Λύσεις 1 ης Σειράς Ασκήσεων
|
|
- Ἰουλία Ρέντης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Λύσεις 1 ης Σειράς Ασκήσεων Άσκηση 1 α) p q r (p s) ((s t) t) 1. p q r προϋπόθεση 2. p s προσωρινή υπόθεση 3. s t προσωρινή υπόθεση 4. p e 1 5. s ΜP 2,4 6. t ΜP 3,5 7. (s t) t i 3, 6 8. (p s) ((s t) t) i 2, 7 β) p (q r) (q r), s, s p, t q, u t, u r q r 1. p (q r) (q r) προϋπόθεση 2. s προϋπόθεση 3. s p προϋπόθεση 4. t q προϋπόθεση 5. u t προϋπόθεση 6. u r προϋπόθεση 7. p MP 3, 2 8. (q r) (q r) MP 1 9. (q r) e q προσωρινή υπόθεση r προσωρινή υπόθεση 11. r προσωρινή υπόθεση r i q r i 10,11 u MT 6, (q r) e 8 u e e 13,12 t MP 5, r i q MP 4, q r i 10,11 q r i 10, (q r) e e 23, q r e q r e 9, 10-19
2 γ) p (q 1 q 2 ), q 1 q 2 p 1. p (q 1 q 2 ) προϋπόθεση 2. q 1 q 2 προϋπόθεση 3. p προσωρινή υπόθεση 4. q 1 q 2 MP 1,3 5. q 1 προσωρινή υπόθεση q 2 προσωρινή υπόθεση 6. q 1 e 2 q 2 e 2 7. e 5,6 e 5,6 8. e 4, p i 3-8 δ) r (q p) r (p q) 1. r (q p) προϋπόθεση 2. r r LEM 3. r προσωρινή υπόθεση r προσωρινή υπόθεση 4. r (p q) i 4 q p MP 1,3 5. p προσωρινή υπόθεση 6. p e 4 7. e 5,6 8. q e 7 9. p q i r (p q) i r (p q) e 2, 3-10
3 Άσκηση 2 α) p q r (p s) (s t) Η συνεπαγωγή είναι ορθή αν η πρόταση (p s) (s t) είναι ορθή σε κάθε γραμμή του πίνακα αληθείας που ικανοποιείται η προϋπόθεση p q r. Προσέξτε ότι το r δεν επηρεάζει την πρόταση μας και ότι για να ικανοποιείται η προϋπόθεση μας πρέπει να είναι True. Επομένως λαμβάνουμε υπόψη μόνο τις περιπτώσεις που το r είναι True. p q s t p q r p s s t (p s) (s t) T T T T T T T T T T T F T T F F T T F T T F T T T T F F T F T T T F T T F T T T T F T F F T F F T F F T F F T T T F F F F F T T F T T T F T T T F T T F F T F F F T F T F T T T F T F F F T T T F F T T F T T T F F T F F T F F F F F T F T T T F F F F F T T T Ο πιο πάνω πίνακας παρουσιάζει τον πίνακα αληθείας της προϋπόθεσης και του συμπεράσματος του σημασιολογικού επακόλουθου. Παρατηρούμε ότι σε μια από αυτές τις γραμμές, το συμπέρασμα παίρνει την τιμή False (ενώ η προϋπόθεση είναι True). Συνεπώς, η συνεπαγωγή δεν είναι ορθή. β) (p q) r, r p, q (p r) r q Η συνεπαγωγή είναι ορθή αν η πρόταση r q είναι ορθή σε κάθε γραμμή του πίνακα αληθείας που ικανοποιούνται οι τρεις προϋποθέσεις (p q) r, r p και q (p r).
4 p q r p q (p q) r r p q (p r) r q T T T T F T T T T T F T T F T T T F T T F T T T T F F T T F T F F T T T F T T T F T F T T T T T F F T F F T T T F F F F F T T F Από τον πίνακα αλήθειας προκύπτει ότι η συνεπαγωγή είναι ορθή Άσκηση 3 α) Σύνολο { } Για να δείξουμε ότι το σύνολο τελεστών { } είναι επαρκές αρκεί να δείξουμε ότι οι τελεστές,,, και μπορούν να αντικατασταθούν μέσω ισοδύναμων προτάσεων που χρησιμοποιούν μόνο τελεστές από το σύνολο. Οι ζητούμενες ισοδυναμίες είναι: 1. p p p 2. p q ( p q) (p q) (p q) 3. p q ( p q) (p p) (q q) (p p) (q q) (p p) (q q) (p p) (q q) 4. p q p q (p q) p (q q) p (q q) p (q q) p (q q) Ισοδυναμία 1: Ισοδυναμία 2: p p p q p q p q (p q) (p q) T T F F F T Ισοδυναμία 3: p q p p q q (p p) (q q) (p p) (q q) (p p) (q q) T T F T T F T F F T T F F F T F (p p) (q q) (p p) (q q) (p p) (q q) (p p) (q q) T T F F T F T T F F T T F T F T T F T F T F F T T F T F
5 Ισοδυναμία 4: p q q q p (q q) p (q q) p (q q) p (q q) p (q q) p (q q) p (q q) T T F T F T T F T F T F F T F T F T F F T T F T (β) Θα αποδείξουμε ότι είναι αδύνατο να κατασκευάσουμε τον τελεστή χρησιμοποιώντας τους τελεστές,. Συγκεκριμένα θα δείξουμε ότι οποιαδήποτε πρόταση φ που περιέχει μια ατομική πρόταση p και τους τελεστές, είναι τέτοια ώστε αν [[p]] = T τότε [[φ]] = Τ. Επομένως φ p. H απόδειξη γίνεται με επαγωγή στον αριθμό των τελεστών της πρότασης φ. - Αν ο αριθμός των τελεστών της φ είναι 0, τότε φ = p και προφανώς φ p. - Έστω ότι η πρόταση ισχύει για κάθε πρόταση με λιγότερους από k τελεστές. - Ας υποθέσουμε ότι η πρόταση φ έχει ακριβώς k τελεστές. Υπάρχουν οι ακόλουθες περιπτώσεις. φ = φ 1 φ 2. Ισχύει ότι οι προτάσεις φ 1 και φ 2 έχουν λιγότερους από k τελεστές, επομένως, από την υπόθεση της επαγωγής, για [[p]] = T, [[φ 1 ]] = T και [[φ 2 ]] = T. Συνεπώς, [[φ]] = Τ Τ = Τ. φ = φ 1 φ 2. Ισχύει ότι οι προτάσεις φ 1 και φ 2 έχουν λιγότερους από k τελεστές, επομένως, από την υπόθεση της επαγωγής, για [[p]] = T, [[φ 1 ]] = T και [[φ 2 ]] = T. Συνεπώς, [[φ]] = Τ Τ = Τ. Το ζητούμενο έπεται. Άσκηση 4 α) (s p) (p q s r) (p s q) (T s) Βήμα 1 Μάρκαρε όλα τα s ( s p) (p q s r) (p s q) (T s ) Βήμα 2 Μάρκαρε όλα τα p ( s p ) ( p q s r) ( p s q) (T s ) Βήμα 3 Μάρκαρε όλα τα q ( s p ) ( p q s r) ( p s q ) (T s ) Βήμα 4 Μάρκαρε όλα τα r ( s p ) ( p q s r ) ( p s q ) (T s ) Βήμα 5 Επέστρεψε ότι η πρόταση είναι ικανοποιήσιμη.
