ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Ατομική Φυσική ΑΣΚΗΣΕΙΣ. Διδάσκων : Επίκ. Καθ. Μ. Μπενής
|
|
- Πέρσις Χρηστόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ατομική Φυσική ΑΣΚΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Μ. Μπενής
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.
3 ΕΡΩΣΗΕΙ ΠΟΛΛΑΠΛΗ ΕΠΙΛΟΓΗ ΓΙΑ ΣΟ ΜΑΘΗΜΑ ΣΗ ΑΣΟΜΙΚΗ ΦΤΙΚΗ Κεφάλαιο 1: τοιχεία Κβαντομηχανικήσ 1. Οι ςφαιρικζσ αρμονικζσ πραγματικισ μεταβλθτισ είναι ιδιοκαταςτάςεισ το ςυνόλου των τελεςτϊν α) {L 2, L z } β) {L 2, L z 2 } γ) {L 2, L z, L z 2 } δ) {L z, L z 2 } 2. Θ πικανότθτα να βρεκεί ζνα ςωμάτιο ςε όγκο dv είναι α) Ψ 2 β) Ψ dv γ) Ψ 2 dv δ) Ψ 2 V 3. Θ διπλι δράςθ του τελεςτι τθσ ομοτιμίασ (parity) P ςε ιδιοκατάςταςι του με περιττι ομοτιμία ζχει ωσ αποτζλεςμα τθν ιδιοτιμι α) 1 β) -1 γ) ħ δ) ħ 4. Για να υπάρχει ζνα κοινό ςφνολο ιδιοκαταςτάςεων δυο τελεςτϊν Α, Β κα πρζπει να ιςχφει για τον μετακζτθ τουσ α) Α, Β = 1 β) Α, Β = iħab γ) Α, Β = iħ δ) Α, Β = 0 5. Μια κανονικοποιθμζνθ τριςδιάςτατθ κυματοςυνάρτθςθ ζχει φυςικζσ διαςτάςεισ α) L 1/2 β) L 3 γ) L 3 δ) L 3/2 dv Κεφάλαιο 2: Μονοηλεκτρονιακά Ατομικά υςτήματα 6. Ποια από τισ παρακάτω υδρογονικζσ κυματοςυναρτιςεισ ζχει μθ-μθδενικι τιμι ςτο r = 0; α) Ψ 310 β) Ψ 311 γ) Ψ 300 δ) Ψ Θ γεωμετρικι διατομι ενόσ υδρογονοειδοφσ ατόμου Rydberg με κφριο κβαντικό αρικμό n = 100 είναι ςε ςχζςθ με τθ γεωμετρικι διατομι του υδρογόνου ςτθν βαςικι του κατάςταςθ μεγαλφτερθ κατά παράγοντα α) 10 2 β) 10 4 γ) 10 6 δ) Το ζργο ιονιςμοφ του ποηιτρόνιουμ (e + e - ) είναι ςε ςχζςθ με το ζργο ιονιςμοφ του υδρογόνου ςτθν βαςικι του κατάςταςθ (α) Το ίδιο (β) Το μιςό (γ) Το διπλάςιο (δ) Το τετραπλάςιο
4 D nl (r) (arb. un.) 9. Το μζγεκοσ του υδρογονοειδοφσ ιόντοσ του θλίου (He + ) ςτθ βαςικι του κατάςταςθ είναι (μετρθμζνο ςε ακτίνεσ Bohr: a 0 ). α) a 0 β) a 0 /2 γ) 3a 0 /2 δ) 3a 0 /4 10. Ποια από τισ παρακάτω ακτινικζσ κυματοςυναρτιςεισ R nl r αντιςτοιχεί ςτθν ςυνάρτθςθ ακτινικισ κατανομισ D nl r του διπλανοφ ςχιματοσ; α) R 30 r β) R 31 r γ) R 32 r δ) R 20 r r/a Επιλζξτε τθν αλθκι από τισ παρακάτω προτάςεισ: "Οι δζςμιεσ ενεργειακζσ καταςτάςεισ του υδρογονοειδοφσ ιόντοσ του Ουρανίου (U 91+ ) είναι αρικμθτικά..." α) άπειρεσ μθ αρικμιςιμεσ. β) άπειρεσ με αρικμιςιμα και ςυνεχι ςφνολα. γ) άπειρεσ αρικμιςιμεσ. δ) πεπεραςμζνου αρικμοφ. Κεφάλαιο 3: Αλληλεπίδραςη μονοηλεκτρονιακών ατομικών ςυςτημάτων με την ηλεκτρομαγνητική ακτινοβολία 12. Θ Χαμιλτονιανι ενόσ φορτιςμζνου ςωματιδίου φορτίου q και μάηασ m που βρίςκεται εντόσ θλεκτρομαγνθτικοφ (ΘΜ) πεδίου είναι θ Η = 1 p qa 2 + qφ. Λαμβάνοντασ υπόψθ τθ 2m βακμίδα Coulomb και Φ = 0 θ ςωςτι γραφι τθσ εξίςωςθσ Schrödinger είναι θ (α) iħ ħ2 Ψ(r, t) = t 2m 2 Ze2 iħe (4πε 0 )r m A Ψ(r, t) (β) (γ) (δ) iħ ħ2 Ψ(r, t) = t iħ ħ2 Ψ(r, t) = t 2m 2 iħ ħ2 Ψ(r, t) = t 2m 2 Ze2 iħe (4πε 0 )r m Ze2 iħe (4πε 0 )r m 2m 2 Ze2 iħe (4πε 0 )r m A Ψ(r, t) A + e2 2m A2 A + e2 2m A2 Ψ(r, t) Ψ(r, t)
5 13. Θ πικανότθτα αυκόρμθτθσ αποδιζγερςθσ ενόσ υδρογονοειδοφσ ατόμου ςτθν κατάςταςθ με n=10 είναι μικρότερθ από τθν πικανότθτα αυκόρμθτθσ αποδιζγερςθσ από κατάςταςθ με n=2 κατά παράγοντα (α) 10 (β) 10 2 (γ) 10 3 (δ) Για ποιο από τα παρακάτω μικθ κφματοσ πιςτεφετε πωσ δεν ιςχφει θ διπολικι προςζγγιςθ; (α) λ=1000 A (β) λ=100 A (γ) λ=10 A (δ) λ=1 A 15. Το εφροσ τθσ κατάςταςθσ 2p του υδρογόνου είναι Γ=0.4 μev τότε ο χρόνοσ ηωισ τθσ κατάςταςθσ είναι: (α) τ=1 ns (β) τ=1.3 ns (γ) τ=1.6 ns (δ) τ=1.9 ns 16. Στθ διπολικι προςζγγιςθ ο όροσ e ik r προςεγγίηεται ωσ : (α) 1 (β) 1 + ik r (γ) ik r (δ) 1 ik r 17. Οι κανόνεσ επιλογισ των διπολικϊν μεταβάςεων προκφπτουν από τθν απαίτθςθ μθ μθδενιςμοφ των (α) Στοιχείο μιτρασ M ba = < ψ b e ik r ε ψ a > (β) Θλεκτρικισ διπολικισ ροπισ D ba = e < ψ b r ψ a > (γ) Του γινομζνου ε D ba, όπου ε θ το διάνυςμα τθσ πόλωςθσ του ΘΜ κφματοσ (δ) Όλων των παραπάνω 18. Στισ διπολικζσ μεταβάςεισ με Δm = 0 (α) Θ πόλωςθ του πεδίου είναι γραμμικι και κείται ςτο επίπεδο z (β) Θ πόλωςθ του πεδίου είναι κυκλικι δεξιόςτροφθ και κείται ςτο επίπεδο xy. (γ) Θ πόλωςθ του πεδίου είναι κυκλικι αριςτερόςτροφθ και κείται ςτο επίπεδο xy. (δ) Θ πόλωςθ του πεδίου είναι ελλειπτικι και κείται ςτο επίπεδο xy. 19. Αριςτερόςτροφα κυκλικά πολωμζνο φωτόνιο κατάλλθλθσ ενζργειασ προςπίπτει ςε άτομο υδρογόνου που βρίςκεται ςτθν κατάςταςθ Ψ 2lm. Με βάςθ τουσ κανόνεσ μετάβαςθσ τθσ διπολικισ προςζγγιςθσ ποια από τισ παρακάτω μεταβάςεισ είναι επιτρεπτι; (α) Ψ 210 Ψ 320 (β) Ψ 21 1 Ψ 320 (γ) Ψ 211 Ψ 320 (δ) Ψ 20 1 Ψ Επιλζξτε τθν ςωςτι ςειρά ιςχφοσ των oscillator strengths των αυκόρμθτων μεταβάςεων υδρογονοειδϊν ατόμων (οι δείκτεσ f ab αναφζρονται ςτουσ κφριουσ κβαντικοφσ αρικμοφσ των καταςτάςεων). (α) f 15 > f 14 > f 13 > f 12 (β) f 12 > f 13 > f 14 > f 15 (γ) f 13 > f 14 > f 15 > f 12
6 (δ) f 13 > f 12 > f 14 > f Θεωριςτε ότι ο ρυκμόσ μετάβαςθσ εξαναγκαςμζνθσ εκπομπισ από μια κατάςταςθ b > ςε μια κατάςταςθ a > είναι W ab = Hz. Εαν ο παλμόσ laser που επάγει τθν μετάβαςθ ζχει χρονικι διάρκεια 5 ps θ μετάβαςθ μπορεί να περιγραφεί (α) Με τον κανόνα Fermi (β) Με το μοντζλο ταλαντϊςεων Rabi (γ) Τόςο με τον κανόνα Fermi όςο και με το μοντζλο ταλαντϊςεων Rabi (δ) Με κανζνα από τα παραπάνω μοντζλα Κεφάλαιο 4. Λεπτή και υπζρλεπτη υφή 22. Ο όροσ Darwin είναι μθδενικόσ όταν (α) l = 0 (β) l = 1 (γ) l 1 (δ) l = n Για τθν κατάςταςθ s 1/2 (α) Ο όροσ Darwin είναι μικρότεροσ του όρου LS. (β) Ο όροσ Darwin είναι μεγαλφτεροσ του όρου LS. (γ) Θ τιμι των όρων Darwin και LS εξαρτάται από τθν τιμι του κφριου κβαντικοφ αρικμοφ. (δ) Τόςο ο όροσ Darwin όςο και ο όροσ LS είναι μθδενικοί. 24. Στα άτομα με πολλά θλεκτρόνια (α) Υπερτερεί ο όροσ Darwin. (γ) Υπερτερεί ο ςχετικιςτικόσ όροσ. (β) Υπερτερεί ο όροσ LS. (δ) Τίποτε από τα παραπάνω. 25. Θ μετατόπιςθ Lamb είναι ιςχυρότερθ για καταςτάςεισ με (α) l = 0 (β) l = 1 (γ) l 1 (δ) Τίποτε από τα παραπάνω, εξαρτάται από τθν τιμι του κφριου κβαντικοφ αρικμοφ. 26. Ο όροσ τθσ ιςοτοπικισ μετατόπιςθσ είναι ιςχυρότεροσ για καταςτάςεισ με (α) l = 0 (β) l = 1 (γ) l 1 (δ) Τίποτε από τα παραπάνω, εξαρτάται από τθν τιμι του κφριου κβαντικοφ αρικμοφ. Κεφάλαιο 5. Μονοηλεκτρoνικά άτομα ςε εξωτερικά πεδία
7 27. Κατά τθν αλλθλεπίδραςθ με αςκενι μαγνθτικά πεδία αίρεται ο εκφυλιςμόσ τθσ κατάςταςθσ 2p και ο αρικμόσ των νζων καταςτάςεων που προκφπτουν είναι: (α) 4 (β) 6 (γ) 5 (δ) Κατά τθν αλλθλεπίδραςθ με πολφ ιςχυρά μαγνθτικά πεδία αίρεται ο εκφυλιςμόσ τθσ κατάςταςθσ 2p και ο αρικμόσ των νζων καταςτάςεων που προκφπτουν είναι: (α) 4 (β) 6 (γ) 5 (δ) Θ ενεργειακι διαφορά δυο διαδοχικϊν ενεργειακϊν καταςτάςεων Δm l = m l m l 1 που προκφπτουν κατά το λεγόμενο ομαλό φαινόμενο Zeeman (α) Δεν μεταβάλλεται με τθν αφξθςθ του κφριου κβαντικοφ αρικμοφ n. (β) Αυξάνει με τθν αφξθςθ του κφριου κβαντικοφ αρικμοφ n. (γ) Μειϊνεται με τθν αφξθςθ του κφριου κβαντικοφ αρικμοφ n. (δ) Θ μεταβολι τθσ είναι μθ-μονότονθ ςυνάρτθςθ του κφριου κβαντικοφ αρικμοφ n. 30. Το φαινόμενο Stark ζχει ωσ αποτζλεςμα τθν μερικι άρςθ του εκφυλιςμοφ και τθν εμφάνιςθ μίξθσ υδρογονικϊν καταςτάςεων όπωσ για παράδειγμα τθσ ψ = 1 2 ψ 200 ψ 210. Ποιο από τα παρακάτω ςετ καλϊν κβαντικϊν αρικμϊν κα επιλζγατε για τθν περιγραφι τθσ εν λόγω κατάςταςθσ; (α) {n, l, m l } (β) {n, l } (γ) {n, m l } (δ) {n, l, j, m j } Κεφάλαιο 6. Ατομικά ςυςτήματα δυο ηλεκτρονίων 31. Θ ολικι κυματοςυνάρτθςθ των θλεκτρονίων του ατόμου του θλίου μπορεί να γραφεί ωσ γινόμενο μιασ χωρικισ κυματοςυνάρτθςθσ και τθσ αντίςτοιχθσ ςυνάρτθςθσ ςπιν. Ποια από τισ παρακάτω καταςτάςεισ ςπιν κα επιλζγατε ωσ όρο τθσ ςυμμετρικισ κατάςταςθσ παρα; (α) α(1)α(2) (γ) 1 (β) 2 α 1 β 2 β 1 α 2 (δ) β 1 β α 1 β 2 + β 1 α Οι ενεργειακζσ καταςτάςεισ των θλεκτρονίων του ατόμου του θλίου χωρίηονται ςε singlet και triplet. Ποια από τισ παρακάτω προτάςεισ είναι αλθκισ; (α) Οι ενζργειεσ ςφνδεςθσ των καταςτάςεων triplet είναι μεγαλφτερεσ από αυτζσ των singlet. (β) Οι ενζργειεσ ςφνδεςθσ των καταςτάςεων singlet είναι μεγαλφτερεσ από αυτζσ των triplet. (γ) Το πρόςθμο τθσ ενεργειακισ διαφοράσ των ενεργειϊν ςφνδεςθσ των καταςτάςεων singlet και triplet εξαρτάται από τον κφριο κβαντικό αρικμό n. (δ) Το πρόςθμο τθσ ενεργειακισ διαφοράσ των ενεργειϊν ςφνδεςθσ των καταςτάςεων singlet και triplet εξαρτάται από τον κβαντικό αρικμό τθσ ολικισ τροχιακισ ςτροφορμισ L.
8 33. Θ κυματοςυνάρτθςθ των θλεκτρονίων τθσ βαςικισ κατάςταςθσ του ατόμου του θλίου μπορεί να γραφεί ωσ γινόμενο μιασ χωρικισ κυματοςυνάρτθςθσ και τθσ αντίςτοιχθσ ςυνάρτθςθσ ςπιν. Ποιοσ από τουσ παρακάτω ςυνδυαςμοφσ είναι ο ςωςτόσ; παρα; (α) παρα - singlet (γ) παρα - triplet (β) ορκο - singlet (δ) ορκο - triplet 34. Άτομο θλίου βρίςκεται ςτθν διπλά διεγερμζνθ κατάςταςθ 2p 2 1 D. Εαν ο χρόνοσ παρατιρθςθσ τθσ αποδιζγερςισ τθσ είναι τθσ τάξθσ του ps ποιο από τα παρακάτω κανάλια κα παρατθρθκεί; (α) Η 2p 2 1 D Η + 2s + e A (β) Η 2p 2 1 D Η 1s5p + γ (γ) Η 2p 2 1 D Η + 1s + e A + γ (δ) Η 2p 2 1 D Η 1s 2 1 S + γ 1 + γ Ζςτω θ κατάςταςθ του ατόμου του θλίου Ψ 0 q 1, q 2 = u 100 r 1 u 100 r a 2 β 1. Ποια θ parity τθσ κατάςταςθσ a 1 β 2 (α) 0 (β) -1 (γ) 2 (δ) 1 Κεφάλαιο 7. Ατομικά ςυςτήματα πολλών ηλεκτρονίων 36. Δίνεται θ θλεκτρονικι κατάςταςθ 1s 2 2p3p. Επιλζξτε από τα παρακάτω το ςωςτό ςυμβολιςμό 2S+1 L j π τθσ κατάςταςθσ 2 o α) D 1/2 3 o (β) P 1/2 3 e (γ) D 3/2 3 e (δ) D Ο εκφυλιςμόσ d των ιςοδυνάμων καταςτάςεων (θλεκτρονίων) τθσ κατάςταςθσ 2p 3 είναι: α) d=6 (β) d=10 (γ) d=15 (δ) d= Επιλζξτε τθν ςωςτι ςειρά των δυναμικϊν ιονιςμοφ των παρακάτω ςτοιχείων: (α) Ne >Ar > Kr > Xe (β) Ne > Xe > Kr > Xe (γ) Ne > Ar > Xe > Kr (δ) Ne > Kr > Xe > Ar 39. Ποια από τισ παρακάτω ςχζςεισ περιγράφει ςωςτά τισ ενεργειακζσ καταςτάςεισ των αλκαλίων λαμβάνοντασ υπόψθ τισ κβαντικζσ ατζλειεσ μ nl ; (α) Ε nl = n 2 μ nl 2 a. u.
9 (β) Ε nl = 1 2 (γ) Ε nl = 1 2 (δ) Ε nl = a. u. (n μ nl ) 1 1 n 2 μ 2 nl μ nl (n μ nl ) 2 a. u. a. u. 40. Στα φάςματα των αλκαλίων θ μετάβαςθ nd n'p (n>n') είναι γνωςτι ωσ diffuse. Εάν δεν λάβετε υπόψθ τθν αλλθλεπίδραςθ ςπιν-τροχιάσ θ φαςματικι περιοχι τθσ μετάβαςθσ αποτελείται από πόςεσ γραμμζσ; (α) μια (β) δςο (γ) ηπειρ (δ) ηέζζεπιρ 41. Λαμβάνοντασ υπόψθ τθν αλλθλεπίδραςθ ςπιν-τροχιάσ θ φαςματικι περιοχι των ακτίνων Χ που ςυμβολίηεται Κ β αποτελείται από πόςεσ γραμμζσ (μεταβάςεισ) (α) δςο (β) ηπειρ (γ) ηέζζεπιρ (δ) έξι 42. Υποκζςτε ότι το 1s θλεκτρόνιο του ατόμου του Ne (Η=10) ιονίηεται αφινοντασ μια οπι ςτο Κ- φλοιό. Πόςα εν δυνάμει θλεκτρόνια Auger μποροφν να προκφψουν από τισ μθ ακτινοβολιτικζσ μεταβάςεισ του διεγερμζνου ατόμου; (α) ένα (β) δςο (γ) οκηώ (δ) εννέα Κεφάλαιο 8. Ειδικά θζματα Ατομικήσ Φυςικήσ 43. Θ διαφορικι ενεργόσ διατομι του φωτοϊονιςμοφ για μθ πολωμζνο θλεκτρομαγνθτικό πεδίο περιγράφεται από τθ ςχζςθ dσ dω = 16α ħ m Z 5 ω k F a 0 5 sin 2 θ 1 v F c cosθ 4 για μθ ςχετικιςτικζσ ταχφτθτεσ των φωτοθλεκτρονίων. Με βάςθ αυτι το θλεκτρόνιο είναι πικανότερο να εκπεμφκεί ωσ προσ τον άξονα διάδοςθσ (α) ζε γωνία 0 ο (β) ζε γωνία 90 ο (γ) ιζόηποπα (δ) ζε γωνία 60 ο 44. Κατά τον φωτοϊονιςμό με πολωμζνο θλεκτρομαγνθτικό πεδίο το θλεκτρόνιο είναι πικανότερο να εκπεμφκεί ωσ προσ το επίπεδο τθσ πόλωςθσ (α) ζε γωνία 0 ο (β) ζε γωνία 90 ο (γ) ιζόηποπα (δ) ζε γωνία 45 ο 45. Δεδομζνου ότι θ ενεργόσ διατομι για τον φωτοϊονιςμό περιγράφεται από τθ ςχζςθ 16 2π σ = α 8 Z 5 mc2 7/2 2 a0 ποιο από τα παρακάτω μικθ κφματοσ φωτονίων δίνει τθ 3 ħω μζγιςτθ πικανότθτα φωτοϊονιςμοφ για τον υδρογονοειδζσ ιόν του βορίου (Η=5) ςτθ βαςικι του κατάςταςθ. (α) λ=10 Å (β) λ=30 Å (γ) λ=50 Å (δ) λ=100 Å
10 46. Σε ατομικό ςφςτθμα δυο ςτακμϊν που αλλθλεπιδρά με θλεκτρομαγνθτικό πεδίο θ ςυχνότθτα Rabi είναι: (α) θ ςυχνότθτα ταλάντωςθσ του θλεκτρομαγνθτικοφ πεδίου (β) θ ςυχνότθτα ταλάντωςθσ τθσ αντιςτροφισ πλθκυςμοφ (γ) ανάλογθ τθσ πικανότθτασ μετάβαςθσ μεταξφ των καταςτάςεων (δ) ανάλογθ τθσ ζνταςθσ του θλεκτρομαγνθτικοφ πεδίου 47. Δεδομζνου ότι για ζνα άτομο δυο ςτακμϊν θ αντιςτροφι πλθκυςμοφ περιγράφεται από τθ ςχζςθ W t = c b t 2 c a t 2 = cos (Ω R t) όπου Ω R παρακάτω προτάςεισ είναι ψευδισ: θ ςυχνότθτα Rabi ποια από τισ (α) θ αντιςτροφι πλθκυςμοφ ταλαντϊνεται μεταξφ των τιμϊν -1 και 1 με ςυχνότθτα τθ ςυχνότθτα Rabi. (β) θ μζςθ τιμι τθσ αντιςτροφισ πλθκυςμοφ είναι μθδζν. (γ) θ μζςθ τιμι τθσ αντιςτροφισ πλθκυςμοφ είναι 1/2. (δ) Σε μακροςκοπικό ςφςτθμα που προςεγγίηεται ωσ ατομικό ςφςτθμα δυο ςτακμϊν δεν μπορεί να επιτευχκεί αντιςτροφι πλθκυςμοφ. 48. Υποκζςτε ότι ιςχυρό ΘΜ πεδίο laser αλλθλεπιδρά με άτομο παραμορφϊνοντασ το Κουλομπικό πεδίο ζτςι ϊςτε να επιτυγχάνεται ιονιςμόσ μζςω φαινομζνου ςιραγγασ ςε τυπικό χρόνο 3 fs. Ποιο από τα παρακάτω μικθ κφματοσ είναι το μικοσ κφματοσ του laser; (α) λ=10 nm (β) λ=100 nm (γ) λ=300 nm (δ) λ=800 nm
11 Τέλος Ενότητας
12 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
13 Σημειώματα
14 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1.0 διαθέσιμη εδώ. id=1162.
15 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων : Επίκ. Καθ. Μ. Μπενής. «Ατομική Φυσική. ΑΣΚΗΣΕΙΣ». Έκδοση: 1.0. Ιωάννινα Διαθέσιμο από τη δικτυακή διεύθυνση: d=1162.
16 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1] by-sa/4.0/
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Common.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cetive
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Ατομική Δομή ΙΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cetive Commons.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (4): Περιοδικός Πίνακας Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Ο νόμος των Biot-Savart Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Ορισμός της μονάδας Ampere Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Κβαντική Μηχανική ΙΙ. Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Μηχανική ΙΙ Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 2/ 25 Περιεχόµενα 6ης ενότητας Φαινόµενο
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Αυτεπαγωγή Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μικροβιολογία & Υγιεινή Τροφίμων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μικροβιολογία & Υγιεινή Τροφίμων Μικροοργανισμοί που ελέγχονται ανά είδος τροφίμου Διδάσκοντες: Καθ. Χρυσάνθη Παπαδοπούλου, Λέκτορας Ηρακλής Σακκάς Άδειες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons. Για
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΛΥΚΕΙΟΥ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγρονη Φυσική II Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΑΠΤΥΓΜΑ ΑΝΑΛΥΤΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΣΕΙΡΕΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (2): Άτομο Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Κλαςικι Ηλεκτροδυναμικι
Κλαςικι Ηλεκτροδυναμικι Ενότθτα 21: Διάδοςθ θλεκτρομαγνθτικών κυμάτων Ανδρζασ Τερηισ Σχολι Θετικών Επιςτθμών Τμιμα Φυςικισ Σκοποί ενότθτασ Σκοπόσ τθσ ενότθτασ είναι να ςυνεχίςει τθν μελζτθ που αφορά τθν
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Το ρεύμα μετατώπισης Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σκέδαση Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σκέδαση Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Τροχιακή Στροφορμή (Ορισμοί Τελεστών) Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons.
Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Χτίζοντας τους κρυστάλλους από άτομα Είδη δεσμών Διδάσκων : Επίκουρη Καθηγήτρια
Μαγνητικά Υλικά Υπεραγωγοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαγνητικά Υλικά Υπεραγωγοί ΜΑΓΝΗΤΙΚΗ ΑΝΙΣΟΤΡΟΠΙΑ Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Επίλυση κυκλωμάτων εναλλασομένου ρεύματος Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons.
Κβαντική Φυσική Ι. Ενότητα 4: Εξίσωση Schro dinger. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 4: Εξίσωση Schro dinger Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η εξαγωγή της εξίσωσης Schro dinger καθώς και μια πρώτη
Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac
Κβαντική Φυσική Ι Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων
Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή ( ο Μέρος) Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative
Κβαντική Φυσική Ι. Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η σύντομη παρουσίαση μελέτης της
Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου
Ζνωςθ Ελλινων Χθμικϊν Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου Χημεία 03/07/2017 Τμιμα Παιδείασ και Χθμικισ Εκπαίδευςθσ 0 Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος
ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο)
ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) χήμα Κφκλωμα RLC ςε ςειρά χήμα 2 Διανυςματικι παράςταςθ τάςεων και ρεφματοσ Ζςτω ότι ςτο κφκλωμα του ςχιματοσ που περιλαμβάνει ωμικι, επαγωγικι και χωρθτικι
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΤΟΠΟΛΟΓΙΚΟΙ ΟΡΙΣΜΟΙ ΣΤΟ ΜΙΓΑΔΙΚΟ ΕΠΙΠΕΔΟ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το
Κβαντική Φυσική Ι. Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει μια εφαρμογή για να γίνει πιο κατανοητός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Προσομοιώσεις και οπτικοποιήσεις στη μαθησιακή διαδικασία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προσομοιώσεις και οπτικοποιήσεις στη μαθησιακή διαδικασία Προτάσεις μαθησιακών δραστηριοτήτων Διδάσκων: Καθηγητής Αναστάσιος Α. Μικρόπουλος Άδειες Χρήσης
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # 17: Ταχύτητα Αντιδράσεων Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της
Ατομική και Μοριακή Φυσική
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Αλληλεπίδραση μονοηλεκτρονικού ατόμου με εξωτερικό ηλεκτρικό και μαγνητικό πεδίο Λιαροκάπης Ευθύμιος
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών
Οικονομετρία Εξειδίκευση του υποδείγματος Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Μοριακή Δομή Ι Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Μοριακή Δομή Ι Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Κβαντική Φυσική Ι. Ενότητα 13: Σύστημα δύο ενεργειακών επιπέδων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 13: Σύστημα δύο ενεργειακών επιπέδων Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετηθεί μια εφαρμογή σχετικά με τις βασικές
Κβαντική Φυσική Ι. Ενότητα 33: Εφαρμογές στο άτομο του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 33: Εφαρμογές στο άτομο του υδρογόνου Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει κάποιες εφαρμογές που αφορούν
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Να υπολογιστεί η πιθανότερη ακτίνα, *, στην οποία θα βρίσκεται
Ανταλλαγι δυο ταυτόςθμων κβαντικών ςωματιδίων. r 2. r 2 r 1. ,r 1. r 1. r, r r. , r
Ανταλλαγι δυο ταυτόςθμων κβαντικών ςωματιδίων Μποηόνια - Φερμιόνια ςπιν ακζραιο ςπιν θμι-ακζραιο 5 ςυμμετρικι Ψ αντι-ςυμμετρικι Ψ φωτόνια μεςόνια Γκλουόνια κλπ θλεκτρόνια πρωτόνια νετρόνια Μιόνια κλπ β
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (12): Αλογόνα Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ελαστικότητα και εφαρμογές Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κβαντική Φυσική Ι. Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να επαναληφθούν βασικές έννοιες της Σύγχρονης Φυσικής,
Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή
Κβαντική Φυσική Ι Ενότητα 6: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει
Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Βιολογία Ι. Φροντιστήριο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Βιολογία Ι Φροντιστήριο Διδάσκοντες: Σ. Γεωργάτος, Θ. Τζαβάρας, Ε. Κωλέττας, Χ. Αγγελίδης, Π. Κούκλης, Σύρρου M. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (13): Ενώσεις Μετάλλων Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής
Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 4: Τοποθέτηση d ηλεκτρονίων σε οκτάεδρα Σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν
Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την μελέτη
Πληροφορική και Εκπαίδευση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πληροφορική και Εκπαίδευση Πληροφορική, ΤΠΕ, Μαθησιακές τεχνολογίες, Εκπαιδευτική τεχνολογία Διδάσκων: Καθηγητής Αναστάσιος Α. Μικρόπουλος Άδειες Χρήσης
ΗΜΙΑΓΩΓΑ ΥΛΙΚΑ: ΘΕΩΡΙΑ-ΔΙΑΤΑΞΕΙΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΜΙΑΓΩΓΑ ΥΛΙΚΑ: ΘΕΩΡΙΑ-ΔΙΑΤΑΞΕΙΣ Μέρος 1 ο : Στοιχεία Θεωρίας Ημιαγωγών Ενότητα 6 η : Πυκνότητα ενεργειακών καταστάσεων. Γεώργιος Λιτσαρδάκης
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.9: Το Διαφορικό Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.9: Το Διαφορικό 1 Άδειες
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Παράγωγοι και ολοκληρώματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Ολοκληρώματα με το πρόγραμμα Maima Αθανάσιος
Μαθηματικά και Φυσική με Υπολογιστές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Εφαρμογές στη Φυσική Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Κβαντική Φυσική Ι. Ενότητα 29: Το άτομο του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 29: Το άτομο του υδρογόνου Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να δώσει μια πλήρη μαθηματική- κβαντομηχανική μελέτη
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ)
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ενότητα 6: Εναλλασσόμενα τριφασικά κυκλώματα μόνιμης κατάστασης Δ.Ν. Παγώνης Τμήμα Ναυπηγών Μηχανικών ΤΕ
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (10): Φασματοσκοπία Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες