Δυναμική Μηχανών I. Προσέγγιση Galerkin

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δυναμική Μηχανών I. Προσέγγιση Galerkin"

Transcript

1 Δυναμική Μηχανών I 8 2 Προσέγγιση Galerkin Χειμερινό Εξάμηνο 214 Τμήμα Μηχανολόγων Μηχανικών, ΕΜΠ Δημήτριος Τζεράνης, Ph.D.

2 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια

3 Περιεχόμενα Γενική Ιδέα Προσεγγιστικών Λύσεων ΜΔΕ Προσέγγιση Galerkin Παράδειγμα

4 Γενική Ιδέα Προσεγγιστικών Λύσεων ΜΔΕ

5 Επανάληψη: Αναλυτική Επίλυση ΜΔΕ Σε 1D προβλήματα, η απόκριση q x, t είναι επαλληλία των ιδιομορφών n Χ(x) μέσω των συντελεστών συνεισφοράς η n (t): q x, t = n=1 n Χ(x) η n (t) H απόκριση υπολογίζεται λύνοντας μια σειρά από ΣΔΕ 2 ης τάξης, κάθε μια από τις οποίες παρέχει την απόκριση η n (t) Επιπλέον, συνήθως, η απόκριση q x, t κυριαρχείται από λίγες ιδιομορφές που αντιστοιχούν στις πιο αργές ιδιοσυχνότητες q x, t N r n=1 n Χ(x) η n (t)

6 Ανάγκη Για Αριθμητικές Λύσεις Δυστυχώς, οι ιδιομορφές n Χ(r) μπορούν να υπολογιστούν αναλυτικά μόνο για πολύ απλά μοντέλα (1D, 2D) Χρειαζόμαστε αριθμητικές λύσεις! Η βασική ιδέα των προσεγγιστικών μεθόδων (Galerkin) θα περιγραφεί σε 1D μοντέλα Η μέθοδος Galerkin θα επεκταθεί στην μέθοδο των πεπερασμένων στοιχείων (finete element method) Πιο γενική και χρήσιμη μέθοδος, εφαρμόζεται σε συστήματα 1D, 2D, 3D πολύπλοκης γεωμετρίας και ιδιοτήτων υλικών

7 Λύση ΜΔΕ σε απλές γεωμετρίες Προσέγγιση Galerkin

8 Μέθοδος Galerkin σε 1D Προβλήματα Βασική ιδέα: η απόκριση q x, t της ΜΔΕ προσεγγίζονται χρησιμοποιώντας συναρτήσεις προσέγγισης n Χ(x) ως: q x, t Ν n=1 n Χ(x) η n (t) Ισοδύναμα, σε μητρωϊκή μορφή: q x, t X(x) T η(t) X x = 1 Χ(x) N Χ(x), η t = η 1 (t) η N (t) Διάνυσμα συναρτήσεων προσέγγισης Διάνυσμα απόκρισης ιδιομορφών Το διάνυσμα η t είναι οι Β.Ε. ενός νέου μοντέλου διακριτών Β.Ε. που προσεγγίζει το σύστημα συνεχούς μέσου

9 Μέθοδος Galerkin σε 1D Προβλήματα Συναρτήσεις Προσέγγισης n Χ(x): Πρέπει να ικανοποιούν τις οριακές συνθήκες του προβλήματος Πρέπει να είναι πλήρεις και ανεξάρτητες μεταξύ τους Πολυωνυμικές Συναρτήσεις (τρίγωνο Pascal) Συναρτήσεις egendre Αρμονικές Συναρτήσεις Ιδεατά, προσεγγίζουν τις ιδιομορφές n Χ(x)

10 Μέθοδος Galerkin: Κινητική Ενέργεια Η κινητική ενέργεια Τ του συστήματος υπολογίζεται ως προς τους Β.Ε. η t Σε 1D μοντέλα (2 ης ή 4 ης τάξης) Τ = dt(x)dx = 1 = 1 2 ηt (t) 2 μ(x) y x, t 2 dx = 1 2 μ(x) X x X(x) T dx Το αντίστοιχο μητρώο αδράνειας είναι: Μ = μ(x) ( X(x) T μ(x) X x X(x) T dx Το στοιχείο M i,j του μητρώου αδράνειας Μ είναι: M i,j = μ(x) i Χ(x) η (t)) T X(x) T η(t) = 1 2 ηt (t) Μ j Χ(x)dx η(t) η(t)dx =