6 Ανάθεση τιμών: Αφού έχουν μαρκαριστεί όλες οι ατομικές προτάσεις, η ανάθεση τιμών που προκύπτει από την εκτέλεση του αλγόριθμο είναι η [[s]] = [[p]] = [[q]] = [[r]] = Τ β) (p q s ) (s p) (T s) (p s q) Βήμα 1 Μάρκαρε όλα τα s (p q s ) ( s p) (T s ) (p s q) Βήμα 2 Μάρκαρε όλα τα p ( p q s ) ( s p ) (T s ) ( p s q) Βήμα 3 Μάρκαρε όλα τα q ( p q s ) ( s p ) (T s ) ( p s q ) Βήμα 4 Επέστρεψε ότι η πρόταση είναι μη ικανοποιήσιμη. Άσκηση 5 Κανόνας εισαγωγής: (,, ) ifelse i Κανόνες εξαγωγής:, (,, ) ifelse e 1, (,, ) ifelse e 3 Ακολουθεί η απόδειξη του ζητούμενου επακόλουθου: s, q, ifelse(p, q r, s r) r 1. s προϋπόθεση 2. q προϋπόθεση 3. ifelse(p, q r, s r) προϋπόθεση 4. q r προσωρινή υπόθεση 5. q e 4 6. e 23,24 7. (q r) i 4-6, (,, ), (,, ) ifelse e 2 ifelse e 4
7 8. p ifelse e 3 3,7 9. s r ifelse e 2 3,8 10. s προσωρινή υπόθεση r προσωρινή υπόθεση 11. e 1, r e r e 9, Άσκηση 7 φ = [((p q) r) (r s)] ( t s) Impl_Free(φ) = Impl_Free(((p q) r) (r s)) Impl_Free ( t s) = [Impl_Free((p q) r) Impl_Free(r s)] ( Impl_Free( t) Impl_Free(s)) = [ Impl_Free(p q) Impl_Free(r) Impl_Free(r) Impl_Free( s)] ( t s) = [ (Impl_Free(p) Impl_Free(q)) r r s] ( t s) = [ (p q) r r s] ( t s) NNF( ( (p q) r r s) ( t s)) = NNF( ( (p q) r r s)) (NNF( t) NNF(s)) = NNF( (p q) r r s)) (NNF(t) s) = [NNF( (p q)) NNF( r) NNF( r) NNF( s)] (t s) = [NNF(p q) r NNF(r) NNF(s)] (t s) = [NNF(p) NNF(q) r r s] (t s) =(p q r r s) (t s) CNF_rec((p q r r s) (t s)) = Distr(CNF_rec(p q r r s), CNF_rec(t s)) =Distr((CNF_rec(p) CNF_rec(q) CNF_rec( r) CNF_rec(r) CNF_rec(s)), Distr(CNF_rec(t), CNF_rec(s)) = Distr((p q r r s), Distr(t, s)) = Distr((p q r r s), t s) = Distr(p, t s) Distr(q, t s) Distr( r, t s) Distr(r, t s) Distr(s, t s) = (p t s) (q t s) ( r t s) (r t s) (s t s) Η πρόταση δεν είναι έγκυρη.
Λύσεις Σειράς Ασκήσεων 1
Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 p q r p (q r) (p q) p q r ( r p q) T T T T F T T T T F F F F T T F T T T T T T F F T T T T F T T T F T T F T F T F T T F F T T F T F F F F T F T T Ο πιο πάνω πίνακας παρουσιάζει
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σκοπεύετε να διοργανώσετε ένα πάρτι για τους συμφοιτητές σας κάτω από τους πιο κάτω περιορισμούς. Π1. Η Μαίρη δεν μπορεί να έρθει. Π2. Ο Ηλίας και η Αντιγόνη είτε θα
Διαβάστε περισσότεραΦροντιστήριο 2 Λύσεις
Φροντιστήριο 2 Λύσεις Άσκηση 1 1. p ( p r) προϋπόθεση 2. r προϋπόθεση 3. q προσωρινή υπόθεση 4. p προσωρινή υπόθεση 5. p r ΜP 6. p προσωρινή υπόθεση r προσωρινή υπόθεση 7. i 4, 6 8. r e 9. r e 5, 8, 6
Διαβάστε περισσότεραΠροτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
Διαβάστε περισσότεραΛύσεις Σειράς Ασκήσεων 1
Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Να διατυπώσετε τον πιο κάτω συλλογισμό στον Προτασιακό Λογισμό και να τον αποδείξετε χρησιμοποιώντας τη Μέθοδο της Επίλυσης. Δηλαδή, να δείξετε ότι αν ισχύουν οι πέντε
Διαβάστε περισσότεραΛύσεις 1 ης Σειράς Ασκήσεων
Λύσεις 1 ης Σειράς Ασκήσεων Άσκηση 1 Έστω οι ατομικές προτάσεις A 1 = H Αντιγόνη κέρδισε τον αγώνα, A 3 = H Αντιγόνη πήρε την τρίτη θέση, Β 2 = Ο Βίκτορας πήρε την δεύτερη θέση, Γ 3 = Ο Γιάννης πήρε την
Διαβάστε περισσότεραΠροτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 O πιο κάτω συλλογισμός (αποτελεί μικρή παραλλαγή συλλογισμού που) αποδίδεται στον Samuel Clarke και προέρχεται από την εργασία του Demonstration of the Being and Attributes
