ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
|
|
- Καλυψώ Βλαχόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για τη συνόρθωση ενός τοπογραφικού δικτύου είναι ισοδύναμη με: α) την εισαγωγή ψευδο-παρατηρήσεων μηδενικού βάρους β) τη διαγραφή συγκεκριμένων παρατηρήσεων που πραγματοποιήθηκαν στο δίκτυο γ) την εισαγωγή ψευδο-παρατηρήσεων άπειρης ακρίβειας 2) Πόσοι είναι οι βαθμοί ελευθερίας κατά τη συνόρθωση με ελάχιστες δεσμεύσεις ενός οριζόντιου δικτύου με 12 κορυφές στο οποίο έχουν γίνει 48 μετρήσεις οριζοντίων αποστάσεων και 30 μετρήσεις οριζοντίων γωνιών από 4 διαφορετικά σημεία στάσης: α) 51 β) 54 γ) 57 δ) 50 3) Η απόλυτη έλλειψη σφάλματος σε κάποια κορυφή ενός συνορθωμένου δικτύου: α) καθορίζει μία περιοχή μέσα στην οποία βρίσκεται, με συγκεκριμένη πιθανότητα, η αληθινή θέση του σημείου β) μικραίνει όσο αυξάνεται η ακρίβεια των παρατηρήσεων γ) επηρεάζεται από τον τύπο των δεσμεύσεων που χρησιμοποιούνται για τον ορισμό του συστήματος αναφοράς 4) Οι συνορθωμένες συντεταγμένες ενός τοπογραφικού δικτύου μέσω εσωτερικών δεσμεύσεων: α) δεν επηρεάζονται από την ακρίβεια των παρατηρήσεων β) είναι ασυσχέτιστες μεταξύ τους γ) έχουν την καλύτερη ακρίβεια από οποιαδήποτε άλλη λύση δεσμεύσεων για το ίδιο δίκτυο Τοπογραφικά Δίκτυα & Υπολογισμοί Σελ. 1/8
2 5) Ο αριθμός των ελαχίστων δεσμεύσεων που απαιτούνται για τη συνόρθωση ενός τοπογραφικού δικτύου: α) εξαρτάται από τον αριθμό των διαθέσιμων παρατηρήσεων β) εξαρτάται από τον αριθμό των σημείων του δικτύου γ) εξαρτάται από την ακρίβεια των διαθέσιμων παρατηρήσεων δ) εξαρτάται από τον τύπο των διαθέσιμων παρατηρήσεων 6) Η a-posteriori εκτίμηση της μεταβλητότητας αναφοράς από τη συνόρθωση ενός δικτύου: α) χρησιμοποιείται για τον εντοπισμό προβληματικών παρατηρήσεων με χονδροειδή σφάλματα β) μπορεί να αξιοποιηθεί για πιο αξιόπιστο προσδιορισμό της ακρίβειας των συνορθωμένων συντεταγμένων γ) δεν επηρεάζεται από τον τύπο των δεσμεύσεων που χρησιμοποιούνται στη συνόρθωση δ) έχει πάντα τιμές πολύ κοντά στη μονάδα 7) Για τη συνόρθωση ενός οριζόντιου τοπογραφικού δικτύου, όπου έχουν παρατηρηθεί μόνο οριζόντιες αποστάσεις, διατηρούνται σταθερές οι συντεταγμένες (x, y) ενός σημείου και η συντεταγμένη (x) ενός άλλου σημείου. Εάν οι γνωστές τιμές των τριών αυτών συντεταγμένων έχουν μία αβεβαιότητα της τάξης ±0.2 m, τότε η εσωτερική γεωμετρική ακρίβεια του συνορθωμένου δικτύου, δηλαδή η ακρίβεια των συνορθωμένων αποστάσεων μεταξύ των κορυφών του: α) θα είναι τουλάχιστον της τάξης των 20 cm β) θα επηρεαστεί μόνο από την ακρίβεια των παρατηρήσεων γ) θα είναι καλύτερη από 20 cm 8) Η συνόρθωση ενός τοπογραφικού δικτύου με εσωτερικές δεσμεύσεις: α) δεν επηρεάζεται από την ακρίβεια των παρατηρήσεων β) οδηγεί στα μικρότερα συνορθωμένα σφάλματα για τις παρατηρήσεις γ) δεν προσφέρει κανένα πλεονέκτημα σε σχέση με οποιαδήποτε άλλη λύση ελαχίστων δεσμεύσεων για τη μελέτη της αξιοπιστίας του δικτύου 9) Ποιά είναι η αδυναμία βαθμού για τη συνόρθωση ενός κατακόρυφου δικτύου με 15 κορυφές στο οποίο έχουν γίνει 36 μετρήσεις υψομετρικών διαφορών και 3 μετρήσεις απόλυτων υψομέτρων: α) 1 β) 38 γ) 0 δ) 27 Τοπογραφικά Δίκτυα & Υπολογισμοί Σελ. 2/8
