|
|
- Μαία Παπανδρέου
- 8 χρόνια πριν
- Προβολές:
Transcript
1
2
3
4
5
6
7
8 Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων, Αντιστηρίξεων και Γεωκατασκευών» (Α.Σ.Τ.Ε. 5) ΘΕΜΑ ΕΞΑΜΗΝΟΥ «Αλληλεπίδραση Εδάφους Κατασκευής» Υπεύθυνος Θέµατος: Jean Geoges Sieffet Μεταπτυχιακοί Φοιτητές: Μουρελάτος Ηλίας Οικονόµου Θεµιστοκλής
9 Γενικά Για τη σύγκριση της δυναµικής συµπεριφοράς της κατασκευής στις δυο διαφορετικές θέσεις θα χρησιµοποιηθεί η βοήθεια του προγράµµατος SAP ιβάθµιο σύστηµα Ο υδατόπυργος προσοµοιώνεται ως πρόβολος µε δύο βαθµούς ελευθερίας (µεταφορά µάζας δ και στροφή µάζας θ). 2βάθµιο σύστηµα (πλήρης πάκτωση στο έδαφος) εδοµένου ότι η δυσκαµψία του υδατόπυργου αντιστοιχεί σε δυσκαµψία προβόλου, προκύπτει: EI = L L I = E Το υλικό του προβόλου θεωρείται σκυρόδεµα µε Ε c = 29 GPa: Σελ 2
10 Ιδιότητες συροδέµατος Άρα: I = I = 0, m Μετά την εισαγωγή των δεδοµένων στο πρόγραµµα ακολουθεί ιδιοµορφική ανάλυση τα αποτελέσµατα της οποίας φαίνονται παρακάτω: Πίνακας αποτελεσµάτων διβάθµιου συστήµατος Σελ
11 η ιδιοµορφή διβάθµιου 2 η ιδιοµορφή διβάθµιου Σελ 4
12 Τετραβάθµιο σύστηµα Ο υδατόπυργος προσοµοιώνεται ως πρόβολος µε τέσσερις βαθµούς ελευθερίας (µεταφορά µάζας δ και στροφή µάζας θ, µεταφορά θεµελίωσης δ 0 και στροφή θεµελίωσης θ 0 ). 4βάθµιο σύστηµα (µεταφορικό και στροφικό ελατήριο στο έδαφος) Εκτός της µάζας m 1 = 200t του υδατόπυργου που θεωρείται συγκεντρωµένη στην κορυφή του µε δύο βαθµούς ελευθερίας, µία οριζόντια µεταφορική κίνηση u 1 και µία συνεπίπεδη στροφή θ 1, λαµβάνεται υπόψη και η µάζα Μ 2 της θεµελίωσης του υδατόπυργου µε δύο βαθµούς ελευθερίας, τις u o και θ o. Ισχύει: M J 2 2 = 2,4,00,00 1,00,00 1,00 = 21, M J 2 2 = 21,60 t = 18,00 tm 2 Για τον υπολογισµό των ιδιοµορφικών χαρακτηριστικών της κατασκευής λαµβάνοντας υπόψη την αλληλεπίδραση εδάφους ανωδοµής απαιτείται ο υπολογισµός των δεικτών εµπέδησης του εδάφους. Οι δείκτες αυτοί µπορούν να υπολογιστούν απο τα νοµογραφήµατα που δόθηκαν κατα την διάρκεια των µαθηµάτων. Λόγω του ότι τα δεδοµένα νοµογραφήµατα αναφέρονται σε κυκλική θεµελίωση, απαιτείται αναγωγή της τετραγωνικής θεµελίωσης σε ισοδύναµη κυκλική. Οι σχέσεις που ισχύουν κατά περίπτωση και για κάθε βαθµό ελευθερίας δίνονται παρακάτω: Σελ 5
13 B L 4 1,50 1,50 Μεταφορικός Β.Ε. eq, u = = eq,u = 1,69 m π π 1 2 ω eq,u ω eq,u ω 1,69 1,69 a0, u = = = = ω a0, = 0,015 ω Vs G ,66 ρ 1,9 16 B L Στροφικός Β.