11 Μέθοδος Galerkin: Δυναμική Ενέργεια Σε 1D προβλήματα 2 ης τάξης, για τον υπολογισμό της δυναμικής ενέργειας χρειάζεται η παράγωγος q x, t, η οποία εκφράζεται ως: q x, t Ν n=1 n Χ(x) η n (t) q x, t Ν n=1 q x, t b(x) T η(t) d dx ( n Χ(x)) η n (t) Οπότε τα στοιχεία του b x είναι οι παράγωγοι των στοιχείων του X x b x = d dx ( 1 Χ x ) d dx ( N Χ x )

12 Μέθοδος Galerkin: Δυναμική Ενέργεια Η δυναμική ενέργεια U του συστήματος μπορεί να υπολογιστεί ως μια τετραγωνική μορφή του η t Σε 1D μοντέλα 2 ης τάξης U = dv(x)dx = 1 = 1 2 ηt (t) 2 κ(x)y x, t 2 dx = 1 2 Το αντίστοιχο μητρώο ελαστικότητας Κ είναι: κ(x) ( b(x) T η(t)) T b(x) T η(t)dx = κ(x) b x b(x) T dx η(t) = 1 2 ηt (t) Κ η(t) Κ = κ(x) b x b(x) T dx Το στοιχείο Κ i,j του μητρώου ελαστικότητας Κ είναι: Κ i,j = κ(x) i Χ x j Χ x dx

13 Μέθοδος Galerkin: Δυναμική Ενέργεια Αντίστοιχα, σε 1D προβλήματα 4 ης τάξης, για τον υπολογισμό της δυναμικής ενέργειας χρειάζεται η παράγωγος q x, t, η οποία εκφράζεται ως: q x, t b(x) T η(t) d 2 dx b x = 2 ( 1 Χ x ) d 2 dx 2 ( N Χ x ) Το αντίστοιχο μητρώο ελαστικότητας είναι πάλι Κ = κ(x) b x b(x) T dx Τώρα όμως το διάνυσμα b x περιέχει τις δεύτερες παραγώγους των n Χ x

14 Μέθοδος Galerkin: Δυνατό Έργο Οι γενικευμένες δυνάμεις ξ που αντιστοιχούν στους Β.Ε. η(t) υπολογίζονται από το δυνατό έργο λόγω των εξωτερικών διεγέρσεων f x, t, το οποίο υπολογίζεται ως Οπότε δw = δq(x, t) f x, t dx = δw = δη(t) T ξ = δη(t) T X x f x, t dx X x f x, t dx = δη(t) T ξ X x f x, t dx

15 Μέθοδος Galerkin: Αρχικές Συνθήκες Οι αρχικές συνθήκες η() δεν μπορούν να προκύψουν απλά από την y x, X(x) T η() Δεν είναι δυνατών να βρεθούν Ν στοιχεία η() που να ικανοποιούν την σχέση αυτή για κάθε x Τα η() υπολογίζονται με βάση αρχικές συνθήκες σε Ν σημεία: Παρόμοια, τα X(x 1 ) T X(x Ν ) T η = q x 1, q x Ν, η() υπολογίζονται από τα ίδια σημεία: X(x 1 ) T X(x Ν ) T η() = q x 1, q x Ν,

16 Μέθοδος Galerkin Συμπερασματικά, η δυναμική του συστήματος 2 ης τάξης μ 2 q t 2 x q κ x = f x, t Προσεγγίζεται μέσω της μεθόδου Galerkin ως q x, t Ν n=1 n Χ x η n t = X(x) T η(t) Όπου η απόκριση των Ν Β.Ε. η t υπολογίζεται από ένα σύστημα Ν ΣΔΕ: Μ η t + Κ η t = ξ Τα μητρώα Μ, Κ, οι γενικευμένες δυνάμεις ξ και οι αρχικές συνθήκες η, η υπολογίστηκαν στα προηγούμενα slides

17 Μέθοδος Galerkin: Ειδική Περίπτωση Η q x, t εκφράζεται μέσω των μετατοπίσεων n q t = q x n, t σε Ν επιλεγμένα σημεία x n μέσω συναρτήσεων προσέγγισης που ονομάζονται συναρτήσεις μορφής n Ν x q x, t Ν n=1 n x = n Ν x q x n, t 1 Ν x Ν Ν x Ν n=1 n Ν x n q t = n(x) T q(t), q t = n q(t) N q(t) Ιδιότητες συναρτήσεων μορφής: n Ν x 1 n Ν x m =, n m 1, n = m

18 Προσέγγιση Galerkin Συμπερασματικά, η δυναμική απόκριση q x, t ενός 1D ελαστικού συστήματος συνεχούς μέσου προσεγγίζεται ως q x, t n(x) T q(t) όπου q t είναι η απόκριση της κατασκευής σε Ν επιλεγμένα σημεία, η οποία υπολογίζεται από την απόκριση ενός συστήματος Ν ΣΔΕ: Μ q t + Κ q t = ξ Η μέθοδος εφαρμόζεται πρακτικά μόνο σε 1D προβλήματα. Σε πολύπλοκες 3D κατασκευές είναι δύσκολο να βρεθούν κατάλληλες συναρτήσεις μορφής n(x) για όλη την κατασκευή επόμενο βήμα: μέθοδος πεπερασμένων στοιχείων

19 Παράδειγμα Θέμα Νοεμβρίου 213

20

21 Λύση: Προσέγγιση Galerkin Η εγάρσια μετατόπιση w(x, t) κάθε σημείου στην δοκό εκφράζεται ως συνάρτηση της μετατόπισης w t = w, t στην άκρη της δοκού w x, t = Ν x w, t = Ν x w t μέσω της συνάρτησης μορφής Ν x = 1 cos( π 2 x) Οι χρονικές και χωρικές παράγωγοι υπολογίζονται ως: w x, t = Ν x w t w x, t = N x w t = π 2 sin( π 2 x) w t w x, t = N x w t = ( π 2 )2 cos( π 2 x) w t

22 Λύση: Κινητική Ενέργεια Τ = Τ Μ + Τ δοκος = 1 2 M w 2 + = 1 2 M w ρα(ν x 1 2 ρα w(x, t)2 dx = w t ) 2 dx = = 1 2 M + ρα Ν x 2 dx w 2 = 1 M +.227ρΑ 2 Επομένως το μητρώο αδράνειας του συστήματος ως προς τον Β.Ε. w t είναι: m = M +.227ρΑ w 2

23 Σχόλιο Λύση: Κινητική Ενέργεια Ενώ η συνολική μάζα της δοκού είναι ρα, η αδράνεια της δοκού ως προς την εγκάρσια κίνηση w t είναι μόλις.227ρα. Ο λόγος είναι ότι η εγκάρσια ταχύτητα της δοκού κοντά στην πάκτωση είναι πάντα μικρότερη από την ταχύτητα w t κοντά στο ελεύθερο άκρο.

24 Λύση: Δυναμική Ενέργεια Το ελατήριο σταθεράς k στην θέση x = /2 ονομάζεται k 1 Τα τρία ελατήρια στην θέση x = (δύο ελατήρια σταθεράς k στην σειρά, το ισοδύναμο των οποίων είναι παράλληλα με ένα ελατήριο σταθεράς k) αντικαθιστώνται από το ισοδύναμο k 23 = k +.5k = 1.5k Δυναμική ενέργεια: U = U k1 + U k23 + U δοκος = 1 2 k 1(w( 2, t)) k 23(w(, t)) EI(w (x, t)) 2 dx

25 Λύση: Δυναμική Ενέργεια U = 1 2 k(n( 2 )w t ) k 2 (w t ) EI(N (x)w t ) 2 dx = = 1 2 k(.293w t ) kw t EI N (x) 2 dx w t 2 = = 1 EIπ4.858k + 1.5k w t 2 = 1 EI 1.586k w t 2 Επομένως το μητρώο ελαστικότητας του συστήματος ως προς τον Β.Ε. w t είναι: k = 1.586k EI 3