3 10) Η ένταξη ενός δικτύου σε ένα προκαθορισμένο σύστημα αναφοράς με χρήση απόλυτων πλεοναζουσών δεσμεύσεων μπορεί να έχει ως αποτέλεσμα: α) την παραμόρφωση του δικτύου όταν η ακρίβεια των σταθερών συντεταγμένων είναι σημαντικά χειρότερη από την ακρίβεια των παρατηρήσεων β) τη βελτίωση της ακρίβειας του δικτύου όταν η ακρίβεια των σταθερών συντεταγμένων είναι πολύ καλύτερη από την ακρίβεια των παρατηρήσεων γ) την αύξηση της τιμής για την α-posteriori εκτίμηση της μεταβλητότητας αναφοράς σε σχέση με μια λύση ελαχίστων δεσμεύσεων δ) οποιοδήποτε από τα παραπάνω 11) Η a-posteriori εκτίμηση της μεταβλητότητας αναφοράς δίνει μία εκτίμηση για την άγνωστη ακρίβεια των παρατηρήσεων που χρησιμοποιούνται στη συνόρθωση ενός δικτύου, όταν: α) όλες οι παρατηρήσεις είναι του ίδιου τύπου και ο χρησιμοποιούμενος πίνακας βάρους στη συνόρθωση είναι P = I β) ο χρησιμοποιούμενος πίνακας βάρους στη συνόρθωση είναι P = I γ) η a-priori τιμή της μεταβλητότητας αναφοράς λαμβάνεται ίση με την μονάδα και ο χρησιμοποιούμενος πίνακας βάρους στη συνόρθωση είναι P = I 12) Η συνόρθωση ενός τοπογραφικού δικτύου με χρήση ολικών εσωτερικών δεσμεύσεων: α) οδηγεί στη βέλτιστη προσαρμογή του δικτύου στις διαθέσιμες προσεγγιστικές συντεταγμένες για τις κορυφές του δικτύου β) οδηγεί στη βέλτιστη ακρίβεια εκτίμησης των συντεταγμένων του δικτύου ανάμεσα από οποιαδήποτε άλλη επιλογή ελαχίστων δεσμεύσεων γ) μηδενίζει ορισμένες παραμέτρους μετασχηματισμού μεταξύ των συνορθωμένων συντεταγμένων και των προσεγγιστικών συντεταγμένων στις κορυφές του δικτύου 13) Οι βαθμοί ελευθερίας της συνόρθωσης ενός τοπογραφικού δικτύου: α) εξαρτώνται από τον αριθμό των χρησιμοποιούμενων δεσμεύσεων β) εξαρτώνται από τον αριθμό των κορυφών του δικτύου γ) εξαρτώνται από τον αριθμό των διαθέσιμων παρατηρήσεων δ) εξαρτώνται από όλα τα παραπάνω 14) Με ποιό τρόπο σχετίζονται η αδυναμία βαθμού ενός δικτύου και ο αριθμός των ελαχίστων δεσμεύσεων που απαιτούνται για τη συνόρθωση του: α) είναι πάντα ίσες β) είναι ίσες μόνο στην περίπτωση συνόρθωσης με εσωτερικές δεσμεύσεις γ) δεν σχετίζονται μεταξύ τους δ) διαφέρουν κατά τον αριθμό των γνωστών συντεταγμένων στο δίκτυο Τοπογραφικά Δίκτυα & Υπολογισμοί Σελ. 3/8
4 15) Οι βαθμοί ελευθερίας της συνόρθωσης ενός τοπογραφικού δικτύου: α) είναι ίσοι με τους βαθμούς ελευθερίας του συστήματος αναφοράς για τον προσδιορισμό της θέσης των κορυφών του β) εκφράζουν το πλεόνασμα πληροφορίας που διαθέτουμε για την εκτίμηση της θέσης των κορυφών του σε σχέση με κάποιο σύστημα αναφοράς γ) ελαττώνονται όσο αυξάνει ο αριθμός των σταθερών συντεταγμένων δ) εκφράζουν το έλλειμμα πληροφορίας των διαθέσιμων παρατηρήσεων για τον ορισμό του συστήματος αναφοράς 16) Η χρήση πλεοναζουσών δεσμεύσεων θα πρέπει να αποφεύγεται κατά τη συνόρθωση τοπογραφικών δικτύων, όταν: α) υπάρχουν ενδείξεις για έντονη γεωδυναμική δραστηριότητα στην περιοχή του δικτύου β) δουλεύουμε με υψηλές προδιαγραφές ακρίβειας για την εκτίμηση της θέσης των σημείων του δικτύου γ) η ποιότητα των σταθερών συντεταγμένων είναι πολύ καλύτερη από την ποιότητα των παρατηρήσεων δ) σε όλες τις παραπάνω περιπτώσεις 17) Η αδυναμία βαθμού ενός δικτύου είναι: α) ίση με τους βαθμούς ελευθερίας της συνόρθωσης β) ίση με τον αριθμό των δεσμεύσεων που χρησιμοποιούνται για τη συνόρθωση του γ) ίση με τον αριθμό των γραμμικά ανεξάρτητων γραμμών/στηλών του πίνακα των κανονικών εξισώσεων που δημιουργείται για τη συνόρθωση του δικτύου 18) Ποιό είναι το πλεονέκτημα των σχετικών ελλείψεων σφάλματος έναντι των απολύτων ελλείψεων σφάλματος για την περιγραφή της ακρίβειας ενός συνορθωμένου δικτύου: α) αποτελούν χρήσιμο εργαλείο για την εποπτική διάγνωση προβληματικής ακρίβειας σε μια λύση συνόρθωσης δικτύου β) δεν επηρεάζονται από τον τύπο των χρησιμοποιούμενων δεσμεύσεων γ) απαιτούν λιγότερο υπολογιστικό φόρτο 19) Ο πίνακας συμ-μεταβλητοτήτων των εκτιμήσεων των συντεταγμένων από τη συνόρθωση ενός τοπογραφικού δικτύου επηρεάζεται από: α) την ακρίβεια των παρατηρήσεων β) την επιλογή των δεσμεύσεων για τον ορισμό του ΣΑ γ) τη γεωμετρία του δικτύου Τοπογραφικά Δίκτυα & Υπολογισμοί Σελ. 4/8
5 20) Η σάρωση δεδομένων είναι ένας στατιστικός έλεγχος που αποσκοπεί: α) στον έλεγχο της στατιστικής ακρίβειας των παρατηρήσεων β) στη διάγνωση μη-τυχαίων σφαλμάτων στις παρατηρήσεις γ) στην αξιολόγηση της παραμόρφωσης του συνορθωμένου δικτύου 21) Οι μερικές εσωτερικές δεσμεύσεις που χρησιμοποιούνται για τον ορισμό του ΣΑ κατά τη συνόρθωση ενός δικτύου: α) είναι ελάχιστες δεσμεύσεις β) εφαρμόζονται σε ένα υποσύνολο των σημείων του δικτύου γ) δεν διατηρούν σταθερές τις συντεταγμένες σε κανένα σημείο του δικτύου 22) Ο πίνακας βάρους W των δεσμεύσεων που χρησιμοποιούνται για τον ορισμό του συστήματος αναφοράς κατά τη συνόρθωση δικτύου: α) δεν επηρεάζει τις εκτιμήσεις των συντεταγμένων αν οι δεσμεύσεις είναι ελάχιστες β) μπορεί να χρησιμοποιηθεί για να "χαλαρώσει" την παραμόρφωση που επιφέρουν οι πλεονάζουσες δεσμεύσεις στο συνορθωμένο δίκτυο γ) μπορεί να χρησιμοποιηθεί ώστε να ληφθεί υπόψη η ακρίβεια των γνωστών συντεταγμένων των σταθμών αναφοράς κατά τον ορισμό του ΣΑ του δικτύου 23) Οι αριθμοί πλεονασμού των παρατηρήσεων σε ένα δίκτυο εκφράζουν: α) το βαθμό αλληλεπίδρασης μεταξύ των παρατηρήσεων κατά τη συνόρθωση του δικτύου β) την εσωτερική ακρίβεια των παρατηρήσεων γ) το μέγιστο αποδεκτό χονδροειδές σφάλμα που μπορεί να έχει κάθε παρατήρηση 24) Το ελάχιστο εντοπίσιμο χονδροειδές σφάλμα σε μια παρατήρηση δικτύου: α) δεν μπορεί να ξεπερνάει την τιμή της τυπικής απόκλισης της παρατήρησης β) θα είναι ίσο με το τριπλάσιο της τυπικής απόκλισης της παρατήρησης γ) θα ανιχνευθεί μέσω στατιστικού ελέγχου μετά την εκτέλεση της συνόρθωσης δ) θα έχει αμελητέα επίδραση στις εκτιμήσεις των συντεταγμένων του δικτύου 25) Η εσωτερική αξιοπιστία ενός δικτύου: α) αξιολογείται μέσω των MDBs για κάθε παρατήρηση β) εξαρτάται από τους αριθμούς πλεονασμού των παρατηρήσεων γ) ελέγχεται μέσω της διαδικασίας σάρωσης δεδομένων (τ-test) Τοπογραφικά Δίκτυα & Υπολογισμοί Σελ. 5/8
6 26) Η διαδικασία προ-επεξεργασίας των μετρήσεων δικτύου έχει ως βασικό αντικείμενο: α) να διαγνώσει την ύπαρξη σημαντικών χονδροειδών σφαλμάτων στις πρωτογενείς μετρήσεις του δικτύου β) να προσδιορίσει ενδεικτικές ακρίβειες των παρατηρήσεων που θα εισαχθούν στη συνόρθωση του δικτύου γ) να εφαρμόσει απαραίτητες αναγωγές και διορθώσεις στις πρωτογενείς μετρήσεις του δικτύου δ) οποιοδήποτε από τα παραπάνω 27) Από τη συνόρθωση ενός τοπογραφικού δικτύου προέκυψε τιμή συνορθωμένης απόστασης για μία πλευρά του ίση με S = m με αντίστοιχη τιμή ακρίβειας ίση με σ S = 2.4 cm. Ποια είναι η σχετική ακρίβεια της απόστασης; α) ppm β) ppm γ) ppm δ) 24 ppm 28) Ένα δίκτυο πρόκειται να συνορθωθεί με δύο διαφορετικές επιλογές ελαχίστων δεσμεύσεων. Ποιες από τις παρακάτω ποσότητες δεν θα παραμείνουν αναγκαστικά σταθερές μεταξύ των δύο λύσεων συνόρθωσης; α) οι τελικές συνορθωμένες συντεταγμένες και η ακρίβεια τους β) τα συνορθωμένα σφάλματα των παρατηρήσεων γ) η α-posteriori εκτίμηση της μεταβλητότητας αναφοράς 29) Ένα δίκτυο πρόκειται να συνορθωθεί με δύο διαφορετικούς τρόπους: με επιλογή ελαχίστων δεσμεύσεων και με επιλογή απόλυτων πλεοναζουσών δεσμεύσεων. Ποια από τα παρακάτω περιγράφει τη συμπεριφορά των αποτελεσμάτων που αναμένονται να ληφθούν σε αυτές τις περιπτώσεις; α) η ακρίβεια των τελικών συνορθωμένων συντεταγμένων θα είναι καλύτερη στη λύση ελαχίστων δεσμεύσεων β) τα συνορθωμένα σφάλματα των παρατηρήσεων θα είναι γενικά μεγαλύτερα στη λύση πλεοναζουσών δεσμεύσεων γ) η ακρίβεια των παρατηρήσεων θα έχει μεγαλύτερη επίδραση στα τελικά αποτελέσματα της λύσης πλεοναζουσών δεσμεύσεων Τοπογραφικά Δίκτυα & Υπολογισμοί Σελ. 6/8
7 30) O ολικός έλεγχος αξιοπιστίας σε μία λύση συνόρθωσης δικτύου: α) επηρεάζεται άμεσα από την ακρίβεια των συνορθωμένων συντεταγμένων β) αποτυγχάνει πιο δύσκολα όσο αυξάνονται οι βαθμοί ελευθερίας της συνόρθωσης του δικτύου γ) επιτυγχάνει πιο δύσκολα όσο αυξάνονται οι βαθμοί ελευθερίας της συνόρθωσης του δικτύου 31) Ποιο από τα παρακάτω στοιχεία δεν είναι απαραίτητο να γνωρίζουμε για τον προσδιορισμό της ακρίβειας ενός τοπογραφικού δικτύου: α) τον πίνακα σχεδιασμού του δικτύου β) τις ακρίβειες των παρατηρήσεων γ) τις τιμές των παρατηρήσεων δ) τις δεσμεύσεις για τον ορισμό του ΣΑ 32) Η σάρωση δεδομένων στα αποτελέσματα συνόρθωσης ενός δικτύου: α) πρέπει να γίνει μόνο αν ο ολικός έλεγχος αξιοπιστίας είναι αρνητικός β) είναι πιο αποτελεσματική όταν χρησιμοποιούνται πλεονάζουσες δεσμεύσεις για τη συνόρθωση του δικτύου γ) δεν εξαρτάται από τους βαθμούς ελευθερίας της συνόρθωσης του δικτύου δ) έχει ισχυρή εξάρτηση από τη γεωμετρία του δικτύου 33) Ο έλεγχος της γενικής υπόθεσης σε μια λύση συνόρθωσης δικτύου: α) μπορεί να γίνει μόνο σε λύσεις που υπολογίστηκαν με ελάχιστες δεσμεύσεις β) σχετίζεται με τον έλεγχο του πίνακα βάρους των παρατηρήσεων γ) μπορεί να χρησιμοποιηθεί για να ελεγχθεί η αξιοπιστία γνωστών συντεταγμένων σε σταθμούς αναφοράς του δικτύου δ) δεν εξαρτάται από τη στατιστική ακρίβεια της λύσης συνόρθωσης του δικτύου Τοπογραφικά Δίκτυα & Υπολογισμοί Σελ. 7/8
8 Απαντήσεις των ερωτήσεων πολλαπλής επιλογής 1-γ 2-α, 2-γ 3-δ 4-δ 5-δ 6-β 7-β 8-γ 9-γ 10-δ 11-α 12-δ 13-δ 14-α 15-β 16-α 17-δ 18-α 19-δ 20-β 21-δ 22-δ 23-α 24-γ 25-δ 26-δ 27-γ 28-α 29-β 30-γ 31-γ 32-δ 33-γ Τοπογραφικά Δίκτυα & Υπολογισμοί Σελ. 8/8
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για την συνόρθωση ενός τοπογραφικού
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ 1) Ποιός είναι ο βασικός ρόλος και η χρησιμότητα των δικτύων στη Γεωδαισία και την Τοπογραφία; 2) Αναφέρετε ορισμένες
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 10 Σε ένα κατακόρυφο δίκτυο έχουν μετρηθεί, μέσω διπλής γεωμετρικής χωροστάθμησης, οι υψομετρικές διαφορές μεταξύ όλων των σημείων
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ)
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός
Παραδείγματα ανάλυσης αξιοπιστίας δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Παραδείγματα ανάλυσης αξιοπιστίας δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο
Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 016-017 Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Παράδειγμα συνόρθωσης οριζόντιου δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 216-217 Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο
Παράδειγμα συνόρθωσης οριζόντιου δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 218-219 Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο
ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΛΥΣΕΙΣ ΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση (α) Οι συνορθωμένες συντεταγμένες του σημείου P είναι: ˆ 358.47 m, ˆ 4.46 m (β) Η a-psteriri εκτίμηση της μεταβλητότητας
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 1 Για τον υπολογισμό των συντεταγμένων ενός σημείου P μετρήθηκαν οι οριζόντιες αποστάσεις προς τρία γνωστά σημεία (βλέπε σχήμα).
Ανάλυση αξιοπιστίας δικτύων (μέρος Ι)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανάλυση αξιοπιστίας δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η έννοια
Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 16-17 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα
Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 18-19 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα
Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 06-07 Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr
Γενική λύση συνόρθωσης δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Πως ξεπερνάμε το
Ανάλυση ακρίβειας συντεταγμένων από διαφορετικά σενάρια συνόρθωσης δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 08-09 Ανάλυση ακρίβειας συντεταγμένων από διαφορετικά σενάρια συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Σύντομη σύγκριση μεθόδων ένταξης δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Σύντομη σύγκριση μεθόδων ένταξης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Bασικές
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων
Σύντομος οδηγός του προγράμματος DEROS
Τοπογραφικά Δίκτυα και Υπολογισμοί Σύντομος οδηγός του προγράμματος DEROS Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική Σχολή ΑΠΘ SUPPLEMENTARY COURSE NOTES Για περισσότερες λεπτομέρειες
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και
Αλγόριθμοι συνόρθωσης δικτύων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Μου
Αλγόριθμοι συνόρθωσης δικτύων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Μου τη
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 11: Ανάλυση αξιοπιστίας δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΓΩΝΙΟΜΕΤΡΗΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΓΩΝΙΟΜΕΤΡΗΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr
Παράδειγμα συνόρθωσης υψομετρικού δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Παράδειγμα συνόρθωσης υψομετρικού δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίνεται
Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΥΨΟΜΕΤΡΙΚΩΝ ΔΙΚΤΥΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΥΨΟΜΕΤΡΙΚΩΝ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr
Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο
Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο Ακαδημαϊκό Έτος 017-018 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις, Ασκήσεις,
Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο Μεταλλικού Τ1-Τ10
Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο Ακαδημαϊκό Έτος 018-019 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr
Μερικά διδακτικά παραδείγματα
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 207-208 Μερικά διδακτικά παραδείγματα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Σημείωση Τα παρακάτω
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 8: Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Μερικά διδακτικά παραδείγματα
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 206-207 Μερικά διδακτικά παραδείγματα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα Παράδειγμα
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 7: Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Ένα
Η έννοια και χρήση των εσωτερικών δεσμεύσεων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η
Η έννοια και χρήση των εσωτερικών δεσμεύσεων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο
Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας
Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Ένα
Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS
5 Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS H τεχνική των "µεµονωµένων βάσεων" εφαρµόζεται όταν διατίθενται δύο µόνο δέκτες και χρησιµοποιείται για τα συνήθη δίκτυα πύκνωσης µε µικρό α- ριθµό σηµείων.
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 2: Ανασκόπηση θεωρίας εκτίμησης παραμέτρων και συνόρθωσης παρατηρήσεων Χριστόφορος Κωτσάκης Άδειες
Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;
Εντάξεις δικτύων GPS. 6.1 Εισαγωγή
6 Εντάξεις δικτύων GPS 6.1 Εισαγωγή Oι απόλυτες (X, Y, Z ή σχετικές (ΔX, ΔY, ΔZ θέσεις των σηµείων, έτσι όπως προσδιορίζονται από τις µετρήσεις GPS, αναφέρονται στο γεωκεντρικό σύστηµα WGS 84 (Wrld Gedetic
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 9: Η έννοια και η χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν
Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος Χριστόφορος Κωτσάκης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;
Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ
ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ Για το μάθημα των Ασκήσεων Υπαίθρου (και όχι μόνο..) Χ. Κωτσάκης ΤΑΤΜ ΑΠΘ Ιούλιος 2017 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Βασικές σχέσεις.3 Γραμμική vs. μη-γραμμική προσέγγιση του
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το
ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ
ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ Για το μάθημα των Ασκήσεων Υπαίθρου (και όχι μόνο..) Χ. Κωτσάκης ΤΑΤΜ ΑΠΘ Ιούλιος 2016 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Βασικές σχέσεις.3 Γραμμική vs. μη-γραμμική προσέγγιση του
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 5: Προ επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν
Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών
Ενημερωτικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και
Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 017-018 Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Έστω
Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΠΙΛΥΣΗ ΟΔΕΥΣΗΣ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΠΙΛΥΣΗ ΟΔΕΥΣΗΣ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις,
Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών
Εισαγωγικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και
Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές στο δίκτυο του
ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ ΕΙΔΙΚΕΣ ΟΔΗΓΙΕΣ. προς τους φοιτητές/τριες που θα πάρουν μέρος στις ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 2016
Θεσσαλονίκη, 13 Ιουνίου 2016 ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 8 Ο ΕΞΑΜΗΝΟ ΤΑΤΜ/ΑΠΘ ΕΙΔΙΚΕΣ ΟΔΗΓΙΕΣ προς τους φοιτητές/τριες που θα πάρουν μέρος στις ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 2016 Αντικείμενο του μαθήματος Το αντικείμενο των
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και
Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική
Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Έστω ότι έχουμε διαθέσιμες
Ανάλυση πινάκων συμ-μεταβλητοτήτων σε παραμετρικές συνιστώσες
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2017-2018 Ανάλυση πινάκων συμ-μεταβλητοτήτων σε παραμετρικές συνιστώσες Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο ΠΑΛΙΟ http://eclass.survey.teiath.gr NEO
Σύντομος οδηγός του μαθήματος
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Σύντομος οδηγός του μαθήματος Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Γενικές πληροφορίες
Αυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 4: Ψηφιακός χάρτης - Διαχείριση 2o μέρος Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 6: Σχηματισμός κανονικών εξισώσεων και το πρόβλημα ορισμού του ΣΑ Χριστόφορος Κωτσάκης Άδειες
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών
Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι
Ανάπτυξη σύγχρονου λογισμικού για τη συνόρθωση και στατιστική επεξεργασία 2Δ και 3Δ γεωδαιτικών δικτύων
Τομέας Γεωδαισίας και Τοπογραφίας Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, Πολυτεχνική Σχολή Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γεώργιος Ουζουνούδης Μεταπτυχιακός φοιτητής ΤΑΤΜ, ΑΠΘ Ανάπτυξη σύγχρονου
7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ
61 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΙΣΑΓΩΓΗ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΙΣΑΓΩΓΗ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστημίου Δυτικής Αττικής 3ο εξάμηνο ΝΕΟ eclass http://eclass.uniwa.gr Παρουσιάσεις,
Δειγματοληψία στην Ερευνα. Ετος
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)
Ανάλυση χωροσταθμικών υψομέτρων στο κρατικό τριγωνομετρικό δίκτυο της Ελλάδας
3 ο Πανελλήνιο Συνέδριο ΑΤΜ Ανάλυση χωροσταθμικών υψομέτρων στο κρατικό τριγωνομετρικό δίκτυο της Ελλάδας Χ. Κωτσάκης, Μ. Ζουλίδα, Δ. Τερζόπουλος, Κ. Κατσάμπαλος Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική
Φίλτρα Kalman. Αναλυτικές μέθοδοι στη Γεωπληροφορική. ιατύπωση του βασικού προβλήματος. προβλήματος. μοντέλο. Πρωτεύων μοντέλο
Φίλτρα Kalman Εξαγωγή των εξισώσεων τους με βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραμμα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος
ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY)
ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY) 1) Ανάλυση 1 δείγματος (Πιστοποιημένο Υλικό Αναφοράς (CRM), εμπορικό δείγμα ελέγχου (control sample), υπόλειμμα διεργαστηριακού) με γνωστή τιμή αναφοράς (μ). Αναλύεται
Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή
Σειρά Α σ1 Επώνυµο Όνοµα Αρ. Μητρώου Ζήτηµα 1 ο (3 µονάδες) Εξετάσεις Φεβρουαρίου (2011/12) στο Μάθηµα: Στατιστική Θεσσαλονίκη: 03/03/2012 Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ
SMANET1 Πρόγραµµα Συνόρθωσης και Ελέγχου Γεωµετρικών Συνθηκών σε 3 Τοπογραφικά ίκτυα ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Χριστόφορος Κωτσάκης Επίκουρος Καθηγητής ΤΑΤΜ/ΑΠΘ Τοµέας Γεωδαισίας και Τοπογραφίας Τµήµα
ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή
1 ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή Η ανάλυση ευαισθησίας μιάς οικονομικής πρότασης είναι η μελέτη της επιρροής των μεταβολών των τιμών των παραμέτρων της πρότασης στη διαμόρφωση της τελικής απόφασης. Η ανάλυση
ΤΕΥΧΟΣ ΧΩΡΟΣΤΑΘΜΙΚΟΥ ΔΙΚΤΥΟΥ
Ιωάννη Χαλκίδη 63 - ΤΚ 56123 Αµπελόκηποι - Θεσσαλονίκη- - 2310-725900 2310-725900 email: spido_gr@hol.gr ΤΕΥΧΟΣ ΧΩΡΟΣΤΑΘΜΙΚΟΥ ΔΙΚΤΥΟΥ των Πολεοδομικων Ενοτητων ΠΕ 06 & ΠΕ 07 της Δημοτικης Κοινοτητας Αμπελοκηπων
προβλήµατος Το φίλτρο Kalman διαφέρει από τα συνηθισµένα προβλήµατα ΜΕΤ σε δύο χαρακτηριστικά: παραµέτρων αγνώστων
Φίλτρα Kalman Εξαγωγή των εξισώσεων τους µε βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραµµα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η
3η Ενότητα Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr