ηδάζθσλ: εµήηξεο Εετλαιηπνύξ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ηδάζθσλ: εµήηξεο Εετλαιηπνύξ"

Transcript

1 Γηάιεμε : Παξαδείγκαηα Αλάιπζεο Πνιππινθόηεηαο / Αλάιπζε Αλαδξνκηθώλ Αιγόξηζκσλ Σηελ ελόηεηα απηή ζα κειεηεζνύλ ηα εμήο επηκέξνπο ζέκαηα: Παραδείγμαηα Ανάλσζης Πολσπλοκόηηηας : Μέθοδοι, 6 παραδείγμαηα Γραμμική και Δσαδική Αναζήηηζη, Ανάλσζη Αναδρομικών Αλγορίθμων ηδάζθσλ: εµήηξεο Εετλαιηπνύξ -

2 Υπνινγηζκόο Φξόλνπ Δθηέιεζεο κε θσιηαζκέλνπο βξόρνπο θαη ζπλζήθεο if Σε έλα βξόρν (for loop) o ζπλνιηθόο ρξόλνο πνπ απαηηείηαη είλαη : Βαζηθή Πξάμε x Αξηζκό Δπαλαιήςεσλ Φσιηαζκέλνη Βξόρνη: ε αλάιπζε γίλεηαη από ηα κέζα πξνο ηα έμσ for (i=0; i<; i++) for (j=0; j<; j++) k++; Φσιηαζκέλνο Βξόρνο Σπλερόκελεο Δληνιέο: Ο ρξόλνο εθηέιεζεο ηεο εληνιήο S και μεηά S παίξλεη ρξόλν ίζν ηνπ αζξνίζκαηνο ησλ ρξόλσλ εθηέιεζεο ησλ S + S. Σπλζήθεο if: Ο ρξόλνο εθηέιεζεο ηεο εληνιήο if b the S else S παίξλεη ρξόλν ίζν κε max(t(b)+t(s), T(b)+T(S )) -3

3 Παξάδεηγκα : Υπνινγηζκόο Φξόλνπ Δθηέιεζεο. it i, j, sum=0; for (i=0; i<; i++) for (j=0; j<; j++) sum++; Ανάλςζη Εζωηεπικόρ βπόσορ: Εξωηεπικόρ βπόσορ: j i Σςνολικά: * ( ) i j -4

4 Παξάδεηγκα 3: Υπνινγηζκόο Φξόλνπ Δθηέιεζεο 3. it i, j, sum=0; for (i=0; i<; i++) for (j=0; j<i*i; j++) sum++; Ανάλςζη B i Εζωηεπικόρ βπόσορ: ji i 0 3 Γηα i, δείρλεη πόζεο θνξέο εθηειείηαη ην j. - j (-) Σπλνιηθά; i i Εξωηεπικόρ βπόσορ: Εκηελείηαι θοπέρ Σςνολικά: i i ( 6 ( 3 i B )( 6 ) δηλ., ) ( )( ( 3 i i 3 6 )( ) 6 ( ) 3 ) -5

5 Παξάδεηγκα 4: Υπνινγηζκόο Φξόλνπ Δθηέιεζεο it i, j, k, sum=0; for (i=0; i<; i++) for (j=0; j<; j++) for (k=0; k<; k++) sum++ Ανάλςζη Βπόσορ (Β): Βπόσορ (B): Εξωηεπικόρ βπόσορ: k j B * j Σςνολικά: i B 3 * i ε Θ ( 3 ) -6

6 Παξάδεηγκα 5: Υπνινγηζκόο Φξόλνπ Δθηέιεζεο. it i, j, sum=0; for (i=; i<=; i = *i) for (j=0; j<; j++) sum++ Ανάλςζη Εζωηεπικόρ βπόσορ: j Σπλνιηθά log βήκαηα Γηα i, δείρλεη πόζεο θνξέο εθηειείηαη ην j { i 4 8. j Εξωηεπικόρ βπόσορ:,, 4, 8,, i Σςνολικά: i i log log i log Δπνκέλσο ην i εθηειείηαη ηνπιαρηζην log θνξέο (Θα ππνζέηνπκε όηη είλαη δύλακε ηνπ ) Θ(*log ) log i -7

7 Παξάδεηγκα 6: Υπνινγηζκόο Φξόλνπ Δθηέιεζεο (Με ζπλζήθε if) it i, j, sum=0; for (i=0; i<; i++) if (( % ) == 0) else for (j=0; j<; j++) sum++ sum--; // άπηιορ // πεπιηηόρ Ανάλςζη (Βαζική ππάξη ππόζθεζη/αθαίπεζη) α) N πεπιηηόρ: i β) N άπηιορ: i ( ) ( ) Παξαηεξνύκε όηη δελ θαηαιήγνπκε ζην MAX(odd, eve), εθόζνλ πάληα ζα εθηειείηαη κόλν έλα από ηα δπν ζθέιε ηεο ζπλζήθεο. Δάλ ε ζπλζήθε ήηαλ ((i % ) == 0)ηόηε ζα κπνξνύζακε λα πνύκε όηη έρνπκε O() ρξόλν. -8

8 Παξάδεηγκα 7: Φξόλνο Δθηέιεζεο Bubblesort void bubblesort( it X[], it ){ it i,j,temp; it swapped = 0; for (i=0;i<-;i++) { swapped = 0; for (j=0;j<-i-;j++) { if (X[j]>X[j+]) { temp = X[j]; X[j] = X[j+]; X[j+] = temp; swapped = ; if (swapped==0) retur; Αλάιπζε Δζσηεξηθόο βξόρνο: Σπλνιηθά: i i( ) i( i) i ( ) i( ) i( ) i ( )( ) i( ) ( ) ( )( ) ( ) ( )( ) ΕΠΛ 035 Δομές ( Δεδομένων )( και Αλγόριθμοι ) ( )( για Ηλ. ) Μηχ. και Μηχ. Υπολ. ( ) i i i ( ) -9

9 Γξακκηθή Vs Γπαδηθή Γηεξεύλεζε (Αλάιπζε) Δεδομένα Ειζόδοσ: Πίλαθαο Φ κε ζηνηρεία, ηαμηλνκεκέλνο από ην κηθξόηεξν ζην κεγαιύηεξν, θαη αθέξαηνο k. Σηότος: Να εμαθξηβώζνπκε αλ ην k είλαη ζηνηρείν ηνπ Φ. Γραμμική Διερεύνηζη: εμεξεπλνύκε ηνλ πίλαθα από ηα αξηζηεξά ζηα δεμηά. it liear( it X[], it, it k){ it i=0; while ( i < ) { if (X[i] == k) retur i; if (X[i] > k) retur -; i++; retur -; Xείριζηη περίπηωζη: Ο() (ν βξόρνο εθηειείηαη θνξέο) X

10 Αλαδξνκηθή Γξακκηθή Γηεξεύλεζε it rliear( it X[], it, it k, it pos){ if (pos == ) retur -; // ot foud if (X[pos] == k) retur pos; // foud else if (X[pos] > k) retur -; // larger foud - skip rest retur rliear(x,, k, pos+); X Xείριζηη περίπηωζη: Ο() (εθηεινύληαη αλαδξνκηθέο θιήζεηο ηεο rliear) -

11 Γπαδηθή Γηεξεύλεζε Δυαδική Διερεύνηζη: βξίζθνπκε ην κέζν ηνπ πίλαθα θαη απνθαζίδνπκε αλ ην k αλήθεη ζην δεμηό ή ην αξηζηεξό κηζό. Δπαλαιακβάλνπκε ηελ ίδηα δηαδηθαζία ζην "κηζό" πνπ καο ελδηαθέξεη. it biary( it X[],it,it k){ it low = 0, high = -; it mid; while ( low <= high ){ mid =low+(high-low)/; if (X[mid] == k) retur mid; else if (X[mid] < k) low = mid + ; else if (X[mid] > k) retur -; high = mid-; X K=5? low mid high mid mid3 Ίδην κε (low+high)/. Ωζηόζν ε έθδνζε απηή κπνξεί λα ππνθέξεη από ππεξρείιηζε αθεξαίνπ. -

12 Αλαδξνκηθή Γπαδηθή Γηεξεύλεζε it BS_aux(it list[],it low,it high,it k) { it mid; K=5? if (low<=high) { mid=low+(high-low)/; if (list[mid]==k) X retur mid; low mid else if (k<list[mid]) mid3 mid retur BS_aux(list,low,mid-,k); else retur BS_aux(list,mid+,high,k); retur -; BiarySearch(it A[], it, it k) { it low = 0, high = -; retur BS_aux(A, low, high, k); Τα όξηα δίδνληαη ζαλ παξάκεηξν high -3

13 Γπαδηθή Γηεξεύλεζε Φξόλνο Δθηέιεζεο Ζ βαζηθή πξάμε (ζύγθξηζε) εθηειείηαη Ο(log ) θνξέο δειαδή: Εκηέλεζη -> Μαρ απομένει* / ηος πίνακα, Εκηέλεζη -> Μαρ απομένει /4 ηος πίνακα, Εκηέλεζη 3 -> Μαρ απομένει /8 ηος πίνακα, Εκηέλεζη Χ -> Μαρ απομένει ζηοισείο ηος πίνακα, Σηην εκηέλεζη Χ είηε βπήκαμε ηο ζηοισείο είηε όσι δηλ.έσοςμε ηην ακολοςθία, /, /4, /8,, 4,,, <==> 0,,, 3,, x Το x εκθπάζει πόζερ θοπέρ εκηελούμε ηο while loop x x log log x log Biary Search ε Ο(log ) * Φσξίο βιάβε ηεο γεληθόηεηαο, ζεσξήζηε όηη είλαη δπγόο -4

14 Πνιππινθόηεηα Αλαδξνκηθώλ Γηαδηθαζηώλ Μέρξη ηώξα ζπδεηήζακε ηερληθέο γηα ηελ αλάιπζε επαλαιεπηηθώλ αιγνξίζκσλ (κε while, for, θηι.) Ωζηόζν, πνιινί αιγόξηζκνη νξίδνληαη αλαδξνκηθά (π.ρ. biary search, Fiboacci, etc) Θέινπκε θάπνηα κεζνδνινγία γηα λα αλαιύνπκε ηελ πνιππινθόηεηα ηέηνησλ αλαδξνκηθώλ εμηζώζεσλ. π.ρ. Τ() = T(/) +000 Τ()=*T(-), >0 θηι. Σεκεηώζηε όηη ππάξρνπλ δηάθνξνη ηύπνη αλαδξνκηθώλ εμηζώζεσλ. Πνιινί ηύπνη ρξεηάδνληαη εηδηθά εξγαιεία ηα νπνία δελ ζα δνύκε ζε απηό ην κάζεκα. Έλα ηύπν πνπ ζα κειεηήζνπκε ζα είλαη νη Αλαδξνκηθέο Δμηζώζεηο ηύπνπ «Γηαίξεη θαη Βαζίιεπε» Θα ηηο επηιύζνπκε κε ηελ Μέζνδν ηεο Αληηθαηάζηαζεο θαη ζα ΕΠΛ ηηο 035 επαιεζεύνπκε Δομές Δεδομένων κε και ην Αλγόριθμοι Θεώξεκα για Ηλ. Μηχ. Master και Μηχ. Υπολ. -5

15 Αλάιπζε Αλαδξνκηθήο Γπαδηθήο Γηεξεύλεζεο Αο μαλαδνύκε ηελ αλαδξνκηθή έθδνζε ηεο δπαδηθήο αλαδήηεζεο it BS_aux(it list[],it low,it high,it k) { it mid; if (low<=high) { mid=low+(high-low)/; if (list[mid]==a) retur mid; else if (k<list[mid]) retur BS_aux(list,low,mid-,k); else retur BS_aux(list,mid+,high,k); retur -; X K=5? low mid high mid mid3 Από όηη βιέπνπκε ζε θάζε εθηέιεζε ην biary_search κνηξάδεη κηα αθνινπζία ζηνηρείσλ ζε / ζηνηρεία (εάλ είλαη δπγόο). Δπνκέλσο ην πξόβιεκα κεγέζνπο έγηλε ηώξα /. Σε θάζε βήκα ρξεηαδόκαζηε θαη δπν ζπγθξίζεηο (ηα δπν if statemets) O ρξόλνο εθηέιεζεο ηεο biary_search εθθξάδεηαη κε ηελ αλαδξνκηθή ζπλάξηεζε: f() = f(/) + // αλαδξνκηθό βήκα f() = // ζπλζήθε ηεξκαηηζκνύ -6

16 Αλάιπζε Αλαδξνκηθήο Γπαδηθήο Γηεξεύλεζεο Μέζνδνο ηεο Αληηθαηάζηαζεο Μέζνδνο ηεο Αληηθαηάζηαζεο Φξεζηκνπνηνύκε ην βήκα ηεο αλαδξνκήο επαλαιεπηηθά, κέρξη λα εθθξάζνπκε ην Τ() σο ζπλάξηεζε ηεο βαζηθήο πεξίπησζεο, δπλάκεηο ηνπ θαη ζηαζεξέο ηηκέο. Εφαρμογή Έρνπκε ηελ αλαδξνκηθή εμίζσζε ηεο δπαδηθήο δηεξεύλεζεο (Τύπνπ Γηαίξεη θαη Βαζίιεπε) Τ() = T(/) +, T() = γηα θάζε Τόηε, αληηθαζηζηώληαο ην Τ(/) κε ηελ ηηκή ηνπ παίξλνπκε Τ() = T(/) + = T(/4) + + = T(/8) = (Μπνξνύκε ηώξα λα καληέςνπκε όηη ) =... log θνξέο Δπνκέλσο ε δπαδηθή αλαδήηεζε εθηειείηαη log βήκαηα Biary Search ε Ο(log ) -7

17 Αλάιπζε Αλαδξνκηθήο Γπαδηθήο Γηεξεύλεζεο Σηελ δπαδηθή δηεξεύλεζε ε αθνινπζία κνηξάδεηαη σο εμήο:, /, /4,,,. Πξνζνρή: Γελ ζεκαίλεη όηη έρνπκε +/+ / =- εθηειέζεηο. Έρνπκε κνλάρα log εθηειέζεηο Αλάινγα κε ην ζε πόζα θνκκάηηα «δηαηξείηαη» ην πξόβιεκα θάζε θνξά, αιιάδεη θαη ε βάζε ηνπ ινγάξηζκνπ. log log 3 0 = = 3 = = = 5 0 = 04 = =,073,74, Αξηζκόο πξάμεσλ,/,/4,,, ί:log,/3,/9,, 3, ί:log3 Όζν κεγαιύηεξε ε βάζε ηνπ ινγάξηζκνπ ηόζν πην ιίγεο εθηειέζεηο ηνπ αιγόξηζκνπ έρνπκε! Ωζηόζν, απμάλνληαη νη ζπγθξίζεηο ζε θάζε εθηέιεζε! Πρ δπαδηθή δηεξεύλεζε: lg εθηειέζεηο, έιεγρν ζε θάζε βήκα. -8

18 Αλάιπζε Αλαδξνκηθήο Γπαδηθήο Γηεξεύλεζεο Master Theorem To Master Theorem καο επηηξέπεη λα βξίζθνπκε ή λα επαιεζεύνπκε ηελ ρξνληθή πνιππινθόηεηα αλαδξνκηθώλ εμηζώζεσλ ηύπνπ δηαίξεη θαη βαζίιεπε. Γηαίξεη θαη Βαζίιεπε: πρ. Τ() = T(/) + αιιά όρη Τ()=*T(-) Απηό ην ζεώξεκα δελ ρξεηάδεηαη λα ηνλ απνκλεκνλεύζεηε αιιά κπνξείηε λα ηνλ ρξεζηκνπνηήζεηε γηα ηελ επαιήζεπζε αζθήζεσλ. -9

19 Αλάιπζε Αλαδξνκηθήο Γπαδηθήο Γηεξεύλεζεο Master Theorem - Δθαξκνγή Αλαδξνκηθή Γπαδηθή Αλαδήηεζε Τ() = T(/) + γηα θάζε T() = a=, b=, c=, d=0 (δεο ηύπν Master) a= θαη b d = 0 = T() is O( d log) T() is O( 0 log) T() is O(log) -0

20 Παξάδεηγκα - Μέζνδνο ηεο αληηθαηάζηαζεο Έρνπκε ηελ αλαδξνκηθή εμίζσζε Τ() = 4T(/) +, T() = γηα θάζε Τόηε, αληηθαζηζηώληαο ην Τ(/) κε ηελ ηηκή ηνπ παίξλνπκε Τ() = 4T(/) + // Δθηέιεζε = 4(4T(/4) + /) + // Δθηέιεζε = 4²Τ(/4) + + // Πξάμεηο = 4³Τ(/8) + ² + + // Δθηέιεζε 3 =... Μπνξνύκε ηώξα λα καληέςνπκε όηη = 4 k Τ() + k- + +² + + // k=log 4 log log i log log * *( i0 ( ) O( ) ) // i0 i -

21 Παξάδεηγκα 3 - Μέζνδνο ηεο αληηθαηάζηαζεο Άζθεζε Να ιύζεηε ηελ πην θάησ αλαδξνκηθή εμίζσζε κε ηελ κέζνδν ηεο αληηθαηάζηαζεο (πξνζνρή δελ είλαη ηύπνπ δηαίξεη & βαζίιεπε) Τ(0)= Τ()=*T(-), >0 Λύζε Τ() = **T(-) = * *(-)*T(-) = 3* *(-)*(-)*T(-3).(Μπνξνύκε ηώξα λα καληέςνπκε όηη ) = **(-)*(-)*...***T(0) = *! ε Ο(!) -

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο:

Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο: Πίνακες Σσμβόλων Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο: Εηζαγσγή ελόο ζηνηρείνπ Αλαδήηεζε ζηνηρείνπ κε δεδνκέλν θιεηδί Άιιεο ρξήζηκεο ιεηηνπξγίεο είλαη: Δηαγξαθή ελόο θαζνξηζκέλνπ ζηνηρείνπ

Διαβάστε περισσότερα

Ππογπαμμαηιζμόρ Ι (ΗΥ120)

Ππογπαμμαηιζμόρ Ι (ΗΥ120) Ππογπαμμαηιζμόρ Ι (ΗΥ120) Δηάιεμε 10: Ταμηλόκεζε Πίλαθα Αλαδήηεζε ζε Ταμηλνκεκέλν Πίλαθα Ππόβλεμα Δίλεηαη πίλαθαο t από Ν αθεξαίνπο. Ζεηνύκελν: λα ηαμηλνκεζνύλ ηα πεξηερόκελα ηνπ πίλαθα ζε αύμνπζα αξηζκεηηθή

Διαβάστε περισσότερα

ηδάζθσλ: εµήηξεο Εετλαιηπνύξ

ηδάζθσλ: εµήηξεο Εετλαιηπνύξ ηάιεμε 4: ιάρηζηα ελλεηνξηθά έλδξα Αιγόξηζκνο Kruskal Σηελ ελόηεηα απηή ζα κειεηεζνύλ ηα εμήο επηκέξνπο ζέκαηα: Ο αλγόριθμος ηοσ Kruskal για εύρεζη ζε γράθοσς Παράδειγμα κηέλεζης ηδάζθσλ: εµήηξεο ετλαιηπνύξ

Διαβάστε περισσότερα

ΗΥ-150 Πξνγξακκατησκόο Ταμηλόκεσε θαη Αλαδήτεσε

ΗΥ-150 Πξνγξακκατησκόο Ταμηλόκεσε θαη Αλαδήτεσε ΗΥ-150 Πξνγξακκατησκόο Ταμηλόκεσε θαη Αλαδήτεσε To πξόβιεκα ηεο Αλαδήηεζεο Γνζέληνο δεδνκέλσλ, ι.ρ. ζε Πίλαθα (P) Χάρλσ λα βξσ θάπνην ζπγθεθξηκέλν ζηνηρείν (key) Αλ ν πίλαθαο δελ είλαη ηαμηλνκεκέλνο Γξακκηθή

Διαβάστε περισσότερα

Αντισταθμιστική ανάλυση

Αντισταθμιστική ανάλυση Θεσξήζηε έλαλ αιγόξηζκν Α πνπ ρξεζηκνπνηεί κηα δνκή δεδνκέλσλ Γ : Καηά ηε δηάξθεηα εθηέιεζεο ηνπ Α ε Γ πξαγκαηνπνηεί κία αθνινπζία από πξάμεηο. Παξάδεηγκα: Θπκεζείηε ην πξόβιεκα ηεο εύξεζεο-έλσζεο Δίρακε

Διαβάστε περισσότερα

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ. Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,

Διαβάστε περισσότερα

Δηάιεμε 13: Αιγόξηζκνη Ταμηλόκεζεο

Δηάιεμε 13: Αιγόξηζκνη Ταμηλόκεζεο Δηάιεμε 13: Αιγόξηζκνη Ταμηλόκεζεο Σηελ ελόηεηα απηή ζα κειεηεζνύλ ηα εμήο επηκέξνπο ζέκαηα: Οι αλγόπιθμοι ηαξινόμηζηρ SelectionSort, InsertionSort, Σηιρ επσόμενερ διαλέξειρ θα δούμε ηοςρ αλγόπιθμοςρ Mergesort,

Διαβάστε περισσότερα

Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress.

Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress. Αιγόξηζκνη 2.2.7.3 Γνκή επηινγήο Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ 1 Πνιιαπιή Δληνιή Δπηινγήο Αν ζπλζήθε_1 ηόηε εληνιέο_1 αλλιώς_αν ζπλζήθε_2 ηόηε εληνιέο_2...

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη

Διαβάστε περισσότερα

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή

Διαβάστε περισσότερα

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή

Διαβάστε περισσότερα

ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ:

ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ: ΓΙΑΙΡΔΣΟΣΗΣΑ Οπιζμόρ 1: Έζηω,. Λέκε όηη ν δηαηξεί ηνλ (ζπκβνιηζκόο: ) αλ ππάξρεη c ηέηνην ώζηε c. Θεώπημα : Γηα,,m,α,b ηζρύνπλ: i), (άξα ) ii) 1, 1 iii) 0 iv) 0 0 v) m m m vi) α bm vii) α (άξα ) viii)

Διαβάστε περισσότερα

Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ

Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ Συστήματα Αρίθμησης Υποπλοίαρχος Ν. Πετράκος ΠΝ 1 Ειζαγωγή Τν bit είλαη ε πην βαζηθή κνλάδα κέηξεζεο. Είλαη κία θαηάζηαζε on ή off ζε έλα ςεθηαθό θύθισκα. Άιιεο θνξέο είλαη κία θαηάζηαζε high ή low voltage

Διαβάστε περισσότερα

Ενδεικτικά Θέματα Στατιστικής ΙΙ

Ενδεικτικά Θέματα Στατιστικής ΙΙ Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε

Διαβάστε περισσότερα

Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ

Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Αιγόξηζκνη 2.2.7.4 Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Υ 1 Άζθεζε 34 ζει 53 Έλα ςεθηαθό θσηνγξαθηθό άικπνπκ έρεη απνζεθεπηηθό ρώξν N Mbytes. Να αλαπηύμεηε

Διαβάστε περισσότερα

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2 ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.

Διαβάστε περισσότερα

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 .1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε

Διαβάστε περισσότερα

Γηάιεμε 14: Αιγόξηζκνη Ταμηλόκεζεο

Γηάιεμε 14: Αιγόξηζκνη Ταμηλόκεζεο Γηάιεμε 14: Αιγόξηζκνη Ταμηλόκεζεο Σηελ ελόηεηα απηή ζα κειεηεζνύλ ηα εμήο επηκέξνπο ζέκαηα: Οι αλγόπιθμοι ηαξινόμηζηρ 3) Mergesort Ταξινόμηζη με Σςγσώνεςζη 4) BucketSort Ταξινόμηζη με Κάδοςρ ηδάζθσλ:

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΠΟΥΔΕΣ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙ - ΦΥΕ 0 7 Ινπλίνπ 009 Απαντήσειρ στιρ ασκήσειρ τηρ τελικήρ εξέτασηρ στιρ Σςνήθειρ Διαυοπικέρ Εξισώσειρ Αγαπηηέ θοιηηηή/ηπια,

Διαβάστε περισσότερα

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000. ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε

Διαβάστε περισσότερα

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις Ο Δηζνδεκαηίαο Σην ηειεπαηρλίδη «Ο Δηζνδεκαηίαο» ν Αξλανύηνγινπ γηα πξώηε θνξά δίλεη δύν επηινγέο: Να πάξεηο 50.000 Δπξώ θάζε ρξόλν

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:

Διαβάστε περισσότερα

ΓΙΑΙΡΔΣΔ ΦΤΙΚΟΤ ΑΡΙΘΜΟΤ Μ.Κ.Γ. ΦΤΙΚΏΝ ΑΡΙΘΜΏΝ

ΓΙΑΙΡΔΣΔ ΦΤΙΚΟΤ ΑΡΙΘΜΟΤ Μ.Κ.Γ. ΦΤΙΚΏΝ ΑΡΙΘΜΏΝ ΓΙΑΙΡΔΣΔ ΦΤΙΚΟΤ ΑΡΙΘΜΟΤ Γηαηξέηεο ελόο θπζηθνύ αξηζκνύ α είλαη νη θπζηθνί αξηζκνί πνπ όηαλ δηαηξεζνύλ κε ην α δίλνπλ αθέξαην πειίθν θαη ππόινηπν 0. Οη παξάγνληεο ελόο αξηζκνύ είλαη θαη δηαηξέηεο ηνπ. Ππώηοι

Διαβάστε περισσότερα

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη

Διαβάστε περισσότερα

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ

Διαβάστε περισσότερα

Γηάιεμε 7: Αλαδξνκή. Σηελ ελφηεηα απηή ζα κειεηεζνχλ ηα εμήο επηκέξνπο ζέκαηα:

Γηάιεμε 7: Αλαδξνκή. Σηελ ελφηεηα απηή ζα κειεηεζνχλ ηα εμήο επηκέξνπο ζέκαηα: Γηάιεμε 7: Αλαδξνκή Σηελ ελφηεηα απηή ζα κειεηεζνχλ ηα εμήο επηκέξνπο ζέκαηα: Η έννοια ηης αναδρομής Μη-αναδρομικός / Αναδρομικός Οριζμός Σσναρηήζεων Παραδείγμαηα Ανάδρομης: Παραγονηικό, Δύναμη, Αριθμοί

Διαβάστε περισσότερα

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii) . Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.

Διαβάστε περισσότερα

ΓΗΜΟΙΑ ΟΙΚΟΝΟΜΙΚΗ ΣΟΜΟ Γ

ΓΗΜΟΙΑ ΟΙΚΟΝΟΜΙΚΗ ΣΟΜΟ Γ 1 ΓΗΜΟΙΑ ΟΙΚΟΝΟΜΙΚΗ ΣΟΜΟ Γ Μάθημα 19: Φόροι ΦΟΡΟΛΟΓΙΚΑ ΤΣΗΜΑΣΑ: Προοδεσηικό, Αναλογικά και ανηίζηροθα προοδεσηικό θορολογικό ζύζηημα Μέζος και οριακός θορολογικός ζσνηελεζηής Ο κέζνο θνξνινγηθόο ζπληειεζηήο

Διαβάστε περισσότερα

1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird

1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird 1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird 1.1 Εγκαηάζηαζη ηυν οδηγών ηηρ έξςπνηρ κάπηαρ ζηο λογιζμικό Mozilla Thunderbird

Διαβάστε περισσότερα

ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH

ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KRNUGH Γηα λα θάλνπκε απινπνίεζε κηαο ινγηθήο ζπλάξηεζεο κε πίλαθα (ή ράξηε) Karnaugh αθνινπζνύκε ηα παξαθάησ βήκαηα:. Η ινγηθή ζπλάξηεζε ζα πξέπεη λα είλαη ζε πιήξε

Διαβάστε περισσότερα

x x x x tan(2 x) x 2 2x x 1

x x x x tan(2 x) x 2 2x x 1 ΘΕΡΙΝΟ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΑ Ι ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΕΡΟ Ι 1. Να γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ παξαθάησ ζπλαξηήζεσλ. t ( i) e ( ii) ln( ) ( iii). Να βξεζεί ην Π.Ο., ν ηύπνο ηεο αλίζηξνθεο θαη ην Π.Τ. ησλ

Διαβάστε περισσότερα

ΘΔΜΑ 1 ο Μονάδες 5,10,10

ΘΔΜΑ 1 ο Μονάδες 5,10,10 ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο

Διαβάστε περισσότερα

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα 10 Ηοσνίοσ 2019 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις) ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γεσηέρα Ηοσνίοσ 9 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α.α) Οξηζκόο ζρνιηθνύ βηβιίνπ ζει 5. Έζησ Α έλα ππνζύλνιν ηνπ.

Διαβάστε περισσότερα

ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ

ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ ΚΔΦ.. ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ Οξηζκόο ηεηξαγσληθήο ξίδαο: Αλ 0 ηόηε νλνκάδνπκε ηεηξαγσληθή ξίδα ηνπ ηελ κε αξλεηηθή ιύζε ηεο εμίζσζεο:. Γειαδή ηεηξαγσληθή ξίδα ηνπ 0 ιέγεηαη ν αξηζκόο 0 πνπ όηαλ πςσζεί

Διαβάστε περισσότερα

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12 ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα

Διαβάστε περισσότερα

ΡΤΘΜΙΕΙ ΔΙΚΣΤΟΤ ΣΑ WINDOWS

ΡΤΘΜΙΕΙ ΔΙΚΣΤΟΤ ΣΑ WINDOWS ηότοι εργαζηηρίοσ ΡΤΘΜΙΕΙ ΔΙΚΣΤΟΤ ΣΑ WINDOWS ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηεί ε δηαδηθαζία ηωλ ξπζκίζεωλ δηθηύνπ ζε ιεηηνπξγηθό ζύζηεκα Windows XP. Η δηαδηθαζία ζε γεληθέο γξακκέο

Διαβάστε περισσότερα

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο : ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη

Διαβάστε περισσότερα

ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών

ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών τοιχεία του μαθήματοσ (ημζρα εβδομάδασ, ώρεσ, ζτοσ): ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών Εργαςτηριακή ομάδα αςκήςεων 2 για το μάθημα «ΑΡΧΙΣΕΚΣΟΝΙΚΗ

Διαβάστε περισσότερα

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δωξεάλ απνθιεηζηηθά από ηνλ ψεθηαθό ηόπν ηνπ schooltime.gr

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δωξεάλ απνθιεηζηηθά από ηνλ ψεθηαθό ηόπν ηνπ schooltime.gr Τν εθπαηδεπηηθό πιηθό ηεο Φξνηηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαέκεηαη δωξεά απνθιεηζηηθά από ην ψεθηαθό ηόπν ηνπ schooltime.gr Η έα ηζηνζειίδα καο : www. Μ ΑΘΗΜ ΑΤΙΚΑ α x +β< 0 Γ ΓΥΜΝΑΣΙΟΥ α.(β +γ )α.

Διαβάστε περισσότερα

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.

Διαβάστε περισσότερα

Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016

Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 Βάσεις Δεδομέμωμ Εξγαζηήξην V Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 2 Σκοπός του 5 ου εργαστηρίου Σθνπόο απηνύ ηνπ εξγαζηεξίνπ είλαη: ε κειέηε ζύλζεησλ εξσηεκάησλ ζύλδεζεο ζε δύν ή πεξηζζόηεξεο ζρέζεηο ε κειέηε

Διαβάστε περισσότερα

Δξγαιεία Καηαζθεπέο 1 Σάμε Δ Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ. ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Ογθνκεηξηθό δνρείν

Δξγαιεία Καηαζθεπέο 1 Σάμε Δ Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ. ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Ογθνκεηξηθό δνρείν Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Ογθνκεηξηθό δνρείν Καηαζθεπάδνπκε έλα νγθνκεηξηθό δνρείν από πιαζηηθό κπνπθάιη λεξνύ

Διαβάστε περισσότερα

Να ζρεδηαζζεί ην θαηεπζπλόκελν γξάθεκα πνπ νξίδεηαη από ηνλ εμήο πίλαθα γεηηλίαζεο.

Να ζρεδηαζζεί ην θαηεπζπλόκελν γξάθεκα πνπ νξίδεηαη από ηνλ εμήο πίλαθα γεηηλίαζεο. . Σρεδίαζε Καηεπζπλόκελωλ Γξαθεκάηωλ (.8.) Να ζρεδηαζζεί ην θαηεπζπλόκελν γξάθεκα πνπ νξίδεηαη από ηνλ εμήο πίλαθα γεηηλίαζεο. Κνξπθέο 0 0 0 0 0 0 0 0. Σρεδίαζε(.8.5) Να ζρεδηαζηεί ην παξαθάηω γξάθεκα

Διαβάστε περισσότερα

Fortran και Αντικειμενοστραυής προγραμματισμός. 3ε ελόηεηα

Fortran και Αντικειμενοστραυής προγραμματισμός.  3ε ελόηεηα Fortran και Αντικειμενοστραυής προγραμματισμός www.corelab.ntua.gr/courses/fortran_naval/naval Γδάζθνληεο: Άξεο Παγνπξηδήο (pagour@cs.ntua.gr) (Δπίθνπξνο Καζεγεηήο ΣΖΜΜΥ ) Γώξα Σνύιηνπ (dsouliou@mail.ntua.gr)

Διαβάστε περισσότερα

(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.

(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W. ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τειηθή Εμέηαζε: 5 Σεπηέκβξε 6 (Δηδάζθσλ: ΑΦ Τεξδήο) ΘΕΜΑ Θεσξνύκε θβαληηθό ζύζηεκα πνπ πεξηγξάθεηαη από Φακηιηνληαλή Η, ε νπνία ζε κνξθή πίλαθα ρξεζηκνπνηώληαο ηηο ηδηνζπλαξηήζεηο, θαη

Διαβάστε περισσότερα

Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής

Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΣΟΜΟ Α Mάθημα 5: To παραγωγής σναρηήζεις κόζηοσς Η ζπλάξηεζε ζπλνιηθνύ θόζηνπο C FC VC Όπνπ FC= ην ζηαζεξό θόζηνο (ην θόζηνο γηα ηνλ ζηαζεξό παξαγσγηθό ζπληειεζηή) θαη VC= ην κεηαβιεηό

Διαβάστε περισσότερα

B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν.

B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. B-Δέλδξα Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. Δέλδξα AVL n = 2 30 = 10 9 (πεξίπνπ). 30

Διαβάστε περισσότερα

Αιγόξηζκνη Δνκή επηινγήο. Απιή Επηινγή ύλζεηε Επηινγή. Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Τ. introcsprinciples.wordpress.

Αιγόξηζκνη Δνκή επηινγήο. Απιή Επηινγή ύλζεηε Επηινγή. Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Τ. introcsprinciples.wordpress. Αιγόξηζκνη 2.2.7.3 Δνκή επηινγήο Απιή Επηινγή ύλζεηε Επηινγή Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Τ 1 Επηινγή ηελ πξάμε πνιύ ιίγα πξνβιήκαηα κπνξνύλ λα επηιπζνύλ κε ηνλ πξνεγνύκελν ηξόπν ηεο ζεηξηαθήο/αθνινπζηαθήο

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις) ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.

Διαβάστε περισσότερα

Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ

Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ Κεθάλαιο 7 Πξνζθνξά ηνπ θιάδνπ 1 Προζθορά ανηαγωνιζηικού κλάδοσ Πώο πξέπεη λα ζπλδπαζηνύλ νη απνθάζεηο πξνζθνξάο ησλ πνιιώλ επηκέξνπο επηρεηξήζεσλ ελόο αληαγσληζηηθνύ θιάδνπ γηα λα βξνύκε ηελ θακπύιε πξνζθνξάο

Διαβάστε περισσότερα

ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις

ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις ΔΛΛΗΝΙΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ Παλεπηζηεκίνπ (Διεπζεξίνπ Βεληδέινπ) 34 06 79 ΑΘΖΝΑ Τει. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Δleftheriou

Διαβάστε περισσότερα

Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)

Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access) Έρνπκε απνζεθεύζεη κηα ζπιινγή αξρείσλ ζε κηα ζπλδεδεκέλε ιίζηα, όπνπ θάζε αξρείν έρεη κηα εηηθέηα ηαπηνπνίεζεο. Μηα εθαξκνγή παξάγεη κηα αθνινπζία από αηηήκαηα πξόζβαζεο ζηα αξρεία ηεο ιίζηαο. Γηα λα

Διαβάστε περισσότερα

Κβαντικοί Υπολογισμοί. Πέκπηε Γηάιεμε

Κβαντικοί Υπολογισμοί. Πέκπηε Γηάιεμε Κβαντικοί Υπολογισμοί Πέκπηε Γηάιεμε Kπθισκαηηθό Mνληέιν Έλαο θιαζηθόο ππνινγηζηήο απνηειείηαη από αγσγνύο θαη ινγηθέο πύιεο πνπ απνηεινύλ ηνπο επεμεξγαζηέο. Σηνπο θβαληηθνύο ε πιεξνθνξία βξίζθεηαη κέζα

Διαβάστε περισσότερα

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα

Διαβάστε περισσότερα

Image J Plugin particle tracker για παρακολούθηση της κίνησης σωματιδίων

Image J Plugin particle tracker για παρακολούθηση της κίνησης σωματιδίων Image J Plugin particle tracker για παρακολούθηση της κίνησης σωματιδίων (https://weeman.inf.ethz.ch/particletracker/) Τν Plugin particle tracker κπνξεί λα αληρλεύζεη απηόκαηα ηα ζσκαηίδηα πνπ θηλνύληαη,

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ

Διαβάστε περισσότερα

ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017

ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017 α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,

Διαβάστε περισσότερα

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Σύνθεζη ηαλανηώζεων Α. Σύλζεζε δύν α.α.η ηεο ίδιας ζστνόηηηας Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Η απνκάθξπλζε

Διαβάστε περισσότερα

Κεθάιαην 20. Ελαχιστοποίηση του κόστους

Κεθάιαην 20. Ελαχιστοποίηση του κόστους Κεθάιαην 0 Ελαχιστοποίηση του κόστους Ειαρηζηνπνίεζε ηνπ θόζηνπο Μηα επηρείξεζε ειαρηζηνπνηεί ην θόζηνο ηεο αλ παξάγεη νπνηνδήπνηε δεδνκέλν επίπεδν πξντόληνο y 0 ζην κηθξόηεξν δπλαηό ζπλνιηθό θόζηνο. Τν

Διαβάστε περισσότερα

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: 1 ΟΡΙΜΟΙ MONOTONIA AKΡOTATA Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: Σν ιέγεηαη ζέζε ή ζεκείν ηνπ ηνπηθνύ κεγίζηνπ θαη ην ( ηνπηθό κέγηζην.

Διαβάστε περισσότερα

1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s Β. π 2 = 0.02km/s Γ. π 3 = 36000m/h Γ. π 4 = 144km/h.

1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s Β. π 2 = 0.02km/s Γ. π 3 = 36000m/h Γ. π 4 = 144km/h. ΦΤΙΚΗ A ΛΤΚΔΙΟΤ ΓΙΑΡΚΔΙΑ: 10min ΣΜΗΜΑ:. ONOMA:. ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΜΟΝΑΓΔ ΘΔΜΑ 1 ο ΘΔΜΑ ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΘΔΜΑ A: 1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Εισαγωγή στη C++ Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Αριθμοί κινητής υποδιαστολής (float) στη C++ (1)

Διαβάστε περισσότερα

242 - Ειζαγωγή ζηοσς Η/Υ

242 - Ειζαγωγή ζηοσς Η/Υ 1 242 - Ειζαγωγή ζηοσς Η/Υ Τμήμα Μαθημαηικών, Πανεπιζηήμιο Ιωαννίνων Ακαδημαϊκό Έηος 2015-2016 Άρηια Α.Μ. (0-2-4-6-8) 2 Βαζικές αρτές ζσζηημαηικού και δομημένοσ προγραμμαηιζμού Δηαγξάκκαηα ξνήο πξνγξάκκαηνο

Διαβάστε περισσότερα

Case Study. Παξαθάηω παξνπζηάδνπκε βήκα - βήκα κε screenshots έλα παξάδεηγκα ππνβνιήο κηαο εξγαζίαο θαη ηελ παξαγωγή ηνπ Originality Report.

Case Study. Παξαθάηω παξνπζηάδνπκε βήκα - βήκα κε screenshots έλα παξάδεηγκα ππνβνιήο κηαο εξγαζίαο θαη ηελ παξαγωγή ηνπ Originality Report. Case Study Παξαθάηω παξνπζηάδνπκε βήκα - βήκα κε screenshots έλα παξάδεηγκα ππνβνιήο κηαο εξγαζίαο θαη ηελ παξαγωγή ηνπ Originality Report. Βήκα 1 ο : Login ζηο Turnitin. Κάλεηε είζνδν ζην Turnitin κε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 204-205 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/204 A ΟΜΑΓΑ Οδηγία: Να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό κάθε μιας από ηις παρακάηφ ερφηήζεις Α.-Α.8 και

Διαβάστε περισσότερα

Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ

Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ Επωηήζειρ Σωζηού Λάθοςρ ηων πνελλδικών εξεηάζεων 2-27 Σςνπηήζειρ Η γξθηθή πξάζηζε ηεο ζπλάξηεζεο f είλη ζπκκεηξηθή, σο πξνο ηνλ άμνλ, ηεο γξθηθήο πξάζηζεο ηεο f 2 Αλ f, g είλη δύν ζπλξηήζεηο κε πεδί νξηζκνύ

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ (Δλδεηθηηθέο Απαληήζεηο) ΘΔΜΑ Α Α1. α. Σωζηό β. Λάζνο

Διαβάστε περισσότερα

1 Είζοδορ ζηο Σύζηημα ΣΔΕΔ ή BPMS

1 Είζοδορ ζηο Σύζηημα ΣΔΕΔ ή BPMS ΟΤΑ Επισειπηζιακή Νοημοζύνη: Οδεγίεο πξνο ηνπο εθπαηδεπόκελνπο γηα ηε ζύλδεζε κε ην ύζηεκα Γηαρείξηζεο Δπηρεηξεζηαθώλ Γηαδηθαζηώλ γηα ηελ εθηέιεζε ηωλ Πξαθηηθώλ Αζθήζεωλ ηωλ ππν(δλνηήηωλ) Bc1.1.4, Bc1.1.5,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΦΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα: Πιθανόηηηες και Σηαηιζηική Διδάζκων: Σ. Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΦΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα: Πιθανόηηηες και Σηαηιζηική Διδάζκων: Σ. Γ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Τρίπολη 06/07/2007 Τα θέμαηα 1-5 είναι σποτρεωηικά και έτοσν ηοσς ίδιοσς (ίζοσς) ζσνηελεζηές βαρύηηηας Το θέμα 6 δίνει επιπλέον βαθμούς με βαρύηηηα 10% για βεληίωζη ηης βαθμολογίας ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP

ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ηότοι εργαζηηρίοσ ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηνύλ βαζηθέο ιεηηνπξγίεο ησλ Windows XP πνπ ζρεηίδνληαη

Διαβάστε περισσότερα

Α Καθοπιζμόρ απμοδιοηήηυν - 1 επικεθαλήρ 1. Γ Αςηοτία ζηη ζήπαγγα Β 1 επικεθαλήρ εξ. ζηελεσορ. Ε Ποζοηική ανάλςζη Γ 3 εξ.

Α Καθοπιζμόρ απμοδιοηήηυν - 1 επικεθαλήρ 1. Γ Αςηοτία ζηη ζήπαγγα Β 1 επικεθαλήρ εξ. ζηελεσορ. Ε Ποζοηική ανάλςζη Γ 3 εξ. Άσκηση cash flow tunnel Δίζηε επικεθαλήρ ηηρ ομάδαρ διασείπιζηρ κινδύνος πος αζσολείηαι με ηη λειηοςπγική ανάλςζη κινδύνυν μεγάληρ εηαιπείαρ διασείπιζηρ αςηοκινηηοδπόμυν. Έσεηε να παπαδώζεηε μελέηη πος

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ: έζησ έλαο κηγαδηθόο αξηζκόο. αληίζηξνθνο ηνπ κηγαδηθνύ αξηζκνύ a b είλαη ν αξηζκόο Παπάδειγμα: έζησ.αληίζηξνθνο ηνπ αξηζκνύ : Μέηπο μιγαδικού απιθμού: αλ κέηξν δηαλύζκαηνο OM. b ή απόιπηε

Διαβάστε περισσότερα

ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΑ ΤΛΙΚΩΝ

ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΑ ΤΛΙΚΩΝ ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ Ι ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΑ ΤΛΙΚΩΝ Άδειεσ Χρήςησ -Το παρόν εκπαιδευτικό υλικό υπόκειται ςτην άδεια χρήςησ Creative Commons και ειδικότερα Αναφορά - Μη εμπορική

Διαβάστε περισσότερα

Διάρηζηα Δπηθαιύπηνληα Γέλδξα

Διάρηζηα Δπηθαιύπηνληα Γέλδξα Διάρηζηα Δπηθαιύπηνληα Γέλδξα Οξηζκόο Δύξεζε Δπηθαιύπηνληνο Γέλδξνπ κε Διάρηζην Βάξνο, δειαδή ειάρηζην άζξνηζκα βαξώλ αθκώλ Αιγόξηζκνη Prim, Kruskal, Baruvka Βαζίδνληαη ζηελ ηερληθή ηεο Απιεζηίαο Η νξζόηεηα

Διαβάστε περισσότερα

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x) ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΤΔΡΗΓΟΝΙΚΩΝ ΒΛΑΒΩΝ ΚΑΤΑ ΤΑ ICDAS II ΚΡΙΤΗΡΙΑ ΜΔ ΒΑΣΗ ΤΗ ΚΛΙΝΙΚΗ ΔΞΔΤΑΣΗ

ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΤΔΡΗΓΟΝΙΚΩΝ ΒΛΑΒΩΝ ΚΑΤΑ ΤΑ ICDAS II ΚΡΙΤΗΡΙΑ ΜΔ ΒΑΣΗ ΤΗ ΚΛΙΝΙΚΗ ΔΞΔΤΑΣΗ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΤΔΡΗΓΟΝΙΚΩΝ ΒΛΑΒΩΝ ΚΑΤΑ ΤΑ ICDAS II ΚΡΙΤΗΡΙΑ ΜΔ ΒΑΣΗ ΤΗ ΚΛΙΝΙΚΗ ΔΞΔΤΑΣΗ Κιηληθή ηαμηλόκεζε ηνπ βαζκνύ ηεξεδνληθήο βιάβεο ηωλ νπώλ θαη ζρηζκώλ καζεηηθώλ επηθαλεηώλ θαηά ICDAS 1 νο Βαζκόο

Διαβάστε περισσότερα

Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή. Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε.

Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή. Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε. Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε. Παξάκεηξνη πξνο αμηνιόγεζε Ννκνζεηηθή ζσξάθηζε Κνηλόο Σύιινγνο Ακνηβή Καηαγγειία/Λύζε

Διαβάστε περισσότερα

Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ

Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ Σήκαηα 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) Σήκαηα Οξηζκόο ζήκαηνο Ταμηλόκεζε ζεκάησλ Σεηξέο Fourier Μεηαζρεκαηηζκόο Fourier Σπλέιημε Σπζρέηηζε θαη Φαζκαηηθή Ππθλόηεηα 2 Οξηζκόο Σήκαηνο

Διαβάστε περισσότερα

Δξγαιεία Καηαζθεπέο 1 Σάμε Σ Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ. ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Φαθόο κε ζσιήλα.

Δξγαιεία Καηαζθεπέο 1 Σάμε Σ Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ. ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Φαθόο κε ζσιήλα. Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Φαθόο κε ζσιήλα Γηαθξάγκαηα Δξγαιεία Καηαζθεπέο 2 Η θαηαζθεπή πεξηγξάθεηαη ζηελ αληίζηνηρε ελόηεηα

Διαβάστε περισσότερα

ΑΝΤΗΛΙΑΚΑ. Η Μηκή ζθέθηεθε έλαλ ηξόπν, γηα λα ζπγθξίλεη κεξηθά δηαθνξεηηθά αληειηαθά πξντόληα. Απηή θαη ν Νηίλνο ζπλέιεμαλ ηα αθόινπζα πιηθά:

ΑΝΤΗΛΙΑΚΑ. Η Μηκή ζθέθηεθε έλαλ ηξόπν, γηα λα ζπγθξίλεη κεξηθά δηαθνξεηηθά αληειηαθά πξντόληα. Απηή θαη ν Νηίλνο ζπλέιεμαλ ηα αθόινπζα πιηθά: ΑΝΤΗΛΙΑΚΑ Η Μηκή θαη ν Νηίλνο αλαξσηήζεθαλ πνην αληειηαθό πξντόλ παξέρεη ηελ θαιύηεξε πξνζηαζία ζην δέξκα ηνπο. Τα αληειηαθά πξντόληα έρνπλ έλα δείθηε αληειηαθήο πξνζηαζίαο (SPF), ν νπνίνο δείρλεη πόζν

Διαβάστε περισσότερα

Intel Accelerate Your Code

Intel Accelerate Your Code Intel Accelerate Your Code Semester Project at Parallel & Distributed systems Dimitrios S. Tsiktsiris University of Western Macedonia Department of Informatics & Telecommunications Engineering Kozani,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ

ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΘΔΜΑ Α Α1. α. Σ β. Σ γ. Λ δ. Λ ε. Λ ζη. Σ Α2. Γ Α3. 1. γ 2. ε 3. δ 4. α Β1. ΘΔΜΑ Β Οη ηειηθνί ππνινγηζηέο παίξλνπλ απνθάζεηο δξνκνιόγεζεο κόλν γηα ηα δηθά ηνπο απηνδύλακα

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β )

ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΗΜΕΡΟΜΗΝΙΑ: /0/03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΔΜΑ Α ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑΣΩΝ Α.

Διαβάστε περισσότερα

Δομή επανάλητηρ Ενηολή Όζο

Δομή επανάλητηρ Ενηολή Όζο Αιγόξηζκνη 2.2.7.4 Δομή επανάλητηρ Ενηολή Όζο Δηζαγσγή ζηηο Αξρέο ηεο Δπηζηήκεο ησλ Η/Υ 1 Λίγνη αιγόξηζκνη ρξεζηκνπνηνύλ κόλν ηηο δνκέο αθνινπζίαο θαη επηινγήο. Σηα ξεαιηζηηθά πξνβιήκαηα ρξεηάδεηαη ζπλήζσο

Διαβάστε περισσότερα

Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε.

Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε. ΑΝΟΙΓΜΑ ΝΔΑ ΥΡΗΗ 1. Γεκηνπξγείηε ηε λέα ρξήζε από ηελ επηινγή «Παξάκεηξνη/Παξάκεηξνη Δηαηξίαο/Γηαρείξηζε Δηαηξηώλ». Πιεθηξνινγείηε ηνλ θσδηθό ηεο εηαηξίαο ζαο θαη παηάηε Enter. Σηελ έλδεημε «Υξήζεηο» παηάηε

Διαβάστε περισσότερα

επαξθήο ζηαηηζηηθή ζπλάξηεζε, β) Έζησ η.δ. είλαη αλεμάξηεην ηνπ. Άξα πξόθεηηαη γηα 1 n

επαξθήο ζηαηηζηηθή ζπλάξηεζε, β) Έζησ η.δ. είλαη αλεμάξηεην ηνπ. Άξα πξόθεηηαη γηα 1 n . ΜΑΚΡΑ ΣΟΑ 7 & ΕΘΝ. ΑΝΣΙΣΑΕΩ (ΠΕΙΡΑΙΑ),. ΔΕΛΗΓΙΩΡΓΗ 06 Α (ΠΕΙΡΑΙΑ), 3. ΠΤΡΓΟ ΑΘΗΝΩΝ, ΑΜΠΕΛΟΚΗΠΟΙ (ΑΘΗΝΑ). ΣΗΛ 040970,,, www.vtal.gr Επιλεγμένες Ασκήσεις. α) Έζησ η.δ. Ep. Να δεηρζεί όηη ε T,..., ~, 0

Διαβάστε περισσότερα