26 Σχόλια Λύση: Δυναμική Ενέργεια Το ελατήριο k 1 συνεισφέρει πολύ λιγότερο στην δυναμική ενέργεια συγκριτικά με τα k 23 λόγω του πολύ μικρότερου εύρους κίνησης του (μόλις το N =.293) συγκρητικά με την w 2 t Από την μηχανική του παραμορφώσιμου στερεού, η παραμόρφωση στο ελεύθερο άκρο ενός πακτωμένου δοκού (, E, I) στο οποίο ασκείται δύναμη F (στο ελεύθερο άκρο) είναι δ = 3 3EI F. Αυτό αντιστοιχεί σε ένα καμπτικό ελατήριο σταθεράς k = 3ΕΙ 3. Παρατηρούμε ότι αυτό είναι πολύ κοντά στην σταθερά ελατηρίου που υπολογίστηκε παραπάνω (3.4 EI 3)

27 Λύση: Δυναμικές Εξισώσεις Επειδή δεν υπάρχουν εξωτερικές διεγέρσεις ή δυνάμεις απόσβεσης, το γενικευμένο έργο είναι μηδέν ξ = Μέσω της μεθόδου agrange, η δυναμική εξίσωση του συστήματος ως προς τον Β.Ε. w (t) είναι: t w + U t = ξ m w (t) + k w (t) = H δυναμική εξίσωση του συστήματος είναι μια ΣΔΕ 2 ης ταξης H φυσική κυκλική συχνότητα του συστήματος είναι: ω = k m = 1.586k EI 3 M +.227ρΑ

28 Επέκταση: Εξωτερική Διέγερση Έστω ότι στην δοκό ασκείται εξωτερική διέγερση f 1 (t) στην θέση x =.75, και f 2 (t) στην θέση x =. Να υπολογιστεί η επακόλουθη γενικευμένη δύναμη ως προς τον Β.Ε. w Λύση Η εγκάρσια κίνηση στα σημεία όπου ασκούνται οι δυνάμεις f 1 (t) και f 2 (t) είναι: w x f1, t = Ν.75 w t =.62 w t w x f2, t = Ν w t = w t Το αντίστοιχο γενικευμένο έργο είναι: δw =.62 δw t f 1 t + δw t f 2 t = = δw t (.62 f 1 t + f 2 t )

29 Επέκταση: Εξωτερική Διέγερση Οι αντίστοιχες γενικευμένες δυνάμεις είναι: ξ =.62 f 1 t +f 2 t Και οι δυναμικές εξισώσεις του συστήματος ως προς τον Β.Ε. w (t) είναι: m w (t) + k w (t) =.62 f 1 t +f 2 t

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 21 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 2 Χειμερινό Εξάμηνο 213 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/214, 12. Απαιτείται αποδεικτικό ταυτότητας Απαγορεύεται η παρουσία & χρήση κινητού!

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου Δυναμική Μηχανών I 8 1 Δυναμικά Μοντέλα Συνεχούς Μέσου 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Μοντελοποίηση

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 13. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 13. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 13 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Iδιότητες Ιδιοανυσμάτων Συστήματα χωρίς απόσβεση Ιδιοανυσματικός Μετασχηματισμός Συστήματα χωρίς απόσβεση

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Ιδιοανυσματική Ανάλυση

Δυναμική Μηχανών I. Ιδιοανυσματική Ανάλυση Δυναμική Μηχανών I 6 3 Ιδιοανυσματική Ανάλυση 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Ιδιοανυσματική

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Εισαγωγή στον Υπολογισμό της Χρονικής. Απόκρισης Δυναμικών Εξισώσεων

Δυναμική Μηχανών I. Εισαγωγή στον Υπολογισμό της Χρονικής. Απόκρισης Δυναμικών Εξισώσεων Δυναμική Μηχανών I Εισαγωγή στον Υπολογισμό της Χρονικής 5 1 Απόκρισης Δυναμικών Εξισώσεων 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Ιδιομορφές

Δυναμική Μηχανών I. Ιδιομορφές Δυναμική Μηχανών I 6 2 Ιδιομορφές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Ιδιομορφές σε Συστήματα

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης Δυναμική Μηχανών I 9 1 Σύνοψη Εξεταστέας Ύλης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Ύλη Δυναμικής Μηχανών

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 12. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 12. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 12 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Απόκριση Συστημάτων N Β.Ε. Σε αρχικές συνθήκες Συστήματα χωρίς απόσβεση Εισαγωγή στην ιδιοανυσματική ανάλυση

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών. σε Συστήματα Συνήθων Διαφορικών Εξισώσεων με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών. σε Συστήματα Συνήθων Διαφορικών Εξισώσεων με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών 6 1 σε Συστήματα Συνήθων Διαφορικών Εξισώσεων με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 22 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

Δυναμική Μηχανών I. H Μέθοδος των Πεπερασμένων Στοιχείων

Δυναμική Μηχανών I. H Μέθοδος των Πεπερασμένων Στοιχείων Δυναμική Μηχανών I 8 3 H Μέθοδος των Πεπερασμένων Στοιχείων 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Εισαγωγική Ανάλυση και Γραμμικοποίηση. Μη-Γραμμικών Δυναμικών Εξισώσεων

Δυναμική Μηχανών I. Εισαγωγική Ανάλυση και Γραμμικοποίηση. Μη-Γραμμικών Δυναμικών Εξισώσεων Δυναμική Μηχανών I Εισαγωγική Ανάλυση και Γραμμικοποίηση 4 5 Μη-Γραμμικών Δυναμικών Εξισώσεων 25 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Γενικευμένα Mονοβάθμια Συστήματα

Γενικευμένα Mονοβάθμια Συστήματα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Συνάρτηση Απόκρισης Συχνότητας

Δυναμική Μηχανών I. Συνάρτηση Απόκρισης Συχνότητας Δυναμική Μηχανών I 7 3 Συνάρτηση Απόκρισης Συχνότητας 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Απόκριση

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Συνάρτηση και Μητρώο Μεταφοράς

Δυναμική Μηχανών I. Συνάρτηση και Μητρώο Μεταφοράς Δυναμική Μηχανών I 7 2 Συνάρτηση και Μητρώο Μεταφοράς 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Αναπαραστάσεις

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 7 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Επανάληψη 1 ου μέρους μαθήματος: Μοντελοποίηση & Κατάστρωση Δυναμικών Εξισώσεων Εισαγωγή 2 ου μέρους μαθήματος:

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Μοντελοποίηση Mηχανικών Συστημάτων Ι: Μηχανικά Συστήματα σε Μεταφορική Κίνηση

Δυναμική Μηχανών I. Μοντελοποίηση Mηχανικών Συστημάτων Ι: Μηχανικά Συστήματα σε Μεταφορική Κίνηση Δυναμική Μηχανών I 3 2 Μοντελοποίηση Mηχανικών Συστημάτων Ι: Μηχανικά Συστήματα σε Μεταφορική Κίνηση 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 4 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Μοντελοποίηση Μηχανικών Συστημάτων Ν Βαθμών Ελευθερίας Μηχανικά δυναμικά συστήματα πολλών Β.Ε. Μοντελοποίηση

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Πολυβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Συστήματα με Κατανεμημένη Μάζα και Δυσκαμψία 1. Εξίσωση Κίνησης χωρίς Απόσβεση: Επιβαλλόμενες

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά Δυναμική Μηχανών I 2 1 Επανάληψη: Μαθηματικά 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Συμβολισμοί Μεταβλητών

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 19. έκδοση DΥΝI-EXC a

ΑΣΚΗΣΗ 19. έκδοση DΥΝI-EXC a ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 19 έκδοση DΥΝI-EXC19-2017a Copyright Ε.Μ.Π. - 2017 Σχολή

Διαβάστε περισσότερα

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΕΦΑΛΑΙΟ 3 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 3.. Εισαγωγή Αναφέρθηκε ήδη στο ο κεφάλαιο ότι η αναπαράσταση της ταλαντωτικής

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική

Δυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική Δυναμική Μηχανών I 2 2 Επανάληψη: Κινηματική και Δυναμική 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8. έκδοση DΥΝI-EXC b

ΑΣΚΗΣΗ 8. έκδοση DΥΝI-EXC b ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 8 έκδοση DΥΝI-EXC08-016b Copyright Ε.Μ.Π. - 016 Σχολή

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα. (συνέχεια)

Πολυβάθμια Συστήματα. (συνέχεια) Πολυβάθμια Συστήματα (συνέχεια) Ορθογωνικότητα Ιδιομορφών Πολυβάθμια Συστήματα: Δ21-2 Μία από τις σπουδαιότερες ιδιότητες των ιδιομορφών είναι η ορθογωνικότητα τους ως προς τα μητρώα μάζας [m] και ακαμψίας

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7. έκδοση DΥΝI-EXC b

ΑΣΚΗΣΗ 7. έκδοση DΥΝI-EXC b ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 7 έκδοση DΥΝI-EXC07-06b Copyright Ε.Μ.Π. - 06 Σχολή

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΠΛΑΙΣΙΑ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΠΛΑΙΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΠΛΑΙΣΙΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Μ. Nεραντζάκη Αναπλ. Καθηγήτρια

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,

Διαβάστε περισσότερα

Διδάσκων: Κολιόπουλος Παναγιώτης

Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 10: ΣΥΣΤΗΜΑΤΑ ΔΥΟ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ (-ΒΕ) Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 1. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 1. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 1 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Εισαγωγή στην Δυναμική Μηχανών Φιλοσοφία του μαθήματος Περίληψη του μαθήματος Αντικείμενο Εφαρμογές Δυναμικής

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 9. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 9. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 9 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Η διάλεξη σε MATLAB/simulink για όσους δήλωσαν συμμετοχή θα γίνει στις 16/1/2014 στο PC LAB Δεν θα γίνει διάλεξη

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι Δυναμική Μηχανών Ι Ακαδημαϊκό έτος: 015-016 ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 1.1- Δυναμική Μηχανών Ι Ακαδημαϊκό έτος: 015-016 Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 015.

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

Η λύση του προβλήματος των ιδιοτιμών και ιδιομορφών είναι εύκολη μόνο σε περιπτώσεις συστημάτων λίγων Β.Ε. Μέθοδος Rayleigh

Η λύση του προβλήματος των ιδιοτιμών και ιδιομορφών είναι εύκολη μόνο σε περιπτώσεις συστημάτων λίγων Β.Ε. Μέθοδος Rayleigh Η λύση του προβλήματος των ιδιοτιμών και ιδιομορφών είναι εύκολη μόνο σε περιπτώσεις συστημάτων λίγων Β.Ε. Μέθοδος Raylegh βασίζεται στο ομώνυμο πηλίκο προσεγγίζει το άνω όριο της τιμής της πρώτης ιδιοτιμής

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 19.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 19. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 9. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - Cpyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών -. Με επιφύλαξη παντός

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ-ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Μ. Nεραντζάκη Αναπλ.

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 11: ΟΡΘΟΓΩΝΙΚΟΤΗΤΑ ΤΩΝ ΙΔΙΟΜΟΡΦΩΝ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 11: ΟΡΘΟΓΩΝΙΚΟΤΗΤΑ ΤΩΝ ΙΔΙΟΜΟΡΦΩΝ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα : ΟΡΘΟΓΩΝΙΚΟΤΗΤΑ ΤΩΝ ΙΔΙΟΜΟΡΦΩΝ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 12&13: ΣΕΙΣΜΙΚΗ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΣΥΝΔΥΑΣΜΟ ΙΔΙΟΜΟΡΦΩΝ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης

Δυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης Δυναμική Μηχανών I 5 5 Χρονική Απόκριση Συστημάτων 2 ης Τάξης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα. (συνέχεια)

Πολυβάθμια Συστήματα. (συνέχεια) Πολυβάθμια Συστήματα (συνέχεια) Ελεύθερη Ταλάντωση Xωρίς Απόσβεση Πολυβάθμια Συστήματα: Δ0- Για ένα πολυβάθμιο σύστημα που ταλαντώνεται ελεύθερα χωρίς απόσβεση, λόγω μόνο επιβαλλόμενων αρχικών μετατοπίσεων

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 5. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 5. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 5 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα: Μοντελοποίηση Μηχανικών- Ηλεκτρικών-Υδραυλικών-Θερμικών Συστημάτων Επανάληψη: Εξισώσεις Lagrange σε συστήματα

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 19 Ταλαντώσεις Απλή αρμονική κίνηση ΦΥΣ102 1 Ταλαντώσεις Ελατηρίου Όταν ένα αντικείμενο

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ.. Οι βασικές έννοιες Η ταλαντωτική κίνηση είναι κίνηση που επαναλαμβάνεται στον χρόνο. Οι ταλαντώσεις ενός η περισσοτέρων μερών μιας μηχανής η ενός μηχανισμού

Διαβάστε περισσότερα

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. 1 ης τάξης Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση Συστημάτων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια

Διαβάστε περισσότερα

ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ

ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ υναμική Ανάλυση Ραβδωτών Φορέων Μετακινήσεις στη μέθοδο επαλληλίας των ιδιομορφών,

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 Cprigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 0. Με επιφύλαξη παντός

Διαβάστε περισσότερα

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Μοντελοποίηση Μηχανικών Συστημάτων Πολλών

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ

Διαβάστε περισσότερα

Εισαγωγή στη Δυναμική Μηχανών

Εισαγωγή στη Δυναμική Μηχανών Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Εισαγωγή στη Δυναμική Μηχανών Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Εισαγωγή στη Δυναμική Μηχανών του καθ. Ιωάννη Αντωνιάδη και υπόκειται

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - Β. - Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 06. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) 10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Διατύπωση εξισώσεων ΜΠΣ βάσει μετακινήσεων

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΜΑ 1ο Στις προτάσεις 1.1 έως 1.4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 16.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 16. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 6. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών -. Με επιφύλαξη παντός

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 4.. Εισαγωγή Στο παρόν κεφάλαιο θα μελετηθούν οι ελεύθερες ταλαντώσεις συστημάτων που περιγράφονται

Διαβάστε περισσότερα

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α, Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,

Διαβάστε περισσότερα

Επίλυση Δυναμικών Εξισώσεων

Επίλυση Δυναμικών Εξισώσεων Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Επίλυση Δυναμικών Εξισώσεων Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Επίλυση Δυναμικών Εξισώσεων του καθ. Ιωάννη Αντωνιάδη και υπόκειται σε

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διπλωματική εργασία Φάσματα Απόκρισης Συνεχών Ταλαντούμενων Συστημάτων για Πλήγματα Διαφόρων Μορφών Βιργινία Αργίνη Ζάννα Επιβλέπων καθηγητής: Χρήστος Γιούνης Τομέας Μηχανικής

Διαβάστε περισσότερα

Δυναμική εργαλειομηχανών

Δυναμική εργαλειομηχανών Δυναμική εργαλειομηχανών Θεωρία μηχανικών ταλαντώσεων Εξαναγκασμένες ταλαντώσεις Παραδείγματα στο φρεζάρισμα Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Δυναμική Εργαλειομηχανών Άδεια Χρήσης Το παρόν υλικό υπόκειται σε

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional). 3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων

Δυναμική Μηχανών I. Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων Δυναμική Μηχανών I Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων Χειμερινό Εξάμηνο 2014 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δημήτριος Τζεράνης, Ph.D. Περιεχόμενα Μοντελοποίηση Ηλεκτρικών Συστημάτων Μεταβλητές

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο Στις προτάσεις 1.1

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα. 69: Υπολογιστικές Μέθοδοι για Μηχανικούς Ολοκληρώματα ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Αριθμητική Ολοκλήρωση συναρτήσεων Χρησιμοποιούμε αριθμητικές μεθόδους για τον

Διαβάστε περισσότερα

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος Δυναµική των Ροµποτικών Βραχιόνων Κ. Κυριακόπουλος Ροµποτική Αρχιτεκτονική: η Δυναµική Περιβάλλον u Ροµποτική Δυναµική q,!q Ροµποτική Κινηµατική Θέση, Προσανατολισµός και αλληλεπίδραση Η δυναµική ασχολείται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 1.1 Κατασκευές και δομοστατική 3 1.2 Διαδικασία σχεδίασης κατασκευών 4 1.3 Βασικά δομικά στοιχεία 6 1.4 Είδη κατασκευών 8 1.4.1 Δικτυώματα 8

Διαβάστε περισσότερα

ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93

ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93 ΚΕΦΑΛΑΙΟ 5 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 5.. Εισαγωγή Η παρουσία εξωτερικών διεγέρσεων σε ένα σύστηµα πολλών Β.Ε. δηµιουργεί σ'

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ έκδοση

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Μοντελοποίηση της Αλληλεπίδρασης. Συστήματος με το Περιβάλλον του

Δυναμική Μηχανών I. Μοντελοποίηση της Αλληλεπίδρασης. Συστήματος με το Περιβάλλον του Δυναμική Μηχανών I Μοντελοποίηση της Αλληλεπίδρασης 3 4 Συστήματος με το Περιβάλλον του 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς ελατηρίου

Υπολογισμός της σταθεράς ελατηρίου Εργαστηριακή Άσκηση 6 Υπολογισμός της σταθεράς ελατηρίου Βαρσάμης Χρήστος Στόχος: Υπολογισμός της σταθεράς ελατηρίου, k. Πειραματική διάταξη: Κατακόρυφο ελατήριο, σειρά πλακιδίων μάζας m. Μέθοδος: α) Εφαρμογή

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις προτάσεις 1.1 έως 1.4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον.

9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον. 9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ 9.0 Εισαγωγικά Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον. 9.1 Έλεγχος «Συµµόρφωσης» ή «Υποχωρητικότητας» (Comliance Control)

Διαβάστε περισσότερα

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση (...)

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση (...) Εξαναγκασμένη Ταλάντωση Αρμονική Φόρτιση (...) Εξαναγκασμένη Ταλάντωση: Αρμονική Φόρτιση: Αρμονική Ταλάντωση με Απόσβεση (...) π / ω π / ω D E = f du = ( cu ) udt = cu dt D Δ9- Απώλεια ενέργειας Η απώλεια

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΠΛΑΙΣΙΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση

Διαβάστε περισσότερα

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού //04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί

Διαβάστε περισσότερα

ΣΕΙΣΜΙΚΗ ΑΠΟΚΡΙΣΗ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΕΙΣΜΙΚΗ ΑΠΟΚΡΙΣΗ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ Αντισεισμικές Κατασκευές διαφάνεια /0 ΣΕΙΣΜΙΚΗ ΑΠΟΚΡΙΣΗ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ Μέθοδος: Δυναμική Φασματική Μέθοδος (Γενικής Εφαρμογής Ε.Α.Κ.. Μόρφωση των Εξισώσεων Κίνησης. Υπολογισμός των α Ιδιοτιμών

Διαβάστε περισσότερα

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του

Διαβάστε περισσότερα

Απόκριση σε Αρμονική Διέγερση

Απόκριση σε Αρμονική Διέγερση Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση σε Αρμονική Διέγερση Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση σε Αρμονική Διέγερση του καθ. Ιωάννη Αντωνιάδη και υπόκειται

Διαβάστε περισσότερα

Σύνθεση ή σύζευξη ταλαντώσεων;

Σύνθεση ή σύζευξη ταλαντώσεων; Σύνθεση ή σύζευξη ταλαντώσεων; Σώμα Σ μάζας προσδένεται στο ένα άκρο οριζόντιου ελατηρίου σταθεράς το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο. Πάνω στο πρώτο σώμα στερεώνεται δεύτερο ελατήριο σταθεράς,

Διαβάστε περισσότερα

9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ

9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

υναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων

υναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων υναµική των Ροµποτικών Βραχιόνων Ροµποτική Αρχιτεκτονική: η υναµική u Ροµποτική υναµική q, q& Ροµποτική Κινηµατική Περιβάλλον Θέση, Προσανατολισµός & και αλληλε ίδραση Η δυναµική ασχολείται µε την εξαγωγή

Διαβάστε περισσότερα

Υπολογισμός της σεισμικής δυναμικής ή μη-γραμμικής απόκρισης των κατασκευών.

Υπολογισμός της σεισμικής δυναμικής ή μη-γραμμικής απόκρισης των κατασκευών. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Aντισεισμικός Σχεδιασμός Κατασκευών Προσομοίωση Φορτίων Μανόλης Παπαδρακάκης Καθηγητής ΕΜΠ 007-008 Βασικές Αρχές Αντισεισμικού Σχεδιασμού Κατασκευών

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα