4 είναι: Ι 4 = Ι C = 15.8 ma. Το ρεύμα στην RL είναι: Ι L = Ι B Ι C = 16.2 ma 15.8 ma = 0.4 ma. 43
44 Ένα άλλο χρήσιμο παράδειγμα κυκλώματος με τρεις βρόχους: Το κύκλωμα γέφυρας Τ (1/5) ΠΑΡΑΔΕΙΓΜΑ 7: Η εικόνα δείχνει ένα κύκλωμα γέφυρας Τ (bridged-t circuit) τριών βρόχων. Κατασκευάστε τη στάνταρ μορφή των εξισώσεων και βρείτε το ρεύμα σε κάθε αντίσταση. ΛΥΣΗ Σημειώνουμε τρία δεξιόστροφα (CW) ρεύματα βρόχων I A, I B και I C. 44
45 Ένα άλλο χρήσιμο παράδειγμα κυκλώματος με τρεις βρόχους: Το κύκλωμα γέφυρας Τ (2/5) Χρησιμοποιώντας τον κανόνα, γράφουμε τις εξισώσεις των τριών βρόχων. Οι τιμές των αντιστάσεων είναι σε kω Το ρεύμα θα είναι σε ma Για το βρόχο Α: ( )I A 22I B 7.5I C = I A 22I B 7.5I C = 0 Για το βρόχο B: 22I A (22 8.2)I B 8.2I C = 12 22I A 30.2I B 8.2I C = 12 Για το βρόχο C: 7.5I A 8.2I B ( )I C = 0 7.5I A 8.2I B 25.7I C = 0 H χαρακτηριστική ορίζουσα των συντελεστών είναι :
46 Ένα άλλο χρήσιμο παράδειγμα κυκλώματος με τρεις βρόχους: Το κύκλωμα γέφυρας Τ (3/5) 46
47 Ένα άλλο χρήσιμο παράδειγμα κυκλώματος με τρεις βρόχους: Το κύκλωμα γέφυρας Τ (4/5) 47
48 Ένα άλλο χρήσιμο παράδειγμα κυκλώματος με τρεις βρόχους: Το κύκλωμα γέφυρας Τ (5/5) Έχουμε: I A = ma. I B = ma. I C = ma. Το ρεύμα στην αντίσταση R1 είναι: Ι 1 = Ι Α = ma. Το ρεύμα στην R2 είναι: Ι 2 = Ι Α Ι B = A ma = ma. Το αρνητικό πρόσημο δηλώνει ότι το ρεύμα Ι 2 είναι στην αντίθετη κατεύθυνση από αυτή του I A : Η θετική πλευρά της αντίστασης R2 είναι η αριστερή πλευρά. Το ρεύμα στην R3 είναι: Ι 3 = Ι A I C = A ma = 0.08 ma. Το ρεύμα στην R4 είναι: Ι 4 = Ι B Ι C = ma ma = ma. Το ρεύμα στην RL είναι: Ι L = Ι C = ma. 48
49 Η μέθοδος των ρευμάτων των κλάδων Η μέθοδος αυτή χρησιμοποιεί τους νόμους τάσης και ρεύματος του Kirchhoff για να βρει το ρεύμα σε κάθε κλάδο ενός κυκλωματος. Το κύκλωμα (παράδειγμα) έχει δύο ανεξάρτητους βρόχους. Υπάρχουν δύο κόμβοι: κόμβος Α και κόμβος Β. Κλάδος είναι κάθε διαδρομή που συνδέει δύο κόμβους (το κύκλωμα έχει τρεις κλάδους). 49
50 Η μέθοδος των ρευμάτων των κλάδων: Τα βήματα (1/2) Βήμα 1. Σχεδιάζουμε ένα ρεύμα με αυθαίρετη κατεύθυνση σε κάθε κλάδο του κυκλώματος. Βήμα 2. Σημειώνουμε τις πολικότητες των τάσεων στις αντιστάσεις σύμφωνα με την κατεύθυνση των ρευμάτων κλάδων που επιλέξαμε στο Βήμα 1. Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 50
51 Η μέθοδος των ρευμάτων των κλάδων: Τα βήματα (2/2) Βήμα 3. Εφαρμόζουμε τον κανόνα των τάσεων του Kirchhoff γύρω από κάθε κλειστό βρόχο (αλγεβρικό άθροισμα των τάσεων ίσο με μηδέν). Βήμα 4. Εφαρμόζουμε τον κανόνα των ρευμάτων του Kirchhoff στον ελάχιστο αριθμό κόμβων έτσι ώστε να να περιλαμβάνονται όλα τα ρεύματα των κλάδων (αλγεβρικό άθροισμα των ρευμάτων σε ένα κόμβο ίσο με μηδέν). Βήμα 5. Λύνουμε το σύστημα των εξισώσεων που προκύπτει από τα βήματα 3 και 4. 51
52 Ένα παράδειγμα της μεθόδου των ρευμάτων των κλάδων (1/5) ΠΑΡΑΔΕΙΓΜΑ 8: Χρησιμοποιήστε τη μέθοδο των ρευμάτων των κλάδων για να βρείτε το ρεύμα κάθε κλάδου στο παρακάτω κύκλωμα. Πηγή: T.L. Floyd, Electric Circuits Fundamentals, 6 th ed. Pearson. 52
53 Ένα παράδειγμα της μεθόδου ΛΥΣΗ των ρευμάτων των κλάδων (2/5) Βήμα 1. Σχεδιάζουμε τα ρεύματα των κλάδων με αυθαίρετη κατεύθυνση. Βήμα 2. Σημειώνουμε τις πολικότητες των τάσεων στις αντιστάσεις. Βήμα 3. Εφαρμόζουμε τον κανόνα των τάσεων του Kirchhoff γύρω από τον αριστερό βρόχο (διατρέχοντάς τον, π.χ., δεξιόστροφα), I 1 220I 2 = 0 470I 1 220I 2 = 10 και γύρω από το δεξιό βρόχο (διατρέχοντάς τον, π.χ., αριστερόστροφα), 5 820I 3 220I 2 = 0 820I 3 220I 2 = 5 53
54 Ένα παράδειγμα της μεθόδου των ρευμάτων των κλάδων (3/5) Βήμα 4. Εφαρμόζουμε τον κανόνα των ρευμάτων του Kirchhoff, π.χ., στον κόμβο Α. I 1 I 2 I 3 = 0 Βήμα 5. Λύνουμε το σύστημα των εξισώσεων με αντικατάσταση. Πρώτα, λύνουμε την εξίσωση των ρευμάτων ως προς I 1 I 1 = I 2 I 3 και αντικαθιστούμε στην εξίσωση του αριστερού βρόχου 470I 1 220I 2 = (I 2 I 3 ) 220I 2 = I 2 470I 3 220I 2 = I 2 470I 3 = 10 54
55 Ένα παράδειγμα της μεθόδου των ρευμάτων των κλάδων (4/5) 55
56 Ένα παράδειγμα της μεθόδου των ρευμάτων των κλάδων (5/5) Aντικαθιστώντας την τιμή του I 3 στην εξίσωση του δεξιού βρόχου, έχουμε: Τέλος, αντικαθιστώντας τα I 2 και I 3 στην εξίσωση των ρευμάτων, βρίσκουμε: I 1 = I 2 I 3 = = A = 13.9 ma. Πρόβλημα:Βρείτε τα ρεύματα των κλάδων λύνοντας το σύστημα των εξισώσεων με τη μέθοδο των οριζουσών. 56
57 ΠΡΟΒΛΗΜΑΤΑ (1/3) Χρησιμοποιώντας τη μέθοδο των ρευμάτων των κλάδων, βρείτε το ρεύμα μέσω κάθε αντίστασης στο κύκλωμα της Εικ. Π.1. (Απ.: I 1 = 150 ma, I 2 = 50 ma, I 3 = 100 ma) Προσδιορίστε την τάση στα άκρα της πηγής ρεύματος Is (σημεία Α και Β) της Εικ. Π.1. (Απ.: V AB = V A V B = 1.85 V) 57
58 ΠΡΟΒΛΗΜΑΤΑ (2/3) Χρησιμοποιώντας τη μέθοδο των βρόχων, βρείτε τα ρεύματα των κλάδων στην Εικ. Π.3. (Απ.: I 1 = 5.1 ma, I 2 = 3.5 ma, I 3 = 1.6 ma) 58
59 ΠΡΟΒΛΗΜΑΤΑ (3/3) Προσδιορίστε τις τάσεις και τις πολικότητές τους σε κάθε αντίσταση στο κύκλωμα της Εικ. Π.3. (Απ.: V 1 = 5.1 V, V 2 = 2.9 V, V 3 = 0.9 V) 59
60 Βιβλιογραφία T.L. Floyd, Electric Circuits Fundamentals, 8 th ed. Pearson. 60
Κεφάλαιο 8 Μέθοδοι ανάλυσης κυκλωμάτων
Κεφάλαιο 8 Μέθοδοι ανάλυσης κυκλωμάτων 8 Μέθοδοι ανάλυσης κυκλωμάτων ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Συστήματα εξισώσεων στην ανάλυση κυκλωμάτων Η μέθοδος των ρευμάτων βρόχων Η μεθοδος των ρευμάτων των κλάδων 2
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 4. Μέθοδοι ανάλυσης κυκλωμάτων
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 4 Μέθοδοι ανάλυσης κυκλωμάτων ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Συστήματα εξισώσεων - Ορίζουσες Η μέθοδος των ρευμάτων των κλάδων Η μέθοδος των ρευμάτων βρόχων Η μέθοδος των τάσεων κόμβων
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 4:
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 4: Ηλεκτρικά κυκλώματα σε σειρά Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 6:
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 6: Θεωρήματα ηλεκτρικών κυκλωμάτων Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΗΛΕΚΤΡΟΤΕΧΝΙΑ. Ενότητα 1: Κυκλώματα συνεχούς ρεύματος Καθηγητής Πουλάκης Νικόλαος
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 1: Κυκλώματα συνεχούς ρεύματος Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 5:
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 5: Παράλληλα ηλεκτρικά κυκλώματα Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 2. Νόμοι στα ηλεκτρικά κυκλώματα
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 2 Νόμοι στα ηλεκτρικά κυκλώματα ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Τοπολογία ηλεκτρικών κυκλωμάτων: Κόμβοι, κλάδοι, βρόχοι. Κανόνες του Kirchhoff Το Ηλεκτρικό Κύκλωμα (Electric Circuit) Το
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 3: Νόμος του Ohm Κανόνες του Kirchhoff Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 2. Νόμοι στα ηλεκτρικά κυκλώματα ΠΡΟΒΛΗΜΑΤΑ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 2 Νόμοι στα ηλεκτρικά κυκλώματα ΠΡΟΒΛΗΜΑΤΑ Πρόβλημα 2-1 (Άσκηση 2, Κεφ. 2, σελ. 55, Κ. Παπαδόπουλου Ανάλυση ηλεκτρικών κυκλωμάτων ) Να υπολογιστεί η ισχύς που παράγει ή καταναλώνει
Κεφάλαιο 4 Κυκλώματα σε Σειρά
Κεφάλαιο 4 Κυκλώματα σε Σειρά 1 4 Κυκλώματα σε Σειρά (Series Circuits) ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Αντιστάτες σε Σειρά Το Ρεύμα σε ένα Κύκλωμα σε Σειρά Ολική Αντίσταση σε Σειρά Πηγές Τάσης σε Σειρά Ο Νόμος Τάσης
Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ)
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ενότητα 2: Βασικές αρχές ηλεκτροτεχνίας Δ.Ν. Παγώνης Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 5: Χρήση μετασχηματισμού Laplace για επίλυση ηλεκτρικών κυκλωμάτων Μέθοδοι εντάσεων βρόχων και τάσεων κόμβων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 5: Χρήση μετασχηματισμού Laplace για επίλυση ηλεκτρικών κυκλωμάτων Μέθοδοι εντάσεων βρόχων και τάσεων
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΚΥΚΛΩΜΑΤΩΝ
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΚΥΚΛΩΜΑΤΩΝ 1 Ορίζουμε σε κάθε βρόχο ως ρεύμα βρόχου το ρεύμα που διαρρέει όλους τους κλάδους του βρόχου. Ως θετική φορά των ρευμάτων των βρόχων λαμβάνεται αυθαίρετα
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 5. Θεωρήματα κυκλωμάτων. ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Θεώρημα επαλληλίας ή υπέρθεσης Θεωρήματα Thevenin και Norton
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 5 Θεωρήματα κυκλωμάτων ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Θεώρημα επαλληλίας ή υπέρθεσης Θεωρήματα Thevenin και Norton Θεώρημα Επαλληλίας ή Υπέρθεσης (Superposition Theorem) Το θεώρημα της
ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΔΙΔΑΣΚΩΝ: ΑΡΙΣΤΕΙΔΗΣ Νικ. ΠΑΥΛΙΔΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ηλεκτροτεχνία ΙΙ. Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας
Ηλεκτροτεχνία ΙΙ Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ηλεκτρικές Μηχανές Ι. Ενότητα 9: Γεννήτριες Συνεχούς Ρεύματος. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε
Ηλεκτρικές Μηχανές Ι Ενότητα 9: Γεννήτριες Συνεχούς Ρεύματος Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ηλεκτροτεχνία Ι. Κυκλώματα συνεχούς και Ηλεκτρομαγνητισμός. Α. Δροσόπουλος
Ηλεκτροτεχνία Ι Κυκλώματα συνεχούς και Ηλεκτρομαγνητισμός Α Δροσόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Σχολή Τεχνολογικών Εφαρμογών ΤΕΙ Δυτικής Ελλάδος Α Δροσόπουλος Ηλεκτροτεχνία Ι Ηλεκτρικό Κύκλωμα
Κεφ. 7: Θεωρήματα κυκλωμάτων. Προβλήματα
Κεφ. 7: Θεωρήματα κυκλωμάτων Προβλήματα 1 Πρόβλημα 1 Χρησιμοποιώντας το θεώρημα της υπέρθεσης, υπολογίστε το ρεύμα μέσω της στο κύκλωμα της παρακάτω εικόνας 1.0kΩ 2 V 1.0kΩ 3 V 2.2kΩ Λύση Απομακρύνουμε
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 5: Επανάληψη στο Συνεχές Ρεύμα. Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
(E) Το περιεχόμενο. Προγράμματος. διαφορετικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ηλεκτροτεχνία, ηλ. μηχανές & εγκαταστάσεις πλοίου (E) Ενότητα 2: Αντιστάτες σε Σειρά & Παράλληλα, οι νόμοι τουυ Kirchhoff f Δημήτριος
Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 4: Συστηματικές μέθοδοι επίλυσης κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.
ΗΛΕΚΤΡΟΝΙΚΑ Ι. Ενότητα 4: Ενισχυτής κοινού εκπομπού. Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ
ΗΛΕΚΤΡΟΝΙΚΑ Ι Ενότητα 4: Ενισχυτής κοινού εκπομπού Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου Βασικές αρχές ηλεκτροτεχνίας
Βασικά στοιχεία τοπολογίας (1/2) Κλάδος δικτύου: Κάθε στοιχείο (πηγές,r,l,c) του δικτύου με δύο ακροδέκτες ή οποιαδήποτε ομάδα συνδεδεμένων στοιχείων που σχηματίζουν ένα σύνολο δύο ακροδεκτών Ακροδέκτης
Ηλεκτροτεχνία ΙΙ. Ενότητα 1: Βασικές Έννοιες Ηλεκτροτεχία Ηλεκτρονική. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας
Ηλεκτροτεχνία ΙΙ Ενότητα 1: Βασικές Έννοιες Ηλεκτροτεχία Ηλεκτρονική Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 4: Ισχύς στο Συνεχές Ρεύμα Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
Κυκλώματα με ημιτονοειδή διέγερση
Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω
ΜΑΘΗΜΑ: Ηλεκτρονικά Ισχύος
ΜΑΘΗΜΑ: Ηλεκτρονικά Ισχύος ΔΙΔΑΣΚΩΝ: Γιώργος Χριστοφορίδης ΤΜΗΜΑ: Ηλεκτρολόγων Μηχανικών Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Ηλεκτρικές Μηχανές Ι. Ενότητα 2: Τριφασικοί Μετασχηματιστές. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε
Ηλεκτρικές Μηχανές Ι Ενότητα 2: Τριφασικοί Μετασχηματιστές Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΚΕΦΑΛΑΙΟ 6 Ο : ΑΝΑΛΥΣΗ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 6 Ο : ΑΝΑΛΥΣΗ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1 Γενικεύοντας τη μέθοδο των ελαχίστων βρόχων έχουμε: Α)Μετατρέπουμε τις πηγές ρεύματος του κυκλώματος σε πηγές τάσης. Β) Ορίζουμε και αριθμούμε τους βρόχους.
Ηλεκτρικές Μηχανές Ι. Ενότητα 4: Εύρεση Παραμέτρων. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε
Ηλεκτρικές Μηχανές Ι Ενότητα 4: Εύρεση Παραμέτρων Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 2: Όργανα Μετρήσεων Ηλεκτρικών Κυκλωμάτων Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 3: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κεφάλαιο 7 Θεωρήματα κυκλωμάτων
Κεφάλαιο 7 Θεωρήματα κυκλωμάτων 1 7 Θεωρήματα κυκλωμάτων (Circuits Theorems) ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Η dc πηγή τάσης Η πηγή ρεύματος Μετασχηματισμοί πηγών Το Θεώρημα της Υπέρθεσης Το Θεώρημα Thevenin Το
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 5: Ισοδυναμία Πιστωτικών Τίτλων Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 4 η : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης
Θερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 8: Συστήματα γραμμικών αλγεβρικών εξισώσεων Εργαλεία Excel minverse & mmult Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Θερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 1: Αριθμητικές μέθοδοι στα φαινόμενα μεταφοράς και στη θερμοδυναμική Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν
Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ασκήσεις κυκλωμάτων συνεχούς ρεύματος. Κανόνες Kirchhoff. Γ. Βούλγαρης 2 Ο Νόμος των Ρευμάτων
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 2: Δημιουργία και Επεξεργασία διανυσμάτων και πινάκων μέσω του Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες
Συστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #8: Χώρος Κατάστασης: Μεταβλητές, Εξισώσεις, Κανονικές Μορφές Δημήτριος Δημογιαννόπουλος
Συνδυασμοί αντιστάσεων και πηγών
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 3 Συνδυασμοί αντιστάσεων και πηγών ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Σύνδεση σε σειρά. Παράλληλη σύνδεση Ισοδυναμία τριγώνου και αστέρα Διαιρέτης τάσης Διαιρέτης ρεύματος Πραγματικές πηγές.
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών
Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας
Εργαστριο Φυσικς Τμματος Πληροφορικς και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Ηλεκτρικά κυκλώματα συνεχούς ρεύματος Εισαγωγ στην έννοια των κυκλωμάτων Αν ανοίξετε μια ηλεκτρικ συσκευ (π.χ. παλιά τηλεόραση,
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 7: Άσκηση στο Εναλλασσόμενο Ρεύμα Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 8: Συντονισμός Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ηλεκτρικές Μηχανές Ι. Ενότητα 3: Κυκλώματα Μετασχηματιστών. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε
Ηλεκτρικές Μηχανές Ι Ενότητα 3: Κυκλώματα Μετασχηματιστών Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Άσκηση 13. Θεωρήματα Δικτύων
Άσκηση Θεωρήματα Δικτύων. Θεώρημα Βρόχων ΣΚΟΠΟΣ Πειραματική επαλήθευση της μεθόδου των βρογχικών ρευμάτων. ΘΕΩΡΙΑ Με τη μέθοδο των βρογχικών ρευμάτων, η επίλυση ενός κυκλώματος στηρίζεται στον υπολογισμό
(E) Το περιεχόμενο. Προγράμματος. διαφορετικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ηλεκτροτεχνία, ηλ. μηχανές & εγκαταστάσεις πλοίου (E) Ενότητα 3: Διαιρέτης Τάσης & Διαιρέτης Ρεύματος Δημήτριος Νικόλαος Παγώνης Τμήμα
Ηλεκτρονική. Ενότητα 5: DC λειτουργία Πόλωση του διπολικού τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρονική Ενότητα 5: D λειτουργία Πόλωση του διπολικού τρανζίστορ Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative
Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης
Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εργαστήριο Κυκλωμάτων και Συστημάτων Ενότητα 2: Γραμμικά δικτυώματα.
Εργαστήριο Κυκλωμάτων και Συστημάτων Ενότητα 2: Γραμμικά δικτυώματα. Αραπογιάννη Αγγελική Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Σκοποί ενότητας... 3 2. Περιεχόμενα ενότητας... 3 3. Γραμμικά
Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ηλεκτρεγερτική δύναμη. emf Ιστορική ονομασία που δόθηκε από τον Faraday. (Η αιτία που τείνει να δημιουργήσει
ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.
ΦΥΣΙΚΗ Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ηλεκτρικές Μηχανές ΙI. Ενότητα 7: Κατασκευή Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε
Ηλεκτρικές Μηχανές ΙI Ενότητα 7: Κατασκευή Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 6: Εναλλασσόμενο Ρεύμα Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ηλεκτρικές Μηχανές ΙI. Ενότητα 6: Εισαγωγή στους ασύγχρονους κινητήρες Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε
Ηλεκτρικές Μηχανές ΙI Ενότητα 6: Εισαγωγή στους ασύγχρονους κινητήρες Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ηλεκτρικές Μηχανές Ι. Ενότητα 6: Είδη Μετασχηματιστών. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε
Ηλεκτρικές Μηχανές Ι Ενότητα 6: Είδη Μετασχηματιστών Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 7: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ηλεκτρικές Μηχανές Ι. Ενότητα 7: Εισαγωγή στις Μηχανές Συνεχούς Ρεύματος Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε
Ηλεκτρικές Μηχανές Ι Ενότητα 7: Εισαγωγή στις Μηχανές Συνεχούς Ρεύματος Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα : Περιγραφή Δυναμικών Συστημάτων Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
(( ) ( )) ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Μάθημα: Ηλεκτροτεχνία Ι Διδάσκων: Α. Ντούνης. Α Ομάδα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΜ ΗΜΕΡΟΜΗΝΙΑ 5/2/2014. Διάρκεια εξέτασης: 2,5 ώρες
ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Μάθημα: Ηλεκτροτεχνία Ι Διδάσκων: Α Ντούνης Α Ομάδα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΜ ΗΜΕΡΟΜΗΝΙΑ 5//014 Θέμα 1 ο (0 μόρια) Διάρκεια εξέτασης:,5 ώρες α) Να υπολογιστεί η ισοδύναμη αντίσταση για το παρακάτω
ΦΥΣΙΚΗ ΙΙ (Θ) Χασάπης Δημήτριος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΕ
ΦΥΣΙΚΗ ΙΙ (Θ) Χασάπης Δημήτριος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ᄃ Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF Ασκήσεις Ενότητας: Ανάδραση και Κριτήρια Ταλάντωσης Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής,
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΜΕΤΡΗΣΕΙΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6: ΠΑΡΑΛΛΗΛΗ
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 3: Συνδυασμός αντιστάσεων και πηγών Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
Περιβαλλοντική Χημεία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Περιβαλλοντική Χημεία Ενότητα 3: Ισοζύγιο Ενέργειας Ευάγγελος Φουντουκίδης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν
Συστήματα Αυτομάτου Ελέγχου 1
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου Ενότητα # 3: Ανάλογα Συστήματα-Αναλογικά Διαγράμματα Δ. Δημογιαννόπουλος, imogian@eipir.gr Επ. Καθηγητής Τμήματος
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ηλεκτρικές Μηχανές ΙI. Ενότητα 3: Ισοδύναμο κύκλωμα σύγχρονης Γεννήτριας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε
Ηλεκτρικές Μηχανές ΙI Ενότητα 3: Ισοδύναμο κύκλωμα σύγχρονης Γεννήτριας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
Ηλεκτρικές Μηχανές ΙI. Ενότητα 9: Ισοδύναμο κύκλωμα και τύποι Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε
Ηλεκτρικές Μηχανές ΙI Ενότητα 9: Ισοδύναμο κύκλωμα και τύποι Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Συστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #10: Λύση Εξισώσεων Εσωτερικής Κατάστασης με Χρήση Μεθόδου Ιδιοτιμών Δημήτριος Δημογιαννόπουλος
Κεφάλαιο 6 Μικτά κυκλώματα
Κεφάλαιο 6 Μικτά κυκλώματα 1 6 Μικτά κυκλώματα (Series-Parallel Circuits) ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Αναγνώριση Σειριακών και Παράλληλων Συνδεσμολογιών Ανάλυση Σειριακών-Παράλληλων Κυκλωμάτων Διαιρέτες Τάσης
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 2: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Μέθοδοι επίλυσης ηλεκτρικών κυκλωμάτων Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 9: ΔΙΟΡΘΩΣΗ ΣΥΝΤΕΛΕΣΤΗ ΙΣΧΥΟΣ Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
6η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 6 ου Κεφαλαίου
6η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 6 ου Κεφαλαίου 1. Μια μπαταρία με ΗΕΔ E = 6 V χωρίς εσωτερική αντίσταση τροφοδοτεί με ρεύμα το κύκλωμα της εικόνας. Όταν ο διακόπτης δύο θέσεων
9 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 9 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ ΣΥΣΤΗΜΑΤΟΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν
Μαθηματικά. Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Λογισμός ΙΙ Χρήστος Θ. Αναστασίου Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
Κεφάλαιο 26 DC Circuits-Συνεχή Ρεύματα. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 26 DC Circuits-Συνεχή Ρεύματα Περιεχόμενα Κεφαλαίου 26 Ηλεκτρεγερτική Δύναμη (ΗΕΔ) Αντιστάσεις σε σειρά και Παράλληλες Νόμοι του Kirchhoff Κυκλώματα σε Σειρά και Παράλληλα EMF-Φόρτιση Μπαταρίας
Δυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα : Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,
Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ᄃ Σχεδίαση Ηλεκτρονικών Κυκλωμάτων F Ασκήσεις Ενότητας: Ταλαντωτές και Πολυδονητές Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής, Σχολή
Κεφάλαιο 5 Παράλληλα Κυκλώματα
Κεφάλαιο 5 Παράλληλα Κυκλώματα 5 Παράλληλα Κυκλώματα (Parallel Circuits) ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Παράλληλοι Αντιστάτες Η Τάση σε ένα Παράλληλο Κύκλωμα Ο Νόμος των Ρευμάτων του Kirchhoff Ολική Παράλληλη Αντίσταση
Ηλεκτρικές Μηχανές Ι. Ενότητα 1: Εισαγωγή. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε
Ηλεκτρικές Μηχανές Ι Ενότητα 1: Εισαγωγή Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για