Διαβάστε περισσότεραΑσκήσεις Επανάληψης Λύσεις
Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις Να αποφασίσετε κατά πόσο οι πιο κάτω προδιαγραφές είναι ορθές σύμφωνα με την έννοια της μερικής ορθότητας και την έννοια της ολικής ορθότητας. Να αιτιολογήσετε σύντομα
Διαβάστε περισσότεραΚατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην
Διαβάστε περισσότεραΚατ οίκον Εργασία 2 Λύσεις
Κατ οίκον Εργασία 2 Λύσεις Άσκηση 1 Ακολουθεί η διατύπωση των προτάσεων στον προτασιακό λογισμό. (α) Κάθε ενεργός χρήστης είναι είτε διαχειριστής είτε κανονικός χρήστης του συστήματος. x [Ενεργός (x) Διαχειριστής(x)
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13
Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13 Άσκηση 1 (20 μονάδες) Οι ιδιότητες διατυπώνοντας στην PLTL ως εξής: (α) Αν ο καταχωρητής Κ 1 κάποια στιγμή πάρει την τιμή 1 θα διατηρήσει την τιμή αυτή
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
ΕΠΛ664: Ανάλυση και Επαλθευση Συστημάτων Τμμα Πληροφορικς Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC0, PC1, (program counters) οι οποίες παίρνουν ως τιμές ονόματα
Διαβάστε περισσότεραΛύσεις Σειράς Ασκήσεων 2
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 2 Ακολουθεί η διατύπωση των προτάσεων στον Κατηγορηματικό Λογισμό. (α) Δεν υπάρχουν δύο διαφορετικές πτήσεις με τον ίδιο αριθμό. x 1, d 1, a 1, s 1, t 1, x 2, d 2, a 2,
Διαβάστε περισσότεραΕπανάληψη. ΗΥ-180 Spring 2019
Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις
Διαβάστε περισσότεραΛύσεις Σειράς Ασκήσεων 2
Λύσεις Σειράς Ασκήσεων 2 Άσκηση 1 N φιλόσοφοι κάθονται γύρω από ένα τραπέζι με N καρέκλες, N πιάτα και N πιρούνια. Όταν κάποιος φιλόσοφος πεινάσει παίρνει τα δύο πιρούνια που βρίσκονται δίπλα από το πιάτο
Διαβάστε περισσότεραΛύσεις Σειράς Ασκήσεων 4
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 Θεωρήστε το σύνολο των ατομικών προτάσεων ΑΡ = {α, π, ε} που αντιστοιχούν στις ενέργειες αποστολής μηνύματος, παραλαβής μηνύματος και επιστροφής αποτελέσματος που εκτελούνται
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης
Διαβάστε περισσότεραΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει
Διαβάστε περισσότεραx < y ή x = y ή y < x.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 011-1 Τμήμα Μαθηματικών Διδάσκων: Χ.Κουρουνιώτης Μ8 ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ Φυλλάδιο 1 Ανισότητες Οι πραγματικοί αριθμοί είναι διατεταγμένοι. Ενισχύουμε αυτήν την ιδέα με
Διαβάστε περισσότεραΣειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε
Διαβάστε περισσότεραHY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5
HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 Α) ΘΕΩΡΙΑ Η Μορφολογική Παραγωγή ανήκει στα συστήματα παραγωγής, δηλαδή σε αυτά που παράγουν το συμπέρασμα με χρήση συντακτικών κανόνων λογισμού. Η
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΛύσεις 2 ης Σειράς Ασκήσεων
Λύσεις 2 ης Σειράς Ασκήσεων Άσκηση 1 Στην άσκηση αυτή σας ζητείται να διατυπώσετε στον Κατηγορηματικό Λογισμό ένα σύνολο από απαιτήσεις/προτάσεις που σχετίζονται με ένα κοινωνικό δίκτυο χρησιμοποιώντας
Διαβάστε περισσότεραΜορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Σκελετοί Λύσεων Ημερομηνία : Σάββατο, 27 Οκτωβρίου 2012 Διάρκεια : 11:00 13:00 Διδάσκουσα : Άννα Φιλίππου Άσκηση
Διαβάστε περισσότεραΥποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).
Κανόνας Ανάλυσης 1 Μυθικός Αθάνατος 3 Μυθικός Θηλαστικό ------------------------------ 7 Αθάνατος Θηλαστικό 4 Αθάνατος έχεικέρας -------------------------------- 8 Θηλαστικό έχεικέρας 5 Θηλαστικό έχεικέρας
Διαβάστε περισσότεραΜορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Διαβάστε περισσότεραΑναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση
Διαβάστε περισσότεραΠεριεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Λύσεις Άσκηση 1 [30 μονάδες] Να αποδείξετε τα πιο κάτω λογικά επακόλουθα χρησιμοποιώντας τα συστήματα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Τετάρτη 24 Οκτωβρίου, 2018 Διάρκεια : 12:00 13:30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο: ΠΡΟΧΕΙΡΕΣ
Διαβάστε περισσότεραΛογικός Προγραμματισμός
Λογικός Προγραμματισμός Αναπαράσταση γνώσης: Λογικό Σύστημα. Μηχανισμός επεξεργασίας γνώσης: εξαγωγή συμπεράσματος. Υπολογισμός: Απόδειξη θεωρήματος (το συμπέρασμα ενδιαφέροντος) από αξιώματα (γνώση).
Διαβάστε περισσότερα. (iii) Μόνο οι εκφράσεις που σχηµατίζονται από τα i,ii είναι προτασιακοί τύποι.
Boolean Logic Ορισµός: Προτασιακοί τύποι είναι οι εκφράσεις που ορίζονται επαγωγικά ως εξής: (i) Τα σύµβολα προτάσεων είναι προτασιακοί τύποι. (ii) Αν φ και ψ είναι προτασιακοί τύποι τότε οι ( φ ψ ),(
Διαβάστε περισσότεραΣτοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις (Μαθηματική)
Διαβάστε περισσότεραΔώστε έναν επαγωγικό ορισμό για το παραπάνω σύνολο παραστάσεων.
Εισαγωγή στη Λογική Α Τάξης Σ. Κοσμαδάκης Συντακτικό τύπων Α τάξης Α Θεωρούμε δεδομένο ένα λεξιλόγιο Λ, αποτελούμενο από (1) ένα σύνολο συμβόλων για σχέσεις, { R, S,... } (2) ένα σύνολο συμβόλων για συναρτήσεις,
Διαβάστε περισσότεραΜορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Διαβάστε περισσότεραΚεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων
Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή Τα προγράμματα μιας (κλασικής) γλώσσας προγραμματισμού
Διαβάστε περισσότεραΛύσεις Σειράς Ασκήσεων 5
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 5 Να υπολογίσετε τις ασθενέστερες προσυνθήκες έτσι ώστε οι πιο κάτω προδιαγραφές να είναι ορθές σύμφωνα (i) με την έννοια της μερικής ορθότητας και (ii) με την έννοια της
Διαβάστε περισσότερα1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC 1, PC 2, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. bool y 1
Διαβάστε περισσότεραΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Λύσεις
Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Θεωρήστε την ακόλουθη δομή Kripke. {entry} 0 1 {active} 2 {active, request} 3 {active, response} Να διατυπώσετε τις πιο κάτω προτάσεις στην LTL (αν αυτό είναι εφικτό)
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ME ΠΟΛΛΕΣ ΚΑΙ ΕΓΚΑΡΔΙΕΣ ΕΥΧΕΣ ΓΙΑ ΚΑΛΕΣ ΓΙΟΡΤΕΣ, ΥΓΕΙΑ ΚΑΙ ΠΡΟΟΔΟ ΣΕ ΕΣΑΣ ΚΑΙ ΤΙΣ ΟΙΚΟΓΕΝΕΙΕΣ ΣΑΣ Φυλλάδιο 2: Σχεσιακή Λογική ΔΕΚΕΜΒΡΙΟΣ 2006 ΠΑΡΑΔΟΣΗ: 12/11/2006
Διαβάστε περισσότεραΣτοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις
Διαβάστε περισσότεραf x 0 για κάθε x και f 1
06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC 0, PC 1, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. P[0] P[1]
Διαβάστε περισσότεραΛογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης
Διαβάστε περισσότεραNP-complete problems. IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH. NP-complete problems 1 / 30
NP-complete problems IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH Καλογερόπουλος Παναγιώτης (ΜΠΛΑ) NP-complete problems 1 / 30 Independent Set is NP-complete Ορισμός. Εστω
Διαβάστε περισσότεραΛογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης
Λογική Προτασιακή Λογική Λογική Πρώτης Τάξης Λογική (Logic) Αναλογίες διαδικασίας επίλυσης προβλημάτων υπολογισμού και προβλημάτων νοημοσύνης: Πρόβλημα υπολογισμού 1. Επινόηση του αλγορίθμου 2. Επιλογή
Διαβάστε περισσότεραΣτοιχεία προτασιακής λογικής
Σ. Κοσμαδάκης Στοιχεία προτασιακής λογικής Λογικές πράξεις and, or, not Για οποιεσδήποτε τιμές αλήθειας s, t στο σύνολο {true, false}, οι γνωστές πράξεις s and t, s or t, not s δίνουν αποτελέσματα στο
Διαβάστε περισσότεραΑσκήσεις μελέτης της 8 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής
Διαβάστε περισσότεραΒασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF
Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2018 Κρεατσούλας
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC i, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. Process P i :
Διαβάστε περισσότεραΜαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Διαβάστε περισσότεραΣειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Φυλλάδιο 1: Προτασιακή Λογική ΟΚΤΩΒΡΙΟΣ 2006 1. Ικανοποιησιμότητα Αποφασίστε αν οι παρακάτω προτάσεις είναι ταυτολογίες, ικανοποιήσιμες ή μη-ικανοποιήσιμες
Διαβάστε περισσότεραibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Διαβάστε περισσότερα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Πέμπτη, 30 Οκτωβρίου 2014 Διάρκεια : 10:30 12.00 Διδάσκουσα : Άννα Φιλίππου ΠΡΟΤΥΠΕΣ ΛΥΣΕΙΣ Οδηγίες:
Διαβάστε περισσότεραΜαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Διαβάστε περισσότεραΛογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Δευτέρα 2 Νοεμβρίου 2015 Διάρκεια : 10:30 12:00 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο: Αριθμός
Διαβάστε περισσότεραm + s + q r + n + q p + s + n, P Q R P Q P R Q R F G
Λύσεις Θεμάτων Θεμελίων των Μαθηματικών 1. Εστω A, B, C τυχόντα σύνολα. Να δειχθεί ότι A (B C) (A B) (A C). Απόδειξη. Εστω x τυχαίο στοιχείο του A (B C). Εξ ορισμού, το x ανήκει σε ακριβώς ένα από τα A,
Διαβάστε περισσότεραΣυνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF 1 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 15/02/2018 Κρεατσούλας Κωνσταντίνος Ασυνεπές σύνολο
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΣυνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF 1 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 15/02/2018 Κρεατσούλας Κωνσταντίνος Ασυνεπές σύνολο
Διαβάστε περισσότεραΑνάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)
Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες
Διαβάστε περισσότεραΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες βασισμένοι
Διαβάστε περισσότεραΠροτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος
Προτασιακή Λογική (Propositional Logic) Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος - 2015 Λογική Λογική είναι οι κανόνες που διέπουν τη σκέψη. Η λογική αφορά τη μελέτη των διαδικασιών
Διαβάστε περισσότεραa n = 3 n a n+1 = 3 a n, a 0 = 1
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΚεφάλαιο 4 Σημασιολογία μιας Απλής Προστακτικής Γλώσσας
Κεφάλαιο 4 Σημασιολογία μιας Απλής Προστακτικής Γλώσσας Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή - 1 Μία κλασσική γλώσσα προγραμματισμού αποτελείται από: Εκφράσεις (των
Διαβάστε περισσότεραF 5 = (F n, F n+1 ) = 1.
Λύσεις Θεμάτων Θεωρίας Αριθμών 1. (α) Να δειχθεί ότι ο πέμπτος αριθμός της μορφής Fermat, δηλαδή ο F 5 2 25 + 1 διαιρείται από το 641. (β) Εστω F n η ακολουθία των αριθμών Fermat, δηλαδή F n 2 2n + 1,
Διαβάστε περισσότεραΒασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF
Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 3/3/2016 Κατερίνα Δημητράκη
Διαβάστε περισσότεραΜαθηματική Λογική (προπτυχιακό) Εξέταση Ιανουαρίου 2018 Σελ. 1 από 5
Μαθηματική Λογική (προπτυχιακό) Εξέταση Ιανουαρίου 2018 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις
Διαβάστε περισσότεραp p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q
Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων
Διαβάστε περισσότεραf(t) = (1 t)a + tb. f(n) =
Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία
Διαβάστε περισσότεραΣημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης
Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................
Διαβάστε περισσότεραΕπαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα
ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα Επαγωγή για άκυκλα συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη
Διαβάστε περισσότεραΛύσεις Σειράς Ασκήσεων 4
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 i. FG φ GF ψ G (φ U (ψ φ)) Έστω δομή Μ και w κάποιο μονοπάτι της δομής. Θα δείξουμε ότι w FG φ GF ψ αν και μόνο αν w G (φ U (ψ φ)) Ξεκινώντας με το αριστερό σκέλος έχουμε:
Διαβάστε περισσότεραΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)
ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 1 η Εργασία: Γενική Εικόνα Πολύ καλή εικόνα με εξαιρετική βαθμολογία
Διαβάστε περισσότεραΕπίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα
Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό
Διαβάστε περισσότεραK15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού
Διαβάστε περισσότεραf(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).
Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:
Διαβάστε περισσότεραΑναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης ναπαράσταση γνώσης
Διαβάστε περισσότεραψ φ2 = k χ φ2 = 4k χ φ1 = χ φ1 + χ φ2 + 3 = 4(k 1 + k 2 + 1) + 1 ψ φ1 = ψ φ1 + χ φ2 = k k = (k 1 + k 2 + 1) + 1
Ασκήσεις στο μάθημα της Λογικής 15 Οκτωβρίου 2015 Άσκηση 1. Να δειχτεί ότι δεν υπάρχουν τύποι μήκους 2,3,6 αλλά κάθε άλλο (θετικό ακέραιο) μήκος είναι δυνατό (άσκηση 2, σελίδα 39) Απόδειξη. Δείχνουμε πρώτα
Διαβάστε περισσότεραΣειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι
Διαβάστε περισσότεραΣειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο
Διαβάστε περισσότεραΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)
ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 1 η Εργασία: Γενική Εικόνα Ικανοποιητική εικόνα (μ.ο.: 7.09). Πολλά
Διαβάστε περισσότεραΣειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 (15 μονάδες) Σειρά Προβλημάτων 5 Λύσεις Να δώσετε προδιαγραφές (τριάδες Hoare) για τα πιο κάτω προγράμματα: (α) Ένα πρόγραμμα το οποίο παίρνει ως δεδομένο εισόδου δύο πίνακες Α και Β και ελέγχει
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
ΕΠΛ: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Θεωρείστε τις γλώσσες Α = { n n } και Β = {w η w είναι λέξη επί του αλφαβήτου {,} τ.ώ. w }. (α) Για κάθε μια από τις πιο κάτω γλώσσες
Διαβάστε περισσότεραΛύσεις Σειράς Ασκήσεων 4
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 Έστω το σύνολο ατομικών προτάσεων ΑΡ = {red, yellow, green}. Με βάση τις ατομικές προτάσεις ΑΡ διατυπώστε τις πιο κάτω προτάσεις που αφορούν την κατάσταση των φώτων της
Διαβάστε περισσότεραΑυτοματοποιημένη Επαλήθευση
Αυτοματοποιημένη Επαλήθευση Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Έλεγχος Μοντέλου Αλγόριθμοι γράφων Αλγόριθμοι αυτομάτων Αυτόματα ως προδιαγραφές ΕΠΛ 664 Ανάλυση και Επαλήθευση Συστημάτων 4-1
Διαβάστε περισσότερα