ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΧΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΧΝ Ι
|
|
- Ὑάκινθος Ασπάσιος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΧΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΧΝ Ι Β. Μεγαιννηθνλόκνπ Γ. Υξηζηνδνπιάθεο ςναπηηζιακέρ Δξαπηήζειρ (Functional Dependencies) (παξνπζίαζε βαζηζκέλε ελ κέξε ζε ζεκεηώζεηο ησλ Silberchatz, Korth θαη Sudarshan θαη ηνπ C. Faloutsos)
2 Δπηζθόπεζε Σππηθέο Γιώζζεο Δξσηεκάησλ ρεζηαθή Άιγεβξα Δκπνξηθέο Γιώζζεο Δξσηεκάησλ SQL QBE Πεξηνξηζκνί Αθεξαηόηεηαο ςναπηηζιακέρ Δξαπηήζειρ Καλνληθνπνίεζε - θαιόο ζρεδηαζκόο ΒΓ
3 Δπηζθόπεζε Πεξηνξηζκνί πεδίνπ νξηζκνύ, αθεξαηόηεηαο Βεβαηώζεηο (assertions) θαη ζθαλδάιεο (triggers) Αζθάιεηα ςναπηηζιακέρ Δξαπηήζειρ Γηαηί; Οξηζκόο Σα αμηώκαηα Armstrong Κιεηζηόηεηα (closure) θαη θάιπςε (cover)
4 πλαξηεζηαθέο Δμαξηήζεηο Κίλεηξν: θαινί πίλαθεο ζηε βάζε Παίξλεη1 (ΑΜ, θσδ-κ, βαζκόο, όλνκα, δηεύζπλζε) Δίναι καλό ηο παπαπάνυ παπάδειγμα ή όσι;
5 πλαξηεζηαθέο Δμαξηήζεηο Παίξλεη1 (ΑΜ, θσδ-κ, βαζκόο, όλνκα, δηεύζπλζε) ΑΜ Κωδ-μ Βαθμός Όνομα Γιεύθσνζη Α Σάτσης Αιόλου Β Σάτσης Αιόλου Α Σάτσης Αιόλου
6 πλαξηεζηαθέο Δμαξηήζεηο Γηαηί δελ είλαη θαιό ; ΑΜ Κωδ-μ Βαθμός Όνομα Γιεύθσνζη Α Σάτσης Αιόλου Β Σάτσης Αιόλου Α Σάτσης Αιόλου
7 πλαξηεζηαθέο Δμαξηήζεηο Πιενλαζκόο Υώξνο απνζήθεπζεο Έιεηςε ζπλέπεηαο (inconsistencies) Πξνβιήκαηα θαηά ηελ εηζαγσγή θαη δηαγξαθή (...) Ση πξνθάιεζε ην πξόβιεκα;
8 πλαξηεζηαθέο Δμαξηήζεηο Σν όλνκα εμαξηάηαη από ην ΑΜ Σι ζημαίνει «εξαπηάηαι»; ΑΜ Κωδ-μ Βαθμός Όνομα Γιεύθσνζη Α Σάτσης Αιόλου Β Σάτσης Αιόλου Α Σάτσης Αιόλου
9 πλαξηεζηαθέο Δμαξηήζεηο Οξηζκόο: a b a ζπλαξηεζηαθά θαζνξίδεη ην b ΑΜ Κωδ-μ Βαθμός Όνομα Γιεύθσνζη Α Σάτσης Αιόλου Β Σάτσης Αιόλου Α Σάτσης Αιόλου
10 πλαξηεζηαθέο Δμαξηήζεηο Άηςπορ Οπιζμόρ: αλ γλσξίδεηο ην a ηόηε ππάξρεη κόλν έλα b πνπ ηνπ ηαηξηάδεη ΑΜ Κωδ-μ Βαθμός Όνομα Γιεύθσνζη Α Σάτσης Αιόλου Β Σάτσης Αιόλου Α Σάτσης Αιόλου
11 πλαξηεζηαθέο Δμαξηήζεηο Σππηθά: Y ( t1[ x] t2[ x] t1[ y] t2[ y]) Αλ δύν πιεηάδεο ζπκθσλνύλ σο πξνο ην γλώξηζκα Υ, ππέπει επίζεο λα ζπκθσλνύλ θαη σο πξνο ην γλώξηζκα Τ (π.ρ αλ ην ΑΜ είλαη ην ίδην ηόηε ίδηα πξέπεη λα είλαη θαη ε δηεύζπλζε)..μια ζςναπηηζιακή εξάπηηζη είναι μια γενίκεςζη ηηρ έννοιαρ ηος κλειδιού ΓΙΑΣΙ;
12 πλαξηεζηαθέο Δμαξηήζεηο Σν Υ θαη ην Τ κπνξεί λα είλαη ζύλνια γλσξηζκάησλ Άιια παξαδείγκαηα;;; ΑΜ Κωδ-μ Βαθμός Όνομα Γιεύθσνζη Α Σάτσης Αιόλου Β Σάτσης Αιόλου Α Σάτσης Αιόλου
13 πλαξηεζηαθέο Δμαξηήζεηο ΑΜ όλνκα, δηεύζπλζε ΑΜ, Κσδ-κ Βαζκόο ΑΜ Κωδ-μ Βαθμός Όνομα Γιεύθσνζη Α Σάτσης Αιόλου Β Σάτσης Αιόλου Α Σάτσης Αιόλου
14 πλαξηεζηαθέο Δμαξηήζεηο Σν Κ είλαη ςπεπκλειδί ηεο ζρέζεο R iff (αλ θαη κόλν αλ) K R Σν Κ είλαη ςποτήθιο κλειδί ηεο ζρέζεο R iff (αλ θαη κόλν αλ): K R γηα θαλέλα a K, a R
15 πλαξηεζηαθέο Δμαξηήζεηο Κλειζηόηηηα (closure) ελόο ζπλόινπ ζπλαξηεζηαθώλ εμαξηήζεσλ: - όιεο oη ππνλννύκελεο (ζπλαγόκελεο) ζπλαξηεζηαθέο εμαξηήζεηο Παξάδεηγκα: νη ζπλαξηεζηαθέο εμαξηήζεηο (.Δ.): ΑΜ όλνκα, δηεύζπλζε ΑΜ, Κσδ-κ βαζκόο ζπλάγνπλ ηηο παξαθάησ.δ.: ΑΜ, Κσδ-κ βαζκόο, όλνκα, δηεύζπλζε ΑΜ, Κσδ-κ ΑΜ
16 .Δ. - Σα αμηώκαηα Armstrong Κλειζηόηηηα ζπλόινπ ζπλαξηεζηαθώλ εμαξηήζεσλ: - όιεο oη ππνλννύκελεο (ζπλαγόκελεο) ζπλαξηεζηαθέο εμαξηήζεηο Παξάδεηγκα: ΑΜ όλνκα, δηεύζπλζε ΑΜ, Κσδ-κ βαζκόο Πώρ θα βπούμε όλερ ηιρ ζςναγόμενερ ζςναπηηζιακέρ εξαπηήζειρ με ζςζηημαηικό ηπόπο;
17 .Δ. - Σα αμηώκαηα Armstrong Σα αμηώκαηα ηνπ Armstrong εμαζθαιίδνπλ οπθόηηηα (soundness) δει. δε δίλνπλ ιαλζαζκέλεο εμαξηήζεηο θαη πληπόηηηα (completeness) : Ανακλαζηικόηηηα (Reflexivity) π.ρ., ΑΜ, όλνκα ΑΜ Δπαςξηηικόηηηα (Augmentation) (επαπμεηηθόηεηα): Y Y Y W YW π.ρ., ΑΜ όλνκα ηόηε ΑΜ, βαζκόο όλνκα, βαζκόο
18 .Δ. - Σα αμηώκαηα Armstrong Μεηαβαηικόηηηα (κεηαβαηηθόηεηα) Y Y Z Z ΑΦΜ δηεύζπλζε δηεύζπλζε ΦνξνινγηθήΚιίκαθαΝνκνύ ΣΟΣΔ: ΑΦΜ ΦνξνινγηθήΚιίκαθαΝνκνύ
19 .Δ. - Σα αμηώκαηα Armstrong Αλαθιαζηηθόηεηα: Y Y Δπαπμεηηθόηεηα: Μεηαβαηηθόηεηα: Y Y Y Z W YW Z Αξιώμαηα Armstrong: Βάζιμοι και Πλήπειρ Κανόνερ ςμπεπαζμού
20 .Δ. Πώο ζα βξνύκε ηελ Κιεηζηόηεηα F + F + = F repeat for each Σ.Ε. f ζημ F + εθάνμμζε ημοξ θακόκεξ ακαθιαζηηθόηεηαξ θαη επαολεηηθόηεηαξ ζημ f πνόζζεζε ηηξ πνμθύπημοζεξ Σ.Ε. ζημ F + for each δεύγμξ Σ.Ε. f 1 θαη f 2 ζημ F + if f 1 θαη f 2 μπμνμύκ κα ζοκδοαζημύκ με ηε πνήζε ηεξ μεηαβαηηθόηεηαξ then πνόζζεζε ηεκ πνμθύπηποζα Σ.Ε. ζημ F + until ημ F + δεκ μεηαβάιιεηαη άιιμ Μπνξνύκε λα απινπνηήζνπκε ηε ρεηξσλαθηηθή δηαδηθαζία ππνινγηζκνύ ηνπ F + (θιεηζηόηεηα ηνπ F) ρξεζηκνπνηώληαο ηνπο αθόινπζνπο επηπιένλ θαλόλεο
21 .Δ. - Σα αμηώκαηα Armstrong Δπηπιένλ θαλόλεο: Δνυηικόρ Κανόναρ (Union) Γιαζπαζηικόρ Κανόναρ (Decomposition) YZ Y Z Y YZ Z Ψεςδομεηαβαηικόρ Κανόναρ (Pseudo-transitivity) YW Y Z W Z
22 .Δ. - Σα αμηώκαηα Armstrong Απόδεημε ηνπ Δλσηηθνύ Καλόλα (Union) πκπεξαζκνύ κε ρξήζε ησλ ηξηώλ αμησκάησλ ηνπ Armstrong Y? YZ Z
23 .Δ. - Σα αμηώκαηα Armstrong Απόδεημε ηνπ Δλσηηθνύ Καλόλα (Union) πκπεξαζκνύ κε ρξήζε ησλ ηξηώλ αμησκάησλ ηνπ Armstrong Y (1) Z (2) (1). / Z Z YZ (3) (2) / Z (4) ό ί, έ (3) (4) YZ
24 .Δ. - Σα αμηώκαηα Armstrong Απόδεημε ηνπ Φεπδνκεηαβαηηθνύ Καλόλα (Pseudotransitivity) πκπεξαζκνύ κε ρξήζε ησλ αμησκάησλ ηνπ Armstrong Y Y Y Y Z W Y YW Z YW? Y Z W Z
25 .Δ. - Σα αμηώκαηα Armstrong Απόδεημε ηνπ Γηαζπαζηηθνύ Καλόλα (Decomposition) πκπεξαζκνύ κε ρξήζε ησλ αμησκάησλ ηνπ Armstrong Z Z Y Y Y Y YW W Y Z Y YZ?
26 .Δ. - Κιεηζηόηεηα F + Γνζέληνο ελόο ζπλόινπ F ζπλαξηεζηαθώλ εμαξηήζεσλ (Δ) F + είλαη ην ζύλνιν όισλ ησλ ζπλαγόκελσλ Δ Παξάδεηγκα: Παίξλεη (ΑΜ, Κσδ-κ, βαζκόο,όλνκα, δηεύζπλζε) ΑΜ, Κσδ-κ βαζκόο ΑΜ όλνκα, δηεύζπλζε }F
27 .Δ. - Κιεηζηόηεηα F + ΑΜ, Κσδ-κ βαζκόο ΑΜ όλνκα, δηεύζπλζε ΑΜ ΑΜ ΑΜ, Κσδ-κ δηεύζπλζε Κσδ-κ, δηεύζπλζε Κσδ-κ... F+
28 .Δ. - Κιεηζηόηεηα F + R = (A, B, C, G, H, I) F= {A B A C CG H CG I B H} Οξηζκέλα κέιε ηνπ F+: A H AG I CG HI
29 .Δ. - Κιεηζηόηεηα Α + Γνζέληνο ελόο ζπλόινπ F ζπλαξηεζηαθώλ εμαξηήζεσλ (ζε έλα ζρήκα) Α + είλαη ην ζύλνιν όισλ ησλ γλσξηζκάησλ πνπ θαζνξίδνληαη (εμαξηώληαη) από ην Α Παξάδεηγκα Παίξλεη (ΑΜ, Κσδ-κ, βαζκόο, όλνκα, δηεύζπλζε) ΑΜ, Κσδ-κ βαζκόο ΑΜ όλνκα, δηεύζπλζε {ΑΜ}+ =?? }F
30 .Δ. - Κιεηζηόηεηα Α + Παίξλεη (ΑΜ, Κσδ-κ, βαζκόο, όλνκα, δηεύζπλζε) ΑΜ, Κσδ-κ βαζκόο ΑΜ όλνκα, δηεύζπλζε }F {ΑΜ}+ ={ΑΜ, όλνκα, δηεύζπλζε}
31 .Δ. - Κιεηζηόηεηα Α + Παίξλεη (ΑΜ, Κσδ-κ, βαζκόο, όλνκα, δηεύζπλζε) ΑΜ, Κσδ-κ βαζκόο ΑΜ όλνκα, δηεύζπλζε }F {Κσδ-κ}+ =??
32 .Δ. - Κιεηζηόηεηα Α + Παίξλεη (ΑΜ, Κσδ-κ, βαζκόο, όλνκα, δηεύζπλζε) ΑΜ, Κσδ-κ βαζκόο ΑΜ όλνκα, δηεύζπλζε }F {Κσδ-κ, ΑΜ}+ =??
33 .Δ. - Κιεηζηόηεηα Α + Aλ A+ = {όια ηα γλσξίζκαηα ηνπ πίλαθα} ηόηε ην A είλαη ππνςήθην θιεηδί
34 .Δ. - Κιεηζηόηεηα Α + Αιγόξηζκνο ππνινγηζκνύ +, θιεηζηόηεηα ηνπ κε βάζε ην ζύλνιν ζπλαξηεζηαθώλ εμαξηήζεσλ F απνηέιεζκα := ; while (ππάξρνπλ αιιαγέο ζην απνηέιεζκα) do for each ζηην F do begin if απνηέιεζκα then απνηέιεζκα := απνηέιεζκα end
35 .Δ. - Κιεηζηόηεηα Α + (παξάδεηγκα) R = (A, B, C, G, H, I) F = {A B, A C, CG H, CG I, B H} (AG) + 1. απμηέιεζμα = AG 2. απμηέιεζμα = ABCG (A C θαη A B) 3. απμηέιεζμα = ABCGH (CG H θαη CG AGBC) 4. απμηέιεζμα = ABCGHI (CG I θαη CG AGBCH) Είκαη ημ AG οπμρήθημ θιεηδί; 1. Είκαη ημ AG οπενθιεηδί; 1. Ιζπύεη AG R; 2. Είκαη μπμηδήπμηε οπμζύκμιμ ημο AG οπενθιεηδί; 1. Ιζπύεη A + R; 2. Ιζπύεη G + R;
36 .Δ. - Κιεηζηόηεηα Α + Γηαγξάκκαηα AB C (1) A BC (2) B C (3) A B (4) A B C
37 .Δ. - Διάρηζην Κάιπκκα Fc Γνζέληνο ελόο ζπλόινπ F από ζπλαξηεζηαθέο εμαξηήζεηο Fc (ειάρηζην θάιιπκα) είλαη ην ειάρηζην ζύλνιν ηζνδύλακσλ ζπλαξηεζηαθώλ εμαξηήζεσλ Παξάδεηγκα: Παίξλεη(ΑΜ, Κσδ-κ, βαζκόο, όλνκα, δηεύζπλζε) ΑΜ, Κσδ-κ βαζκόο ΑΜ όλνκα, δηεύζπλζε ΑΜ, όλνκα όλνκα, δηεύζπλζε ΑΜ, Κσδ-κ βαζκόο, όλνκα F
38 .Δ. - Διάρηζην Κάιπκκα Fc Fc ΑΜ, Κσδ-κ βαζκόο ΑΜ όλνκα, δηεύζπλζε ΑΜ, όλνκα όλνκα, δηεύζπλζε ΑΜ, Κσδ-κ βαζκόο, όλνκα
39 .Δ. - Διάρηζην Κάιπκκα Γηαηί ην ρξεηαδόκαζηε; Πώο ζα ην νξίζνπκε; Πώο ζα ην ππνινγίζνπκε απνηειεζκαηηθά;
40 .Δ. - Διάρηζην Κάιπκκα Γηαηί ην ρξεηαδόκαζηε; Μαρ διεςκολύνει ζηον ςπολογιζμό ηυν ςποτήθιυν κλειδιών Πώο ζα ην νξίζνπκε; Πώο ζα ην ππνινγίζνπκε απνηειεζκαηηθά;
41 .Δ. - Διάρηζην Κάιπκκα Fc Πώο ζα ην νξίζνπκε; Σξεηο ηδηόηεηεο: Κάζε Δ a b δελ έρεη πεξηηηά γλσξίζκαηα ζην αξηζηεξό ηεο κέινο Κάζε Δ a b δελ έρεη πεξηηηά γλσξίζκαηα ζην δεμηό ηεο κέινο Όια ηα ζηνηρεία ηνπ αξηζηεξνύ κέινπο είλαη κνλαδηθά
42 .Δ. - Διάρηζην Κάιπκκα Πόηε ένα γνώπιζμα είναι πεπιηηό ( extraneous ); (i) αλ ηζρύεη ε θιεηζηόηεηα ηόζν πξηλ όζν θαη κεηά ηελ απαινηθή ηνπ γλσξίζκαηνο (ii) αλ ην ζύλνιν.δ. F-πξηλ ζπλάγεη ην ζύλνιν.δ. F-κεηά θαη αληίζηξνθα ή
43 .Δ. - Διάρηζην Κάιπκκα Fc ΑΜ, Κσδ-κ βαζκόο ΑΜ όλνκα, δηεύζπλζε ΑΜ, όλνκα όλνκα, δηεύζπλζε ΑΜ, Κσδ-κ βαζκόο, όλνκα F
44 .Δ. - Διάρηζην Κάιπκκα ΑΛΓΟΡΙΘΜΟ: Δμέηαζε θάζε Δ, αθαίξεζε ηα πεξηηηά γλσξίζκαηα ζην αξηζηεξό θαη ζην δεμηό κέινο ηεο ζπλάξηεζεο πγρώλεπζε ηηο Δ πνπ έρνπλ ην ίδην αξηζηεξό κέινο Δπαλέιαβε ηα παξαπάλσ κέρξη λα κελ ππάξρεη αιιαγή ζην απνηέιεζκα
45 .Δ. - Διάρηζην Κάιπκκα Αιγόξηζκνο Τπνινγηζκνύ AB C (1) A BC (2) B C (3) A B (4)
46 .Δ. - Διάρηζην Κάιπκκα Αιγόξηζκνο Τπνινγηζκνύ AB C (1) A BC (2) B C (3) A B (4) πγρσλεύνληαη ηα (4) θαη (2) AB C (1) A BC (2) B C (3)
47 .Δ. - Διάρηζην Κάιπκκα AB C (1) A BC (2) B C (3) AB C (1) A B (2 ) B C (3) Σηο (2): ηο C είναι περιηηό
48 .Δ. - Διάρηζην Κάιπκκα AB C (1) A B (2 ) B C (3) B C (1 ) A B (2 ) B C (3) Σηο (1): ηο A είναι περιηηό
49 .Δ. - Διάρηζην Κάιπκκα B C (1 ) A B (2 ) B C (3) A B (2 ) B C (3) Τίποηα δεν είναι περιηηό! «Δλάτιζηο Κάλσμμα» υγχωνεύονται τα (1 ) και (3)
50 .Δ. - Διάρηζην Κάιπκκα ΠΡΙΝ AB C (1) A BC (2) B C (3) A B (4) ΜΕΣΑ A B (2 ) B C (3)
51 Δπηζθόπεζε -ζπκπεξάζκαηα Πεξηνξηζκνί πεδίνπ νξηζκνύ, αθεξαηόηεηαο Βεβαηώζεηο θαη θαλδάιεο πλαξηεζηαθέο Δμαξηήζεηο Γηαηί Οξηζκόο Σα Αμηώκαηα ηνπ Armstrong Κιεηζηόηεηα θαη Κάιπκκα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Β. Μεγαλοοικονόμου, Δ. Χριστοδουλάκης Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Ακ.Έτος 2008-09 (μεβάσητιςσημειώσειςτωνsilberchatz, Korth και Sudarshan
ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι
ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι Β. Μεγαιννηθνλόκνπ Γ. Υξηζηνδνπιάθεο Σχεσιακό Μοντέλο SQL- Μέρος Β (παξνπζίαζε βαζηζκέλε ελ κέξε ζε ζεκεηώζεηο ησλ Silberchatz, Korth θαη Sudarshan θαη ηνπ C.
Principles of Database Systems
Principles of Database Systems V. Megalooikonomou Συναρτησιακές Εξαρτήσεις (Functional Dependencies) (based on notes by Silberchatz,Korth, and Sudarshan and notes by C. Faloutsos) General Overview Formal
iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη
ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:
ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι
ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι Β. Μεγαιννηθνλόκνπ Γ. Υξηζηνδνπιάθεο Σσεδιαζμόρ Βάζεων Δεδομένων και Κανονικοποίηζη (παξνπζίαζε βαζηζκέλε ελ κέξε ζε ζεκεηώζεηο ησλ Silberchatz, Korth θαη Sudarshan
Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016
Βάσεις Δεδομέμωμ Εξγαζηήξην V Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 2 Σκοπός του 5 ου εργαστηρίου Σθνπόο απηνύ ηνπ εξγαζηεξίνπ είλαη: ε κειέηε ζύλζεησλ εξσηεκάησλ ζύλδεζεο ζε δύν ή πεξηζζόηεξεο ζρέζεηο ε κειέηε
Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14
.1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη
ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017
α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,
ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP
ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ηότοι εργαζηηρίοσ ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηνύλ βαζηθέο ιεηηνπξγίεο ησλ Windows XP πνπ ζρεηίδνληαη
ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ
ΚΔΦ.. ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ Οξηζκόο ηεηξαγσληθήο ξίδαο: Αλ 0 ηόηε νλνκάδνπκε ηεηξαγσληθή ξίδα ηνπ ηελ κε αξλεηηθή ιύζε ηεο εμίζσζεο:. Γειαδή ηεηξαγσληθή ξίδα ηνπ 0 ιέγεηαη ν αξηζκόο 0 πνπ όηαλ πςσζεί
ΘΔΜΑ 1 ο Μονάδες 5,10,10
ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο
Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο:
Πίνακες Σσμβόλων Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο: Εηζαγσγή ελόο ζηνηρείνπ Αλαδήηεζε ζηνηρείνπ κε δεδνκέλν θιεηδί Άιιεο ρξήζηκεο ιεηηνπξγίεο είλαη: Δηαγξαθή ελόο θαζνξηζκέλνπ ζηνηρείνπ
Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ
Επωηήζειρ Σωζηού Λάθοςρ ηων πνελλδικών εξεηάζεων 2-27 Σςνπηήζειρ Η γξθηθή πξάζηζε ηεο ζπλάξηεζεο f είλη ζπκκεηξηθή, σο πξνο ηνλ άμνλ, ηεο γξθηθήο πξάζηζεο ηεο f 2 Αλ f, g είλη δύν ζπλξηήζεηο κε πεδί νξηζκνύ
ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ
ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη
B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν.
B-Δέλδξα Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. Δέλδξα AVL n = 2 30 = 10 9 (πεξίπνπ). 30
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ
ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ
x x x x tan(2 x) x 2 2x x 1
ΘΕΡΙΝΟ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΑ Ι ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΕΡΟ Ι 1. Να γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ παξαθάησ ζπλαξηήζεσλ. t ( i) e ( ii) ln( ) ( iii). Να βξεζεί ην Π.Ο., ν ηύπνο ηεο αλίζηξνθεο θαη ην Π.Τ. ησλ
ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ:
ΓΙΑΙΡΔΣΟΣΗΣΑ Οπιζμόρ 1: Έζηω,. Λέκε όηη ν δηαηξεί ηνλ (ζπκβνιηζκόο: ) αλ ππάξρεη c ηέηνην ώζηε c. Θεώπημα : Γηα,,m,α,b ηζρύνπλ: i), (άξα ) ii) 1, 1 iii) 0 iv) 0 0 v) m m m vi) α bm vii) α (άξα ) viii)
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα
(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ
ΡΤΘΜΙΕΙ ΔΙΚΣΤΟΤ ΣΑ WINDOWS
ηότοι εργαζηηρίοσ ΡΤΘΜΙΕΙ ΔΙΚΣΤΟΤ ΣΑ WINDOWS ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηεί ε δηαδηθαζία ηωλ ξπζκίζεωλ δηθηύνπ ζε ιεηηνπξγηθό ζύζηεκα Windows XP. Η δηαδηθαζία ζε γεληθέο γξακκέο
ΕΞΟΡΤΞΗ & ΚΑΣΑΚΕΤΕ ΣΗΝ ΕΤΡΩΠΗ ΜΑΘΗΜΑ 43
ΕΞΟΡΤΞΗ & ΚΑΣΑΚΕΤΕ ΣΗΝ ΕΤΡΩΠΗ ΜΑΘΗΜΑ 43 Κα ακαθένεηε 5 εονςπασθέξ πώνεξ θαη κα βνείηε ημ είδμξ ημο μνοθημύ ημοξ πιμύημο. Πμημη πανάγμκηεξ επηηνέπμοκ ηεκ θαηαζθεοή μεγάιςκ ηεπκηθώκ ένγςκ; Ε ελόνολε (ελαγςγή
Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.
Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα Ηοσνίοσ 9 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α.α) Οξηζκόο ζρνιηθνύ βηβιίνπ ζει 5. Έζησ Α έλα ππνζύλνιν ηνπ.
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ
Σήκαηα 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) Σήκαηα Οξηζκόο ζήκαηνο Ταμηλόκεζε ζεκάησλ Σεηξέο Fourier Μεηαζρεκαηηζκόο Fourier Σπλέιημε Σπζρέηηζε θαη Φαζκαηηθή Ππθλόηεηα 2 Οξηζκόο Σήκαηνο
3ο Δπαναληπηικό διαγώνιζμα ζηα Μαθημαηικά καηεύθσνζης ηης Γ Λσκείοσ Θέμα A Α1. Έζησ f κηα ζπλερήο ζπλάξηεζε ζ έλα δηάζηεκα
wwwaskisopolisgr 3ο Δπνληπηικό διγώνιζμ ζη Μθημηικά κηεύθσνζης ηης Γ Λσκείοσ 17-18 Θέμ A Α1 Έζησ κη ζπλερήο ζπλάξηεζε ζ έλ δηάζηεκ β λ πνδείμεηε όηη: t dt G β G Α Πόηε κη ζπλάξηεζε ιέγεηη 1-1; Α3 Πόηε
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ
Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε.
ΑΝΟΙΓΜΑ ΝΔΑ ΥΡΗΗ 1. Γεκηνπξγείηε ηε λέα ρξήζε από ηελ επηινγή «Παξάκεηξνη/Παξάκεηξνη Δηαηξίαο/Γηαρείξηζε Δηαηξηώλ». Πιεθηξνινγείηε ηνλ θσδηθό ηεο εηαηξίαο ζαο θαη παηάηε Enter. Σηελ έλδεημε «Υξήζεηο» παηάηε
Δξγαιεία Καηαζθεπέο 1 Σάμε Σ Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ. ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Φαθόο κε ζσιήλα.
Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Φαθόο κε ζσιήλα Γηαθξάγκαηα Δξγαιεία Καηαζθεπέο 2 Η θαηαζθεπή πεξηγξάθεηαη ζηελ αληίζηνηρε ελόηεηα
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ (Δλδεηθηηθέο Απαληήζεηο) ΘΔΜΑ Α Α1. α. Σωζηό β. Λάζνο
ηδάζθσλ: εµήηξεο Εετλαιηπνύξ
ηάιεμε 4: ιάρηζηα ελλεηνξηθά έλδξα Αιγόξηζκνο Kruskal Σηελ ελόηεηα απηή ζα κειεηεζνύλ ηα εμήο επηκέξνπο ζέκαηα: Ο αλγόριθμος ηοσ Kruskal για εύρεζη ζε γράθοσς Παράδειγμα κηέλεζης ηδάζθσλ: εµήηξεο ετλαιηπνύξ
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;
Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2
ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ 1. ρεδίαζε πλδπαζηηθνύ Κπθιώκαηνο Έλα ζπλδπαζηηθό θύθισκα (Κ) έρεη ηξεηο εηζόδνπο A, B θαη C θαη κία έμνδν Y Y=A B+AC Να θαηαζθεπάζεηε ην ράξηε Karnaugh. B 0
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ
f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)
ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()
TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2
TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 Δημιουργία σελίδων και βιβλίων Έλα θαηλνύξην βηβιίν πεξηέρεη κία άδεηα ζειίδα κε έλα άδεην background. Δελ κπνξνύκε λα μερσξίζνπκε
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή
Γεωμεηπικοί Τόποι Σςμμεηπίερ Α Λυκείου - Γεωμετρία
Γεωμεηπικοί Τόποι Σςμμεηπίερ Α Λυκείου - Γεωμετρία Ερωτήσεις θεωρίας με κενά για απαντήσεις Εργασίες πάνω στην θεωρία Προπαρασκεσαστικά θέματα Κεφάλαια 3.7 3.8 3.9 ΕΑΚΥΝΘΟΣ 2010 11 Γεωμεηπία Α Λςκείος
ΣΧΕΣΕΙΣ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ
ΣΧΕΣΕΙΣ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ Πζτρα-Ψαλίδι-Χαρτί Κεξδίδεη ΠΔΣΡΑ ΨΑΛΗΓΗ ΧΑΡΣΗ ΠΔΣΡΑ Ψ Α Ψ ΨΑΛΗΓΗ Ψ Ψ Α ΧΑΡΣΗ Α Ψ Ψ Η ζτέζη Κερδίζει αναπαρίζηαηαι από ηο ζύνολο {(Π,Ψ),(Ψ,Χ),(Χ,Π)}. (Εκεί ποσ γίνεηαι αληθές δηλαδή)
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.
ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =
ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3
Τν Πξόγξακκα ζα αλαθνηλσζεί, ακέζσο κεηά ηηο γηνξηέο ηνπ Πάζρα.
Οι Πανελλαδικέρ Δξεηάζειρ για ηην ειζαγωγή ζηην ηπιηοβάθμια εκπαίδεςζη θα ππαγμαηοποιηθούν ππιν ηιρ απολςηήπιερ ενδοζσολικέρ εξεηάζειρ ηων μαθηηών και ηων μαθηηπιών. Τν Πξόγξακκα ζα αλαθνηλσζεί, ακέζσο
Βάζεηο Γεδνκέλσλ πλαξηεζηαθέο Δμαξηήζεηο (Functional Dependencies) ρεδηαζκόο Βάζεσλ Γεδνκέλσλ θαη Καλνληθνπνίεζε
Βάζεηο Γεδνκέλσλ πλαξηεζηαθέο Δμαξηήζεηο (Functional Dependencies) ρεδηαζκόο Βάζεσλ Γεδνκέλσλ θαη Καλνληθνπνίεζε Φξνληηζηήξην 4ν 03-11-2011 ΘΔΩΡΙΑ πλαξηεζηαθέο-λεηηνπξγηθέο εμαξηήζεηο Καλόλεο ζπκπεξαζκνύ
α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο
Έξγν ελέξγεηα 3 (Λύζε) Σώκα κάδαο m = 4Kg εξεκεί ζηε βάζε θεθιηκέλνπ επηπέδνπ γσλίαο θιίζεο ζ κε εκζ = 0,6 θαη ζπλζ = 0,8. Τν ζώκα αξρίδεη λα δέρεηαη νξηδόληηα δύλακε θαη μεθηλά λα αλεβαίλεη ζην θεθιηκέλν
Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.
Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.
ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.
ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε
ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ. β. Η θαηάιπζε είλαη εηεξνγελήο, αθνύ ν θαηαιύηεο είλαη ζηεξεόο ελώ ηα αληηδξώληα αέξηα (βξίζθνληαη ζε δηαθνξεηηθή θάζε).
ΔΗΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΣΔΚΝΩΝ ΔΛΛΖΝΩΝ ΔΞΩΣΔΡΗΚΟΤ ΚΑΗ ΣΔΚΝΩΝ ΔΛΛΖΝΩΝ ΤΠΑΛΛΖΛΩΝ ΠΟΤ ΤΠΖΡΔΣΟΤΝ ΣΟ ΔΞΩΣΔΡΗΚΟ ΑΒΒΑΣΟ 8 ΔΠΣΔΜΒΡΗΟΤ 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΥΖΜΔΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ ΘΔΜΑ Α Α1. α Α2.
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ. Μία αθηίλα θωηόο πξνζπίπηεη κε κία γωλία ζ ζηε επάλω επηθάλεηα ελόο θύβνπ από πνιπεζηέξα ν νπνίνο έρεη δείθηε δηάζιαζεο ε =,49 (ζρήκα ). Βξείηε πνηα ζα είλαη ε κέγηζηε γωλία
Χορήγηζη ΗΧΜΒ ζε ορθοπαιδικό τειροσργείο σπό περιοτική αναιζθηζία
Χορήγηζη ΗΧΜΒ ζε ορθοπαιδικό τειροσργείο σπό περιοτική αναιζθηζία Δρ Σηαμάηιος Α. Παπαδάκης Ορθοπαιδικός Χειροσργός Επιμεληηής Α - Ε.Σ.Υ. Δ Ορθοπαιδική Κλινική Γ.Ν.Α. KAT Αγαπεηέ Γηαηξέ.. Υειρόγραθο κείμενο
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη
ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΤΔΡΗΓΟΝΙΚΩΝ ΒΛΑΒΩΝ ΚΑΤΑ ΤΑ ICDAS II ΚΡΙΤΗΡΙΑ ΜΔ ΒΑΣΗ ΤΗ ΚΛΙΝΙΚΗ ΔΞΔΤΑΣΗ
ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΤΔΡΗΓΟΝΙΚΩΝ ΒΛΑΒΩΝ ΚΑΤΑ ΤΑ ICDAS II ΚΡΙΤΗΡΙΑ ΜΔ ΒΑΣΗ ΤΗ ΚΛΙΝΙΚΗ ΔΞΔΤΑΣΗ Κιηληθή ηαμηλόκεζε ηνπ βαζκνύ ηεξεδνληθήο βιάβεο ηωλ νπώλ θαη ζρηζκώλ καζεηηθώλ επηθαλεηώλ θαηά ICDAS 1 νο Βαζκόο
Case Study. Παξαθάηω παξνπζηάδνπκε βήκα - βήκα κε screenshots έλα παξάδεηγκα ππνβνιήο κηαο εξγαζίαο θαη ηελ παξαγωγή ηνπ Originality Report.
Case Study Παξαθάηω παξνπζηάδνπκε βήκα - βήκα κε screenshots έλα παξάδεηγκα ππνβνιήο κηαο εξγαζίαο θαη ηελ παξαγωγή ηνπ Originality Report. Βήκα 1 ο : Login ζηο Turnitin. Κάλεηε είζνδν ζην Turnitin κε
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
Lecture 22: Functional Dependencies and Normalization
Department of Computer Science University of Cyprus EPL342 Databases Lecture 22: Functional Dependencies and Normalization Functional Dependencies (Chapter 10.2, Elmasri-Navathe 5ED) Demetris Zeinalipour
Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)
Έρνπκε απνζεθεύζεη κηα ζπιινγή αξρείσλ ζε κηα ζπλδεδεκέλε ιίζηα, όπνπ θάζε αξρείν έρεη κηα εηηθέηα ηαπηνπνίεζεο. Μηα εθαξκνγή παξάγεη κηα αθνινπζία από αηηήκαηα πξόζβαζεο ζηα αξρεία ηεο ιίζηαο. Γηα λα
Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!
Cpyright 2013 Λόγος & Επικοινωνία // All rights Reserved Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Αυηό ηο παιχνίδι έχει ζηόχους: 1. ηελ εθγύκλαζε ηεο αθνπζηηθήο κλήκεο ησλ παηδηώλ 2. ηελ εμάζθεζε ζηελ
Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δωξεάλ απνθιεηζηηθά από ηνλ ψεθηαθό ηόπν ηνπ schooltime.gr
Τν εθπαηδεπηηθό πιηθό ηεο Φξνηηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαέκεηαη δωξεά απνθιεηζηηθά από ην ψεθηαθό ηόπν ηνπ schooltime.gr Η έα ηζηνζειίδα καο : www. Μ ΑΘΗΜ ΑΤΙΚΑ α x +β< 0 Γ ΓΥΜΝΑΣΙΟΥ α.(β +γ )α.
Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή. Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε.
Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε. Παξάκεηξνη πξνο αμηνιόγεζε Ννκνζεηηθή ζσξάθηζε Κνηλόο Σύιινγνο Ακνηβή Καηαγγειία/Λύζε
Διαηιμήζεις για Αιολικά Πάρκα. Κώδικες 28, 78 και 84
Διαηιμήζεις για Αιολικά Πάρκα Κώδικες 28, 78 και 84 Διαηιμήζεις για Αιολικά Πάρκα Οη Διαηιμήζεις για Αιολικά Πάρκα εθαξκόδνληαη γηα ηελ απνξξνθνύκελε ελέξγεηα από Αηνιηθά Πάξθα πνπ είλαη ζπλδεδεκέλα ζην
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ
ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ: έζησ έλαο κηγαδηθόο αξηζκόο. αληίζηξνθνο ηνπ κηγαδηθνύ αξηζκνύ a b είλαη ν αξηζκόο Παπάδειγμα: έζησ.αληίζηξνθνο ηνπ αξηζκνύ : Μέηπο μιγαδικού απιθμού: αλ κέηξν δηαλύζκαηνο OM. b ή απόιπηε
Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ
Συστήματα Αρίθμησης Υποπλοίαρχος Ν. Πετράκος ΠΝ 1 Ειζαγωγή Τν bit είλαη ε πην βαζηθή κνλάδα κέηξεζεο. Είλαη κία θαηάζηαζε on ή off ζε έλα ςεθηαθό θύθισκα. Άιιεο θνξέο είλαη κία θαηάζηαζε high ή low voltage
Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:
1 ΟΡΙΜΟΙ MONOTONIA AKΡOTATA Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: Σν ιέγεηαη ζέζε ή ζεκείν ηνπ ηνπηθνύ κεγίζηνπ θαη ην ( ηνπηθό κέγηζην.
1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird
1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird 1.1 Εγκαηάζηαζη ηυν οδηγών ηηρ έξςπνηρ κάπηαρ ζηο λογιζμικό Mozilla Thunderbird
ΒΗΜΑ 2. Εηζάγεηε ηνλ Κωδηθό Πξόζβαζεο πνπ ιακβάλεηε κε SMS & δειώλεηε επηζπκεηό Όλνκα Πξόζβαζεο (Username) θαη ην ζαο
Δίζνδνο ζηελ Υπεξεζία Αλ είζηε ήδε εγγεγξακκέλνο ρξήζηεο ζηελ ππεξεζία, γηα ηελ είζνδν ζαο (login) ζηελ ππεξεζία e-bill, εηζάγεηαη ην Όλνκα Φξήζηε (username) θαη ηνλ Κωδηθό Πξόζβαζεο (password) πνπ είραηε
Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress.
Αιγόξηζκνη 2.2.7.3 Γνκή επηινγήο Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ 1 Πνιιαπιή Δληνιή Δπηινγήο Αν ζπλζήθε_1 ηόηε εληνιέο_1 αλλιώς_αν ζπλζήθε_2 ηόηε εληνιέο_2...
IV Ο ΕΛΛΗΝΙΜΟ ΣΗ ΔΤΗ,ΠΟΛΙΣΙΜΟΙ Δ.ΜΕΟΓΕΙΟΤ ΚΑΙ ΡΩΜΗ
IV Ο ΕΛΛΗΝΙΜΟ ΣΗ ΔΤΗ,ΠΟΛΙΣΙΜΟΙ Δ.ΜΕΟΓΕΙΟΤ ΚΑΙ ΡΩΜΗ Να σαπακηηπίζεηε ηιρ πποηάζειρ, πος ακολοςθούν, υρ ππορ ηην οπθόηηηά ηοςρ, με ηην ένδειξη Σωστό ή Λάθος 1. ηελ αξραία Ρώκε νη πιεβείνη δελ είραλ αξρηθά
Ενδεικτικά Θέματα Στατιστικής ΙΙ
Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε
1 Είζοδορ ζηο Σύζηημα ΣΔΕΔ ή BPMS
ΟΤΑ Επισειπηζιακή Νοημοζύνη: Οδεγίεο πξνο ηνπο εθπαηδεπόκελνπο γηα ηε ζύλδεζε κε ην ύζηεκα Γηαρείξηζεο Δπηρεηξεζηαθώλ Γηαδηθαζηώλ γηα ηελ εθηέιεζε ηωλ Πξαθηηθώλ Αζθήζεωλ ηωλ ππν(δλνηήηωλ) Bc1.1.4, Bc1.1.5,
Δξγαιεία Καηαζθεπέο 1 Σάμε Δ Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ. ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Ογθνκεηξηθό δνρείν
Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Ογθνκεηξηθό δνρείν Καηαζθεπάδνπκε έλα νγθνκεηξηθό δνρείν από πιαζηηθό κπνπθάιη λεξνύ
Έωρ και 28% η αύξηζη ηων ειζθοπών από ηο 2019!
Έωρ και 28% η αύξηζη ηων ειζθοπών από ηο 2019! A. Πίνακερ απεικόνιζηρ μεηαβολών Ι. Πίνακαρ απεικόνιζηρ μεηαβολών για ειζόδημα 10.000,00 Με ηο Υθιζηάμενο ζύζηημα Κζρδη 10,000.00 10,000.00 10,000.00 10,000.00
ΦΥΣΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ. G. Mitsou
ΦΥΣΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ηαηηθή ηωλ ξεπζηώλ (Τδξνζηαηηθή) Ση είλαη ηα ξεπζηά - Γεληθά Ππθλόηεηα Πίεζε Μεηαβνιή ηεο πίεζεο ζπλαξηήζεη ηνπ βάζνπο Αξρή ηνπ Pascal Τδξνζηαηηθή πίεζε Αηκνζθαηξηθή πίεζε Απόιπηε &
Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα
Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα Κοιμωμικά δίκτυα (multiplex network) Έρεηε ινγαξηαζκό ζην Facebook? Έρεηε ινγαξηαζκό ζην LinkedIn? Έρεηε ινγαξηαζκό ζην Twitter? Αεροπορικές γραμμές της Ευρώπης(multiplex
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη
Οργάνωση και Δομή Παρουσιάσεων
Οργάνωση και Δομή Παρουσιάσεων Οη παξνπζηάζεηο κε βνήζεηα ηνπ ππνινγηζηή γίλνληαη κε πξνγξάκκαηα παξνπζηάζεσλ, όπσο ην OpenOffice.org Impress [1] θαη ην Microsoft Office PowerPoint [2]. Απηά ηα πξνγξάκκαηα
Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΣΟΜΟ Α Mάθημα 5: To παραγωγής σναρηήζεις κόζηοσς Η ζπλάξηεζε ζπλνιηθνύ θόζηνπο C FC VC Όπνπ FC= ην ζηαζεξό θόζηνο (ην θόζηνο γηα ηνλ ζηαζεξό παξαγσγηθό ζπληειεζηή) θαη VC= ην κεηαβιεηό
Συναρτησιακές Εξαρτήσεις 7ο Φροντιστήριο. Βάρσος Κωνσταντίνος
ΗΥ-360 Αρχεια και Βασεις εδοµενων, Τµηµα Επιστηµης Υπολογιστων, Πανεπιστηµιο Κρητης Συναρτησιακές Εξαρτήσεις Βάρσος Κωνσταντίνος 24 Νοεµβρίου 2017 Ορισµός 1. Μια συναρτησιακή εξάρτηση µεταξύ X και Y συµβολίζεται
ΗΥ-150 Πξνγξακκατησκόο Ταμηλόκεσε θαη Αλαδήτεσε
ΗΥ-150 Πξνγξακκατησκόο Ταμηλόκεσε θαη Αλαδήτεσε To πξόβιεκα ηεο Αλαδήηεζεο Γνζέληνο δεδνκέλσλ, ι.ρ. ζε Πίλαθα (P) Χάρλσ λα βξσ θάπνην ζπγθεθξηκέλν ζηνηρείν (key) Αλ ν πίλαθαο δελ είλαη ηαμηλνκεκέλνο Γξακκηθή
i, ημ μκμμάδμομε ζύκμιμ ηςκ
ΜΙΓΑΔΙΚΟΙ. ΜΞΖΟΙΜΟ ΙΖΓΑΔΖΗΩΚ Μηγαδηθμί είκαη μη ανηζμμί ηεξ μμνθήξ. όπμο, θαη Τμ ζύκμιμ ηςκ μηγαδηθώκ ημ ζομβμιίδμομε με. Δειαδή: { :, } Τμοξ μηγαδηθμύξ ημοξ ζομβμιίδμομε ζοκήζςξ με Τμ γηα ημ μπμίμ ηζπύεη:
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:
x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12
ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα
Constructors and Destructors in C++
Constructors and Destructors in C++ Σύνθεζη Πνιύ ζπρλά ζηε C++ κία θιάζε κπνξεί λα πεξηέρεη ζαλ κέιεδεδνκέλα αληηθείκελα άιισλ θιάζεσλ. Πνηα είλαη ε ζεηξά κε ηελ νπνία δεκηνπξγνύληαη θαη θαηαζηξέθνληαη
Μνλνδηάζηαηνη Πίλαθεο Λπκέλεο Αζθήζεηο. Άζθεζε 1. Πνηά ζα είλαη ηα πεξηερόκελα ηνπ πίλαθα Α κεηά ηελ εθηέιεζε ηνπ παξαθάησ αιγνξίζκνπ;
Μνλνδηάζηαηνη Πίλαθεο Λπκέλεο Αζθήζεηο Άζθεζε 1. Πνηά ζα είλαη ηα πεξηερόκελα ηνπ πίλαθα Α κεηά ηελ εθηέιεζε ηνπ παξαθάησ αιγνξίζκνπ; Αιγόξηζκνο Γεκηνπξγία_Πίλαθα Γηα i από 1 κέρξη 5 Α[i] i Γηα i από 2
Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf
Δξγαζηεξηαθή άζθεζε 03 Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Ζιίαο Χαηδεζενδσξίδεο Οθηώβξηνο / Ννέκβξηνο 2004 Τη είλαη ην δίθηπν Wulf Δπίπεδν ζην νπνίν κπνξνύκε λα αλαπαξαζηήζνπκε ηξηζδηάζηαηα ζρήκαηα,
ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι
ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΩΝ - ΣΜΗΤΠ ΒΑΔΙ ΓΔΓΟΜΔΝΩΝ Ι Β. Μεγαιννηθνλόκνπ Γ. Υξηζηνδνπιάθεο Σχεσιακό Μοντέλο SQL Μέρος Α (παξνπζίαζε βαζηζκέλε ελ κέξε ζε ζεκεηώζεηο ησλ Silberchatz, Korth θαη Sudarshan θαη ηνπ C.
Να ζρεδηάζεηο ηξόπνπο ζύλδεζεο κηαο κπαηαξίαο θαη ελόο ιακπηήξα ώζηε ν ιακπηήξαο λα θσηνβνιεί.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: Απλό ηλεκτπικό κύκλυμα Η δηδαζθαιία ηνπ απινύ ειεθηξηθνύ θπθιώκαηνο ππάξρεη ζην κάζεκα «Φπζηθά» ηεο Ε ηάμεο ηνπ δεκνηηθνύ θαη επαλαιακβάλεηαη ζην κάζεκα ηεο Φπζηθήο ζηε Γ ηάμε ηνπ Γπκλαζίνπ.
Διάρηζηα Δπηθαιύπηνληα Γέλδξα
Διάρηζηα Δπηθαιύπηνληα Γέλδξα Οξηζκόο Δύξεζε Δπηθαιύπηνληνο Γέλδξνπ κε Διάρηζην Βάξνο, δειαδή ειάρηζην άζξνηζκα βαξώλ αθκώλ Αιγόξηζκνη Prim, Kruskal, Baruvka Βαζίδνληαη ζηελ ηερληθή ηεο Απιεζηίαο Η νξζόηεηα
ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH
ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KRNUGH Γηα λα θάλνπκε απινπνίεζε κηαο ινγηθήο ζπλάξηεζεο κε πίλαθα (ή ράξηε) Karnaugh αθνινπζνύκε ηα παξαθάησ βήκαηα:. Η ινγηθή ζπλάξηεζε ζα πξέπεη λα είλαη ζε πιήξε
ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x
Να ιπζνύλ νη εμηζώζεηο : ( ) 4 ( ) 7 ( )( ) (ii) 5 7 9 4 (iv) 5 6 4 9 6 0 9 6 8 Να ιπζνύλ νη εμηζώζεηο : 7 5 8 (ii) 4 6 8 5 8 ( 6) 4 4 5 (iv) 7 5 4 7 0 7 ( ) 4 8 4 5 8 Να ιπζνύλ νη εμηζώζεηο : ( ) 0 5
ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ
ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΘΔΜΑ Α Α1. α. Σ β. Σ γ. Λ δ. Λ ε. Λ ζη. Σ Α2. Γ Α3. 1. γ 2. ε 3. δ 4. α Β1. ΘΔΜΑ Β Οη ηειηθνί ππνινγηζηέο παίξλνπλ απνθάζεηο δξνκνιόγεζεο κόλν γηα ηα δηθά ηνπο απηνδύλακα
Ο γεωκεηξηθόο ηόπνο ηωλ εηθόλωλ ηωλ κηγαδηθώλ αξηζκώλ z είλαη ν θύθινο κε θέληξν ηελ αξρή ηωλ αμόλωλ θαη αθηίλα ξ=2.
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΚΑΗ Γ ΣΑΞΖ ΔΠΔΡΗΝΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΓΔΤΣΔΡΑ 5 ΜΑΪΟΤ 5 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ:ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΖ & ΣΔΥΝΟΛΟΓΗΚΖ ΚΑΣΔΤΘΤΝΖ ΑΠΑΝΣΖΔΗ ΘΔΜΑ Α Α. Σρνιηθό βηβιίν
ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 204-205 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/204 A ΟΜΑΓΑ Οδηγία: Να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό κάθε μιας από ηις παρακάηφ ερφηήζεις Α.-Α.8 και
5 η Δργαζηηριακή Άζκηζη Κσκλώμαηα Γσαδικού Αθροιζηή/Αθαιρέηη
5 η Δργαζηηριακή Άζκηζη Κσκλώμαηα Γσαδικού Αθροιζηή/Αθαιρέηη Σηα πιαίζηα ηεο πέκπηεο εξγαζηεξηαθήο άζθεζεο ζα ρξεζηκνπνηεζεί απνθιεηζηηθά ην πεξηβάιινλ αλάπηπμεο νινθιεξσκέλσλ θπθισκάησλ IDL-800 Digital
Ανάπηςξη Δθαπμογών ζε Ππογπαμμαηιζηικό Πεπιβάλλον
Μάθημα 10 ( 2.4.2, 8.1, 8.1.1) Ανάπηςξη Δθαπμογών ζε Ππογπαμμαηιζηικό Πεπιβάλλον Δπγαζία 9 Α. Να βπεθεί η ηιμή πος θα έσει η μεηαβληηή Φ μεηά ηην εκηέλεζη καθεμιάρ από ηιρ παπακάηυ ενηολέρ εκσώπηζηρ. Οι