Ε. eq, = = eq, = 1,712 m π π , ,50 ω eq, ω eq, ω 1,712 1,712 a0, = = = = ω a 0, = 0,016 ω Vs G ,66 ρ 1, Υπολογισµός st H / = 2,0 Έχουµε: H/=2,0 H,u = 1,69m 2 =,85m και H, = 1,712 2 =,424 m Υποθέτουµε: D=0,8 (σηµείο «πλήρους» πάκτωσης), έτσι: Έλεγχος προϋποθέσεων για τον υπολογισµό του st : Μεταφορική: D/ < 2 O Μεταφορική: H/ > 1 O Στροφική: 4 > H/ > 1 O Στροφική: D/H < 0,5 O st. u st.u st. st. G = 2 v ,69 1,69 2 0,8 5 0,8 = 2 0, 2,85 1,69 4,85 G = ( 1 v) ,712 = ( 1 0,) H H 2 D 2 D 5 D 4 H 0,7 D H 1, ,8 6,424 1,712 0,7 0,8,424 st.u = ,7 kn/m st. = ,8 knm/ad H / =,0 Έχουµε: H/=,0 H,u = 1,69m = 5,078 και H, = 1,712 = 5,17 m Υποθέτουµε: D=0,8 (σηµείο «πλήρους» πάκτωσης), έτσι: Έλεγχος προϋποθέσεων για τον υπολογισµό του st : Μεταφορική: D/ < 2 O Μεταφορική: H/ > 1 O Σελ 6
14 Στροφική: 4 > H/ > 1 O Στροφική: D/H < 0,5 O st. u st.u st. st. G = 2 v ,69 1,69 2 0,8 5 0,8 = 2 0, 2 5,078 1,69 4 5,078 G = ( 1 v) ,712 = ( 1 0,) H H 2 D 2 D 5 D 4 H 0,7 D H 1, ,8 6 5,17 1,712 0,7 0,8 5,17 st.u = 44670,9 kn/m st. = ,4 knm/ad H / = Έχουµε: H/=2,0 H,u = H, = Υποθέτουµε: D=0,8 (σηµείο «πλήρους» πάκτωσης), έτσι: Έλεγχος προϋποθέσεων για τον υπολογισµό του st : Μεταφορική: D/ < 2 O Μεταφορική: H/ > 1 O Στροφική: 4 > H/ > 1 εν Ισχύει, όµως τα αποτελέσµατα είναι δεκτά στην περίπτωση Η Στροφική: D/H < 0,5 O st. u st.u st. st. G 2 D 5 D = 2 v ,69 2 0,8 = 2 0, 1,69 G = ( 1 v) ,712 = ( 1 0,) ( 1 0) ( 1 0) 2 D 6 2 0,8 1,712 D 0,7 = 19890,1 kn/m ( 1 0) ( 1 0) = ,0 knm/ad st.u st..2 Υπολογισµός u,. Θα χρειαστεί να κάνουµε επαναληπτική διαδικασία. Για να αποφύγουµε τους πολλούς κύκλους επανάληψης (iteations) επιλέγουµε αρχική τιµή για την ω ίση µε την ω 1 του διβάθµιου συστήµατος (ω 1 = 9,5212 ad/sec). Έτσι, α ο,u,1 = 0, και α ο,,1 = 0, Από τα αντίστοιχα νοµογραφήµατα παίρνουµε τις τιµές για τα k u,1 και k,1 : k u,1 = 1,0000 k,1 = 1,0056 Σελ 7
15 H / = 2,0 k st,u = ,7 u = 1, ,7 = ,7 k st, = ,8 = 1, ,8 = ,48 αποτελέσµατα: Η επίλυση του 4-βάθµιου συστήµατος µε τα ανωτέρω δύο ελατήρια, δίνει τα εξής Τ 1 = 1,074 sec και ω 1 = 4,8061 ad/sec. Έχουµε ότι α ο,u = 0,015ω και a o, = 0,016ω, οπότε: α ο,u = 0,06477 και a o, = 0, Με τη βοήθεια των νοµογραφηµάτων που µας έχουν δοθεί στα πλαίσια της άσκησης, παίρνουµε: k u,2 = 1,0000. Η τιµή αυτή διαφέρει κατά 0% από την προηγούµενη (1,000). k,2 = 1,0000. Η τιµή αυτή διαφέρει κατά 0,56% από την προηγούµενη (1,0056). Λόγω των πολύ µικρών διαφορών, δε χρειάζεται να επαν-επιλύσουµε το πρόβληµα για µεγαλύτερη ακρίβεια. Έτσι, λοιπόν, τα αποτελέσµατα είναι: Τελικά αποτελέσµατα για H / = 2,0 Σελ 8
16 η ιδιοµορφή τετραβάθµιου 2 η ιδιοµορφή τετραβάθµιου Σελ 9
17 η ιδιοµορφή τετραβάθµιου 4 η ιδιοµορφή τετραβάθµιου Σελ 10
18 H / =,0 k st,u = 44670,9 u = 1, ,9 = 44670,91 k st, = ,4 = 1, ,4 = ,44 Η επίλυση του 4-βάθµιου συστήµατος µε τα ανωτέρω δύο ελατήρια, δίνει τα εξής αποτελέσµατα: Τ 1 = 1,4474 sec και ω 1 = 4,6724 ad/sec. Έχουµε ότι α ο,u = 0,015ω και a o, = 0,016ω, οπότε: α ο,u = 0,06296 και a o, = 0,06666 Με τη βοήθεια των νοµογραφηµάτων που µας έχουν δοθεί στα πλαίσια της άσκησης, παίρνουµε: k u,2 = 1,0000. Η τιµή αυτή διαφέρει κατά 0% από την προηγούµενη (1,000). k,2 = 1,0000. Η τιµή αυτή διαφέρει κατά 0,56% από την προηγούµενη (1,0056). Λόγω των πολύ µικρών διαφορών, δε χρειάζεται να επαν-επιλύσουµε το πρόβληµα για µεγαλύτερη ακρίβεια. Έτσι, λοιπόν, τα αποτελέσµατα είναι: Τελικά αποτελέσµατα για H / =,0 Τα ιδιοµορφικά διαγράµµατα παρουσιάζουν την ίδια µορφή µε αυτά της πρώτης περίπτωσης, οπότε µπορούν να παραληφθούν. H / = k st,u = 19890,1 u = 1, ,1 = 19890,1 k st, = ,0 = 1, ,0 = , Η επίλυση του 4-βάθµιου συστήµατος µε τα ανωτέρω δύο ελατήρια, δίνει τα εξής αποτελέσµατα: Τ 1 = 1,4071 sec και ω 1 = 4,917 ad/sec. Έχουµε ότι α ο,u = 0,015ω και a o, = 0,016ω, οπότε: α ο,u = 0, και a o, = 0, Με τη βοήθεια των νοµογραφηµάτων που µας έχουν δοθεί στα πλαίσια της άσκησης, παίρνουµε k u,2 = 1,0000. Η τιµή αυτή διαφέρει κατά 0% από την προηγούµενη (1,000). k,2 = 1,0000. Η τιµή αυτή διαφέρει κατά 0,56% από την προηγούµενη (1,0056). Λόγω των πολύ µικρών διαφορών, δε χρειάζεται να επαν-επιλύσουµε το πρόβληµα για µεγαλύτερη ακρίβεια. Έτσι, λοιπόν, τα αποτελέσµατα είναι: Σελ 11
19 Τα ιδιοµορφικά διαγράµµατα παρουσιάζουν την ίδια µορφή µε αυτά της πρώτης περίπτωσης, οπότε µπορούν να παραληφθούν. Σελ 12
Δυναμική ανάλυση μονώροφου πλαισίου
Κεφάλαιο 1 Δυναμική ανάλυση μονώροφου πλαισίου 1.1 Γεωμετρία φορέα - Δεδομένα Χρησιμοποιείται ο φορέας του Παραδείγματος 3 από το βιβλίο Προσομοίωση κατασκευών σε προγράμματα Η/Υ (Κίρτας & Παναγόπουλος,
ΠΠΜ 320: Δυναμική Ανάλυση των Κατασκευών
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 320: Δυναμική Ανάλυση των Κατασκευών Ακαδημαϊκό Έτος 2005-6, Χειμερινό Εξάμηνο Τελική Εξέταση 8:30-11:30
Πολιτικών Μηχανικών Πολιτικών Δομικών Έργων Πολιτικών Δομικών Έργων Πολιτικών Μηχανικών ΤΕ, μέχρι και τη Δευτέρα
Α Ν Α Κ Ο Ι Ν Ω Σ Η (αφορά τους φοιτητές της κατεύθυνσης Πολιτικών Μηχανικών που έχουν εισαχθεί στο τμήμα Πολιτικών Δομικών Έργων πριν το ακαδημαϊκό έτος 2013-2014) Όσοι από τους φοιτητές, που έχουν εισαχθεί
ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης
ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 1: δυναμικά φορτία Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ ΚΑΙ ΥΝΑΜΙΚΗΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ 2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ
Δυναμική Μηχανών I. Προσέγγιση Galerkin
Δυναμική Μηχανών I 8 2 Προσέγγιση Galerkin Χειμερινό Εξάμηνο 214 Τμήμα Μηχανολόγων Μηχανικών, ΕΜΠ Δημήτριος Τζεράνης, Ph.D. 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com
υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.
υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 Cprigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 0. Με επιφύλαξη παντός
Μάθηµα: «Αντισεισµικός Σχεδιασµός Κατασκευών από Τοιχοποιΐα» (Α.Σ.Τ.Ε. 8) ΘΕΜΑ ΕΞΑΜΗΝΟΥ
Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Κατασκευών
Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η
43 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ : Χρ. Σµύρνης 3, Πλ. Νέου Παγκρατίου h:0/76.0.470 0/76.00.79 ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ (ΚΑΤΕΥΘΥΝΣΗΣ) Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α) Για ένα ηλεκτρικό
Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ. Ενδιάμεση Πρόοδος. 6:00-8:00 μ. μ.
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ Ακαδημαϊκό Έτος 2018-19, Χειμερινό Εξάμηνο Ενδιάμεση Πρόοδος 6:00-8:00
11. Χρήση Λογισμικού Ανάλυσης Κατασκευών
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11. Χρήση Λογισμικού Ανάλυσης Κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής
Δυναμική Κατασκευών ΙΙ
Τίτλος μαθήματος: Δυναμική Κατασκευών ΙΙ Κωδικός μαθήματος: CE09_S05 Πιστωτικές μονάδες: 5 Φόρτος εργασίας (ώρες): 157 Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος μαθήματος: Υποχρεωτικό Επιλογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Τεχνικές Προγραμματισμού και χρήσης λογισμικού Η/Υ στις κατασκευές
Τεχνικές Προγραμματισμού και χρήσης λογισμικού Η/Υ στις κατασκευές Θέματα Εξετάσεων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Α.Ε.Μ. Εξάμηνο : 9 ο 23 Ιανουαρίου 2013 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ: Επιτρέπεται κάθε βοήθημα σε αναλογική ή
Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 21 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,
Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,
ΣΥΓΚΡΙΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΔΥΝΑΜΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΒΑΘΡΟΥ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΑΝΤΙΣΕΙΣΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΥΓΚΡΙΣΗ ΜΕΘΟΔΩΝ
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 1 η Άσκηση 6 η Σειρά Ασκήσεων Θεωρώντας ότι έχετε διαθέσιμα ΜΟΝΟ
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέµα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα
ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΣΕ ΗΥ Ενότητα 3: Λεπτομέρειες προσομοίωσης δομικών στοιχείων. Διδάσκων: Κίρτας Εμμανουήλ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΣΕ ΗΥ Ενότητα 3: Λεπτομέρειες προσομοίωσης δομικών στοιχείων Διδάσκων: Κίρτας Εμμανουήλ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
5 η δεκάδα θεµάτων επανάληψης
5 η δεκάδα θεµάτων επανάληψης 41. α + 1 Έστω η συνάρτηση f() = ( 3 ), α 1 Αν το σηµείο Μ( 1, 3) βρίσκεται στην γραφική παράσταση της f να βρείτε το α ii ) Αν α = 0 να λύσετε την ανίσωση f() + f(2) > 2
Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων µέσω του ΣΣΛ-Α ο µαθητής αποκτά δεξιότητες στο:
1 ο & ο ΕΚΦΕ ΗΡΑΚΛΕΙΟΥ ελλατόλας Στέλιος - Λεβεντάκης Γιάννης ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ Για τον καθηγητή Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων µέσω
ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ υναμική Ανάλυση Ραβδωτών Φορέων Μετακινήσεις στη μέθοδο επαλληλίας των ιδιομορφών,
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ, 2018 Εργασία Εξαμήνου. ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ. Εργασία Εξαμήνου
Γενικές οδηγίες: ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ, 2018 Εργασία Εξαμήνου Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ
ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003
ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1o Α. Αν α, ν είναι δύο διανύσµατα του επιπέδου µε α 0 και η προβολή του ν στο α συµβολίζεται µε προβ α ν, τότε
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κυριακή 6 Απριλίου 05 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σχολικού βιβλίου, σελίδα.
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι, 2004-5 η και 6 η Πρόοδος Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
9. Χρήση Λογισμικού Ανάλυσης Κατασκευών
9. Χρήση Λογισμικού Ανάλυσης Κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής Κατανομή φορτίων πλακών
Πεδιλοδοκοί και Κοιτοστρώσεις
/7/0 ΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 0 - ΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις 8.0.0 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεµελίωση µπορεί να γίνει µε πεδιλοδοκούς ή κοιτόστρωση
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α:. Σωστό το B.. Σωστό το Γ. 3. Σωστό το Δ. 4. Σωστά τα Α, Β, Γ. 5. Σωστό το Δ. ΘΕΜΑ Β:. Σωστό το Β. Αιτιολόγηση: Έχουµε διαδοχικά:. Σωστό το Α. D D K E U =
Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : , 12:00-15:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΑΡ. ΜΗΤΡ :.......
Δυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική
Δυναμική Μηχανών I 2 2 Επανάληψη: Κινηματική και Δυναμική 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα
( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31.
1 4 η δεκάδα θεµάτων επανάληψης 31. ίνονται οι συναρτήσεις f() = ln(e e + 3) και g() = ln3 + ln(e 1) i. Να βρείτε το πεδίο ορισµού τους. ii. Να βρείτε τα σηµεία τοµής των γραφικών παραστάσεων των f, g
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Η εξίσωση του ύψους Γ του τριγώνου θα είναι:
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(α) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Ηµεροµηνία: Κυριακή 8 Απριλίου 0 ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ A. Θεωρία. Σελίδα 4 του σχολικού βιβλίου. Α. Θεωρία
(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα
Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η
ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Γενικές οδηγίες: Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι 3 η Σειρά Ασκήσεων
ΑΝΕΛΑΣΤΙΚΑ ΦΑΣΜΑΤΑ ΣΧΕ ΙΑΣΜΟΥ ΓΙΑ ΕΛΕΓΧΟ ΥΦΙΣΤΑΜΕΝΩΝ ΚΑΤΑΣΚΕΥΩΝ ΟΣ ΚΑΤΑ ATC-40, FEMA ΚΑΙ ΚΑΝΕΠΕ. Ειδικά Κεφάλαια ΟΣ
ΑΝΕΛΑΣΤΙΚΑ ΦΑΣΜΑΤΑ ΣΧΕ ΙΑΣΜΟΥ ΓΙΑ ΕΛΕΓΧΟ ΥΦΙΣΤΑΜΕΝΩΝ ΚΑΤΑΣΚΕΥΩΝ ΟΣ ΚΑΤΑ ATC-40, FEMA 356-440ΚΑΙ ΚΑΝΕΠΕ Ειδικά Κεφάλαια ΟΣ 9 ο Εξάµηνο Οκτ. 2016 Χ. Ζέρης 1 Εξέλιξη των κανονισµών στην Ελλάδα Έτος Κανονισµός
( ) ( ) ( ) Ασκήσεις στην ελαστική γραµµή. Γενικές Εξισώσεις. Εφαρµογές. 1. Η γέφυρα. ΤΜ ΙΙΙ Ασκήσεις : Ι. Βαρδουλάκης & Ι. Στεφάνου, Οκτώβριος
ΤΜ ΙΙΙ Ασκήσεις : Ι. Βαρδουλάκης & Ι. Στεφάνου, Οκτώβριος 005 Ασκήσεις στην ελαστική γραµµή Γενικές Εξισώσεις () p w ( x) = x+ M ( x) = w ( x) p w ( ) ( ) ( ) ( ) ( x) = x + x+ onst x p x onst x dm x =
) θα πρέπει να είναι μεγαλύτερη ή ίση από την αντίστοιχη τάση μετά από την κατασκευή της ανωδομής ( σ. ). Δηλαδή, θα πρέπει να ισχύει : σ ΚΤΙΡΙΟ A
ΜΑΘΗΜΑ : ΕΔΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 001 00 1η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος Διδάκτορας ΕΜΠ Για την επίλυση των ασκήσεων
Άξονες περιστροφής στερεού
Άξονες περιστροφής στερεού Πραγματικοί και νοητοί. Μιλάµε συνεχώς για περιστροφή ενός στερεού γύρω από άξονα, αλλά συνήθως ξεχνάµε να πούµε αν αυτός ο άξονας είναι πραγµατικός ή νοητός. εν είναι το ίδιο
= = = = 2. max,1 = 2. max,2
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ ΑΠΡΙΛΙΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. α Α. β Α3. β Α. γ Α5. α) Σ β) Λ γ)
Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ. Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ, 2016- Τελική Εξέταση Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης
ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 7 Φεβρουαρίου ΘΕΜΑ ον ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ :
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΗΝ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΗΝ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέµα Α Α1. α Α2. γ Α3. δ Α4. α Α5. α. Λ β. Λ γ. Λ δ. Λ ε. Σ Θέµα Β Β1. Από την εξίσωση της
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο
1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4
ΘΕΜΑ ο Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) Ρ (Α) Ρ (Α Β). Μονάδες 8, Α.. Να µεταφέρετε στο τετράδιό σας τις παρακάτω σχέσεις και να συµπληρώσετε
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΆΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: M Τετάρτη 6 Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα Ε_ΜλΓΑ(α)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /
Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ. Ενδιάμεση Πρόοδος. 6:00-8:00 μ. μ.
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ, 016 - Ενδιάμεση Πρόοδος Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών
1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο
1 3.3 ΜΗΚΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙ 1. Μήκος κύκλου ακτίνας ρ : Το µήκος L ενός κύκλου δίνεται από τον τύπο L = 2πρ ή L = πδ όπου δ η διάµετρος του κύκλου και π ένας άρρητος αριθµός του οποίου προσέγγιση µε δύο δεκαδικά
Ηµερίδα «ΤΕΧΝΙΚΟ ΛΟΓΙΣΜΙΚΟ ΑΝΑΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΚΑΤΑΣΚΕΥΩΝ»
Ηµερίδα «ΤΕΧΝΙΚΟ ΛΟΓΙΣΜΙΚΟ ΑΝΑΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΚΑΤΑΣΚΕΥΩΝ» ACE-Hellas A.E. SCADA PRO Νέα εδοµένα Παναγιώτης Γκιόκας Πολιτικός Μηχανικός Το SCADA Pro περιλαµβάνει την δυνατότητα αυτόµατης δηµιουργίας
Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση;
Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση; Ξεκινώντας θα ήθελα να θυµίσω κάποια στοιχεία που σχετίζονται µε τον ορισµό της συχνότητας σε ένα περιοδικό φαινόµενο, άρα και στην ΑΑΤ.
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 2004., η οποία όµως µπορεί να γραφεί µε την παρακάτω µορφή: 1 e
ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 4 AΣΚΗΣΗ () [ ] (.5)
Οδηγίες για Τεταρτοετείς του πρώην ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ 2018
Σημείωση: Το συγκεκριμένο αρχείο αφορά αποκλειστικά τους φοιτητές που έχουν ολοκληρώσει το 3ο Έτος σπουδών του τμήματος Πολιτικών Μηχανικών Τ.Ε. του πρώην ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ και βρίσκονται στο 7ο Εξάμηνο.
Εργαστήριο Αντισεισμικής Τεχνολογίας Σχολή Πολιτικών Μηχανικών Εθνικό Μετσόβιο Πολυτεχνείο
Εργαστήριο Αντισεισμικής Τεχνολογίας Σχολή Πολιτικών Μηχανικών Εθνικό Μετσόβιο Πολυτεχνείο Δυναμική Αλληλεπίδραση Εδάφους Κατασκευής: Ιστορική Εξέλιξη και Σύγχρονη Πρακτική Κ. Σπυράκος, Καθηγητής ΕΜΠ /ντής
2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8
1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 5 και Ρ(Β) = Ρ(Α ). Αν τα Α, Β είναι ασυµβίβαστα, να εξετάσετε αν είναι ασυµβίβαστα και τα Α, Β 5 i είξτε ότι Ρ(Α Β)=
ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Π A N E Π I Σ T H M I O Θ E Σ Σ A Λ I A Σ TMHMA MHXANOΛOΓΩN MHXANIKΩN
EPΓΣTHPIO MHXNIKHΣ KI NTOXHΣ TΩN YΛIKΩN Λεωφόρος θηνών Πεδίον Άρεως 84 όλος Πρόβλημα Π N E Π I Σ T H M I O Θ E Σ Σ Λ I Σ TMHM MHXNOΛOΓΩN MHXNIKΩN MHXNIKH ΤΩΝ ΥΛΙΚΩΝ Ι Σειρά Ασκήσεων Διευθυντής: Kαθηγητής
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό
ΑΝΕΛΑΣΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ (PUSHOVER) ΥΦΙΣΤΑΜΕΝΟΥ ΚΤΗΡΙΟΥ ΜΠΟΥΡΣΙΑΝΗΣ ΧΑΡΗΣ
ΑΝΕΛΑΣΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ (PUSHOVER) ΥΦΙΣΤΑΜΕΝΟΥ ΚΤΗΡΙΟΥ ΜΠΟΥΡΣΙΑΝΗΣ ΧΑΡΗΣ Περίληψη Στην παρούσα εργασία θα παρουσιαστούν τα βασικά σηµεία στα οποία βασίζεται η ανελαστική µέθοδος αποτίµησης ή ανασχεδιασµού,
Σημειώσεις του μαθήματος Μητρωϊκή Στατική
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού
Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β)
ΜΑΘΗΜΑ 5 Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.: Κλασµατικές Εξισώσεις Θεµατικές Ενότητες:. Κλασµατικές Εξισώσεις (Μέρος Β). Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β) ΟΡΙΣΜΟΙ Κλασµατική εξίσωση λέγεται
AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση
sin ϕ = cos ϕ = tan ϕ =
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται
Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο Τελική Εξέταση 8:30-11:30 π.µ.
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για τη συνόρθωση ενός τοπογραφικού
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ η ΕΚΑ Α 11. Στο λογαριασµό του ΟΤΕ πληρώνουµε πάγιο τέλος κάθε µήνα 1 και για κάθε µονάδα οµιλίας 0,09. Να βρείτε έναν τύπο που να µας δίνει το ποσό των χρηµάτων y που θα πληρώσουµε
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Απριλίου 0 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα 5 Α Θεωρία Σχολικό Βιβλίο (έκδοση
Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις
Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις Σφαίρα Σ 2 µάζας m 2 =m=2kg ηρεµεί στερεωµένη στο αριστερό άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=50n/m το άλλο άκρο του οποίου είναι στερεωµένο
ΒΙΟΜΗΧΑΝΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ
ΒΙΟΜΗΧΑΝΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΩΤΟΥ ΜΕΡΟΥΣ Ι. Αναγνωστόπουλος Άσκηση. Στο συνηµµένο σχήµα δίνεται το δίκτυο διανοµής νερού στους πέντε ορόφους µιας πολυκατοικίας από µια δεξαµενή στην ταράτσα.
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ, 2017 Εργασία Εξαμήνου. ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ. Εργασία Εξαμήνου
Γενικές οδηγίες: ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ, 2017 Εργασία Εξαμήνου Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ
ΜΕΤΑΒΑΤΙΚΕΣ ΠΡΟΫΠΟΘΕΣΕΙΣ ΑΠΟΚΤΗΣΗΣ ΠΤΥΧΙΟΥ
ΜΕΤΑΒΑΤΙΚΕΣ ΠΡΟΫΠΟΘΕΣΕΙΣ ΑΠΟΚΤΗΣΗΣ ΠΤΥΧΙΟΥ Για τους φοιτητές που έχουν εισαχθεί στο Τµήµα από το Ακαδηµαϊκό Έτος 1999-2000 έως το Ακαδηµαϊκό Έτος 2003-2004 1 1. Εγγραφή και παρακολούθηση για τουλάχιστον
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για την συνόρθωση ενός τοπογραφικού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 4-Φορείς και Φορτία. Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος καθηγήτρια
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 4-Φορείς και Φορτία Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος καθηγήτρια Φ. Καραντώνη Τεχνική Μηχανική 1 φορείς Κάθε κατασκευή που μπορεί
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 IOYNIΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ IOYNIΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α δ Α γ Α α Α δ Α5. α Λάθος β Σωστό γ Σωστό δ Σωστό ε Λάθος. Σημείωση:
Εκπαιδευτικό λογισµικό µονοβάθµιου ταλαντωτή Educational Single Degree Of Freedom Software. ESDOFsoftware
Εκπαιδευτικό λογισµικό µονοβάθµιου ταλαντωτή Educational Single Degree Of Freedom Software ESDOFsoftware Ως οδηγίες χρήσης του λογισµικού ESDOFsoftware δίνονται εδώ οι επιλύσεις µιας σειράς παραδειγµάτων.
Για να περιγράφουν οι εξισώσεις ένα ηλεκτροµαγνητικό κύµα, θα πρέπει να ισχύει
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 07/06/005 ΘΕΜΑ ο α, γ, 3 δ, 4 γ 5. α Σ, β Λ, γ Σ, δ Σ, ε Σ ΘΕΜΑ ο 0 E= 300ηµ π( 6 0 t 0 x) ( S. I.). Σωστή απάντηση είναι η: β. B = ηµ π( t
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων
Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999
Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999 Ζήτηµα 1ο Α. Έστω Α η διχοτόµος της γωνίας A ) ενός τριγώνου ΑΒΓ. Από το Β φέρνουµε την παράλληλη προς την Α και έστω Ε το σηµείο τοµής της µε την ευθεία
Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
π Για το κύκλωµα C ισχύει: Ι = ω Q Ι = T Q. π Όµως: Ι = Ι T Q π = T Q Q T = Q T Q = 4 Q. B. ΣΣωσσττήή εεί ίίννααι ιι ηη γγ. Για το κύκλωµα C ισχύει: Ε
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ ΥΡΙΑΗ 6 ΑΠΡΙΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέέµµαα οο. β. γ 3. β 4. δ 5. α) Σ β) Σ γ) Σ δ) Λ ε) Λ. ΣΣωσσττήή
mg ηµφ Σφαίρα, I = 52
Μελέτη της κίνησης ενός σώµατος που µπορεί να κυλάει σε κεκλιµένο επίπεδο (π.χ. σφόνδυλος, κύλινδρος, σφαίρα, κλπ.) Τ mg συνφ Κ Ν mg ηµφ Το σώµα του σχήµατος έχει µάζα m, ακτίνα και µπορεί να είναι: Σφόνδυλος
Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001
Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες
Δημήτρης Αγαλόπουλος Σελίδα 1
ΛΥΣΗ Δ1. Η ράβδος διαγράφει γωνία μέχρι να συγκρουστεί με το σώμα (Σ 1 ). Τη χρονική στιγμή t=0 βρίσκεται στην οριζόντια θέση (Α), την χρονική στιγμή t 1 γίνεται κατακόρυφη θέση (Γ) και συγκρούεται με
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε
ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΓΙΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ
ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΓΙΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ 1. Τα μαθήματα που έχουν προβιβάσιμο βαθμό δεν μεταφέρονται. (Θα αναγράφονται στην αναλυτική βαθμολογία στο εξάμηνο που έχουν περαστεί). 2. Όσοι οφείλουν υποχρεωτικό
Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999
Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α. Έστω Α η διχοτόµος της γωνίας A ) ενός τριγώνου ΑΒΓ. Από το Β φέρνουµε την παράλληλη προς την Α και έστω Ε το σηµείο τοµής της
A) Να βρεθεί η γωνιακή επιτάχυνση του τροχού, καθώς και ο αριθµός των στροφών
Άσκηση ολίσθηση-κύλιση µε ολίσθηση-κύλιση χωρίς ολίσθηση Ο τροχός του σχήµατος έχει ακτίνα R0,m και αφήνεται τη χρονική στιγµή t0 µε αρχική γωνιακή ταχύτητα ω ο 300 rad/sec σε επαφή µε τα δύο κάθετα τοιχώµατα,
Διδάσκων: Κολιόπουλος Παναγιώτης
ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 10: ΣΥΣΤΗΜΑΤΑ ΔΥΟ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ (-ΒΕ) Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ
Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 Ζήτηµα 1ο Α.1. Α.2. Β.1. Β.2. Β.3. Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α)
ΑΣΚΗΣΗ ΤΟΡΝΟΥ. ΑΡΧΙΚΟ ΚΟΜΜΑΤΙ, ΚΟΜΜΕΝΟ ΣΤΟ ΠΡΙΟΝΙ, ΑΠΟ ΑΤΡΑΚΤΟ ΕΜΠΟΡΙΟΥ Ø 30x5m. ίδονται
ΑΣΚΗΣΗ ΤΟΡΝΟΥ ΑΡΧΙΚΟ ΚΟΜΜΑΤΙ, ΚΟΜΜΕΝΟ ΣΤΟ ΠΡΙΟΝΙ, ΑΠΟ ΑΤΡΑΚΤΟ ΕΜΠΟΡΙΟΥ Ø 30x5m. ΙΑΣΤΑΣΕΩΝ Ø 30 Χ 150 20 Μ16x2 15 80 D α 2 +β 2 95 ίδονται 1) Υλικό κοµµατιού : Χάλυβας St.37. 2) Υλικό εργαλείου : Ταχυχάλυβας,
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ ο ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 00 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τα
Κεφάλαιο 3: Διαμόρφωση και ανάλυση χαρακτηριστικών στατικών συστημάτων
Κεφάλαιο 3: Διαμόρφωση και ανάλυση χαρακτηριστικών στατικών συστημάτων 3.1 Εισαγωγή 3.1.1 Στόχος Ο στόχος του Κεφαλαίου αυτού είναι η παρουσίαση ολοκληρωμένων παραδειγμάτων προσομοίωσης και ανάλυσης απλών
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 IOYNIΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ IOYNIΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α δ Α γ Α α Α4 δ Α5. α Λάθος β Σωστό γ Σωστό δ Σωστό ε Λάθος. Σημείωση:
Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ
Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ. Μάζα που κινείται οριζόντια µε ορµή µέτρου 0 Kg m/s προσπίπτει σε κατακόρυφο τοίχο και ανακλάται οριζόντια µε ορµή ίδιου µέτρου. Το
R eq = R 1 + R 2 + R 3 = 2Ω + 1Ω + 5Ω = 8Ω. E R eq. I s = = 20V V 1 = IR 1 = (2.5A)(2Ω) = 5V V 3 = IR 3 = (2.5A)(5Ω) = 12.5V
Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Απαντήσεις στο 1 0 Homework στην Ανάλυση Κυκλωμάτων Χειμερινό Εξάμηνο 2014-2015 Πλέσσας Φώτης 1 Πρόβλημα 1 Βρείτε τη συνολική αντίσταση
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από