ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 04. ΣΥΝΔΕΣΗ ΓΝΩΡΙΣΜΑΤΩΝ ΣΥΣΧΕΤΙΣΗ & ΣΥΜΜΕΤΑΒΟΛΗ
|
|
- θάλασσα Ζέρβας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 04 ΣΥΝΔΕΣΗ ΓΝΩΡΙΣΜΑΤΩΝ ΣΥΣΧΕΤΙΣΗ & ΣΥΜΜΕΤΑΒΟΛΗ 1
2 ΠΟΣΟΤΙΚΟ ΓΝΩΡΙΣΜΑ Αριθμός σταχιών ανά φυτό Απόδοση σε σπόρο (g) Περιεκτικότητα του σπόρου σε πρωτεΐνη (%) ,9 6 16, , , , , ,8 Τρία ποσοτικά γνωρίσματα με γενετική σύνδεση Η απόδοση ανά φυτό σε σπόρο συνδέεται θετικά με τον αρ σταχιών και αρνητικά με την περιεκτικότητα του σπορου σε πρωτεΐνη
3 Ο συντελεστής συσχέτισης (r): άτομο (j) γνώρισμα ( j ) γνώρισμα ( y j ) y y 1 n 1 n y 1 y y y n y y 1 1 y y y n n y 1 n y 1 y y y n y r, y [ y y / n ( ) / n][ y ( y) / n] Έλεγχος σημαντικότητας t r n 1 r (ΒΕ=n-)
4 Συσχέτιση μεταξύ απόδοσης (g/φυτό) και περιεχόμενης πρωτεΐνης (% κβ) σε σπόρο 1 γενοτύπων σιταριού (μεμονωμένα φυτά που απείχαν 100 cm) δείγμα (j) απόδοση ) ( j πρωτεΐνη ( y j ) y y ,,5, 1, 1,1 9, 8,9 8, 8, 8,0 8,0 8,0 7,5 7,0 6,7 5,8 4,8 4,7,4,0 0, 15,8 15,8 15,9 16, 16, 16,0 16,0 16,1 16,1 15,9 15,9 15,9 16,4 16, 16,1 16,5 16, 16,5 16, 16, 16, [16417 (58) / 1 r, y / 1][5461 (9) / 1] 0,71 Έλεγχος σημαντικότητας 0,71 1 t 4,9 1 0,71 4
5 Θεωρητικές τιμές t σε διάφορα επίπεδα σημαντικότητας 4,9 >,88 ο συντελεστής συσχέτισης είναι σημαντικός σε επίπεδο 1 (Ρ < 0,001) Ένδειξη ότι τα δύο γνωρίσματα συνδέονται με αρνητική συσχέτιση 5
6 Συσχέτιση μεταξύ απόδοσης (kg/στρέμμα) και περιεχόμενης πρωτεΐνης (% κβ) σε σπόρο 1 γενοτύπων σιταριού (φυτά σε πυκνή σπορά) φυτό (j) απόδοση ) ( j πρωτεΐνη ( y j ) y y ,6 14,9 14,8 14,8 14,8 14,7 15,0 14,7 14,9 14,6 15,0 14,8 15, 14,5 14,7 15, 15, 15,0 15, 14,8 15, [ / 1 r, y (64 ) / 1][4661 (1) / 1] 0,5 Έλεγχος σημαντικότητας 0,5 1 t,65 1 0,5 6
7 Θεωρητικές τιμές t σε διάφορα επίπεδα σημαντικότητας,65 >,59 ο συντελεστής συσχέτισης είναι σημαντικός σε επίπεδο 5% (Ρ < 0,05) Ένδειξη ότι τα δύο γνωρίσματα συνδέονται με αρνητική συσχέτιση 7
8 r επίπεδο συσχέτισης 0,01-0,0 μικρή, αμελητέα συσχέτιση 0,1-0,40 χαμηλή, αν και διακριτή 0,41-0,71 μέτρια, ουσιαστική 0,71-0,90 υψηλή, έκδηλη 0,90-0,99 πολύ υψηλή, αξιόπιστη 8
9 Ο συντελεστής συμμεταβολής (b) του y σε συνάρτηση με το : y y b 9
10 Ο συντελεστής συμμεταβολής (b) του y σε συνάρτηση με το : y y b 10
11 Ο συντελεστής συμμεταβολής (b) του y σε συνάρτηση με το : y y b 11
12 Ο συντελεστής συμμεταβολής (b) του y σε συνάρτηση με το : y b άτομο (j) γνώρισμα ( j ) γνώρισμα ( y j ) y 1 n 1 n y 1 y y y n y y 1 1 y y y n n y 1 n b y y / n ( ) / n y b n 1
13 Συμμεταβολή της πρωτεΐνης (% κβ) σε συνάρτηση με την απόδοση (g/φυτό) σε σπόρο 1 γενοτύπων σιταριού (μεμονωμένων φυτά που απείχαν 100 cm) φυτό (j) απόδοση ) ( j πρωτεΐνη ( j y ) y ,,5, 1, 1,1 9, 8,9 8, 8, 8,0 8,0 8,0 7,5 7,0 6,7 5,8 4,8 4,7,4,0 0, 15,8 15,8 15,9 16, 16, 16,0 16,0 16,1 16,1 15,9 15,9 15,9 16,4 16, 16,1 16,5 16, 16,5 16, 16, 16, / 1 b 0,04 9 ( 0,04)58 17, (58) / 1 1 1
14 πρωτεΐνη του σπόρου % κβ τέφρα του σπόρου % κβ πρωτεΐνη (%) απόδοση (g/φυτό): y = -0, , (r= -0,71, Ρ<0,001) b = -0, απόδοση σε σπόρο (g/φυτό)
15 πρωτεΐνη του σπόρου % κβ τέφρα του σπόρου % κβ πρωτεΐνη (%) απόδοση (g/φυτό): y = -0, , (r= -0,71, Ρ<0,001) τέφρα (%) απόδοση (g/φυτό): y = +0,08 + 1,9 (r= -0,75, Ρ<0,001) b = +0,08 b = -0, απόδοση σε σπόρο (g/φυτό)
16 Γενικά συμπεράσματα: ΣΥΝΔΕΣΗ ΠΟΣΟΤΙΚΩΝ ΓΝΩΡΙΣΜΑΤΩΝ Μεταξύ ποσοτικών γνωρισμάτων είναι συνηθισμένο να υπάρχει γενετική σύνδεση Όταν δύο γνωρίσματα είναι συνδεδεμένα (συσχετίζονται), οποιαδήποτε μεταβολή στο ένα συνοδεύεται από μεταβολή και στο άλλο γνώρισμα Ο βαθμός σύνδεσης δύο γνωρισμάτων προσδιορίζεται από το συντελεστή συσχέτισης (r) που παίρνει τιμές από -1 έως +1 Τιμές r που τείνουν στο 0 δηλώνουν απουσία συσχέτισης (σύνδεσης) ενώ αυτές που τείνουν στο 1 δηλώνουν ισχυρή συσχέτιση Η ύπαρξη σύνδεσης για ενδιάμεσες τιμές r μπορεί να υφίσταται αν η τιμή r είναι στατιστικά σημαντική Θετικές τιμές r υποδηλώνουν θετική συσχέτιση (αυξανόμενο το ένα γνώρισμα αυξάνεται και το άλλο και αντίστροφα) Αρνητικές τιμές r υποδηλώνουν αρνητική συσχέτιση (αυξανόμενο το ένα γνώρισμα μειώνεται το άλλο και αντίστροφα) Ο βαθμός με τον οποίο επηρεάζεται ένα γνώρισμα όταν μεταβάλλεται ένα άλλο συνδεδεμένο εκφράζεται με το βαθμό συμμεταβολής (b) Οι τιμές r και b επηρεάζονται από το περιβάλλον και αφορούν μόνο τα συγκεκριμένα δεδομένα από τα οποία υπολογίζονται οποιαδήποτε επανάληψη μέτρησης δεδομένων είναι πιθανό να δώσει διαφορετικές τιμές r και b 16
17 ΑΣΚΗΣΕΙΣ 1 Σε 14 γενοτύπους σιταριού μετρήθηκαν η μέση απόδοση ανά φυτό (y), το μέσο ύψος ανά φυτό (1) και ο μέσος αριθμός σταχιών ανά φυτό () α) Να υπολογιστούν οι συντελεστές συσχέτισης απόδοση ύψος, απόδοση στάχια και ύψος στάχια Υπάρχει συσχέτιση μεταξύ τους; β) Να υπολογιστεί η εξίσωση ευθύγραμμης συμμεταβολής της απόδοσης (y) σε συνάρτηση με τον αριθμό σταχιών Ποιος είναι ο συντελεστής συμμεταβολής της απόδοσης ως προς τα στάχια; γ) Ποιος είναι ο συντελεστής συμμεταβολής των σταχιών ως προς την απόδοση; γενότυπος Απόδοση (g) Ύψος (cm) Αριθ σταχιών Απ α) r y_1 =+008, r y_ =+048 (P<010), r 1_ =+00 β) b y, =+1095, α y, =6,16, y= ,16 γ) b,y =+0,1 17
18 1 Σε φυτά φασολιού από 10 ποικιλίες μετρήθηκαν ο αριθμός λοβών ανά φυτό () από 10 έως 40 και ο συνολικός αριθμός σπερμάτων ανά φυτό (y) που ήταν από 50 έως 150 Οι τιμές αυτές έδειξαν συντελεστή συσχέτισης μεταξύ των δύο γνωρισμάτων +0,85 ενώ η εξίσωση της συμμεταβολής του αριθμού σπερμάτων (εξηρτημένη μεταβλητή) σε σχέση με τον αριθμό λοβών (ανεξάρτητη μεταβλητή) ήταν y=,+0 α) είναι τα δεδομένα ενδεικτικά σύνδεσης των δύο γνωρισμάτων; β) Να κατασκευαστεί η γραμμή συμμεταβολής γ) Να υπολογιστεί η εξίσωση συμμεταβολής του αριθμού λοβών ως εξηρτημένη μεταβλητή με ανεξάρτητη τον αριθμό των σπερμάτων Απ α) t=4,6, ναι σε επίπεδο P<0,01 β) με βάση την εξίσωση υπολογίζουμε τιμές και y γ) όπως στο β με διάφορες τιμές (πχ 10, 15, 0, 5, 0, 5, 40) υπολογίζουμε τις αντίστοιχες τιμές y και στη συνέχεια τις τιμές b και α για την εξίσωση =by+α Μεταξύ δύο γνωρισμάτων Α και Β ο συντελεστής συσχέτισης υπολογίζεται +0,40 σε δείγμα 66 ατόμων Σε μια άλλη περίπτωση σε δείγμα 18 ατόμων ο συντελεστής συσχέτισης μεταξύ των γνωρισμάτων Γ και Δ υπολογίζεται +0,70 Μπορούμε να ισχυριστούμε ότι γνωρίσματα Γ και Δ συσχετίζονται ισχυρότερα από τα Α και Β; Απ Υπολογίζονται τα t για να δούμε αν και κατά πόσο οι δύο συντελεστές είναι στατιστικά σημαντικοί: ta-b=,49, (BE=64), p<0,001 tγ-δ=,9, (BE=16), p<0,01 18
ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 03. ΜΕΣΗ ΤΙΜΗ & ΔΙΑΚΥΜΑΝΣΗ
ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 03. ΜΕΣΗ ΤΙΜΗ & ΔΙΑΚΥΜΑΝΣΗ 1 ΠΟΣΟΤΙΚΟ ΓΝΩΡΙΣΜΑ ΑΑββΓΓδδεεΖΖ αριθμός φυτών 50 00 150 100 50 0 10 5 184 119 17 87 40 1 5 0-10 10-0 0-30 30-40 40-50 50-60 60-70 70-80 80-90 απόδοση/φ υτό
ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 01. Η ΕΝΝΟΙΑ ΤΩΝ ΠΟΣΟΤΙΚΩΝ ΓΝΩΡΙΣΜΑΤΩΝ
ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 01. Η ΕΝΝΟΙΑ ΤΩΝ ΠΟΣΟΤΙΚΩΝ ΓΝΩΡΙΣΜΑΤΩΝ 1 Ποιοτικά γνωρίσματα Λίγες γονιδιακές θέσεις Λίγοι διακριτοί φαινότυποι Ασυνεχή Ποικιλότητα αποκλειστικά γενετική Απλή κληρονομικότητα - για τη
ΒΕΛΤΙΩΣΗ ΦΥΤΩΝ 3. ΤΑ ΠΟΣΟΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ
ΒΕΛΤΙΩΣΗ ΦΥΤΩΝ 3. ΤΑ ΠΟΣΟΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ 1 ΠΟΙΟΤΙΚΑ - ΠΟΣΟΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ 2 F f a A g g m m b b H H N n C e C E i K i k o P O P L L Ποιοτικό γνώρισμα 3 F f a A g g m m b b H H N n C e C E i K i k o P O
Ζήτηµα 2. Κατεύθυνση µεταβολής γονιµότητας. Πειραµατικός Αγρός. Επεµβάσεις: Α1Β1:1, Α1Β2:2, Α1Β3:3, Α2Β1:4, Α2Β2:5 και Α2Β3:6
Ζήτηµα. ίνεται το παρακάτω φύλλο δεδοµένων (πείραµα 2 2 πλήρως τυχαιοποιηµένο-crd, 3 επαναλήψεις ανά επέµβαση). Να υπολογιστούν οι µέσοι όροι για τον Παράγοντα Α (δύο επίπεδα Α και Α2), για τον Παράγοντα
Αναλυτική Στατιστική
Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων
Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Σειρά Β Εξέταση Φεβρουαρίου (0/) στο Μάθηµα: Γεωργικός Πειραµατισµός Θεσσαλονίκη: 4/0/0 Επώνυµο Όνοµα Αρ. Μητρώου Κατεύθυνση Ζήτηµα ο ( µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 02. ΓΕΝΕΤΙΚΗ & ΦΑΙΝΟΤΥΠΙΚΗ ΠΟΙΚΙΛΟΤΗΤΑ
ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ. ΓΕΝΕΤΙΚΗ & ΦΑΙΝΟΤΥΠΙΚΗ ΠΟΙΚΙΛΟΤΗΤΑ ΠΟΙΟΤΙΚΟ ΓΝΩΡΙΣΜΑ ποσοστό φυτών % Χρώμα άνθους: ΑΑ κόκκινο, aa άσπρο, Αa ρόζ Ρ ΑΑ Ρ x F 75 aa 5 5 Αa Αa AA, Aa, aa / (καμία επίδραση από το περιβάλλον
Φυσικοί πληθυσμοί: Επιλογή καθαρών σειρών Μαζική επιλογή
Μέθοδοι βελτίωσης Πηγές Μέθοδοι Φυσικοί πληθυσμοί: Επιλογή καθαρών σειρών Μαζική επιλογή Διασπώμενοι: Μαζική βελτίωση πληθυσμοί (F 2 ) Γενεαλογική βελτίωση Καταγωγή από μεμονωμένους σπόρους Διασταυρώσεις
Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα
Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Στατιστική είναι ο κλάδος των μαθηματικών που εμβαθύνει σε μεθόδους συλλογής δεδομένων, οργάνωσης, παρουσίασης των δεδομένων και εξαγωγής συμπερασμάτων
«ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ» Μάθημα 5 «Βασικές μέθοδοι ποσοτικής έρευνας» (II)
«ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ» Μάθημα 5 «Βασικές μέθοδοι ποσοτικής έρευνας» (II) Τα θέματά μας Μέθοδοι ποσοτικής έρευνας - - «Πειραματική έρευνα» (μέθοδοι: πείραμα, οιονεί πείραμα,
Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΔΕΟ 13 - Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά. Κεφάλαιο 1: Συναρτήσεις μιας μεταβλητής
ΒΕΛΤΙΩΣΗ ΦΥΤΩΝ 6. ΑΝΤΑΓΩΝΙΣΜΟΣ ΚΑΙ ΠΟΙΚΙΛΙΑ
ΒΕΛΤΙΩΣΗ ΦΥΤΩΝ 6. ΑΝΤΑΓΩΝΙΣΜΟΣ ΚΑΙ ΠΟΙΚΙΛΙΑ 1 ΑΡΧΕΣ ΒΕΛΤΙΩΣΗΣ 2 2. ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΓΕΝΟΤΥΠΩΝ ΚΑΙ ΕΠΙΛΟΓΗ ΤΩΝ ΕΠΙΘΥΜΗΤΩΝ ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΕΠΙΛΟΓΗΣ Α. ΤΟ ΠΕΡΙΒΑΛΛΟΝ 1. Ετερογένεια
Εργαστήριο Δασικής Γενετικής / ΔΠΘ Ορεστιάδα. Ποσοτική Γενετική ΒΕΛΤΙΩΣΗ & ΠΡΟΣΤΑΣΙΑ ΔΑΣΟΓΕΝΕΤΙΚΩΝ ΠΟΡΩΝ. Αριστοτέλης Χ.
Εργαστήριο Δασικής Γενετικής / ΔΠΘ Ορεστιάδα Ποσοτική Γενετική ΒΕΛΤΙΩΣΗ & ΠΡΟΣΤΑΣΙΑ ΔΑΣΟΓΕΝΕΤΙΚΩΝ ΠΟΡΩΝ Αριστοτέλης Χ. Παπαγεωργίου Σύνοψη Τα γνωρίσματα που παρατηρούμε (φαινότυπος) είναι η συνδυασμένη
ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 5. Η ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ ΣΤΑ ΠΟΣΟΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ
ΠΟΣΟΤΙΚΗ ΓΕΝΕΤΙΚΗ 5. Η ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ ΣΤΑ ΠΟΣΟΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ 1 ΠΟΣΟΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ Συνολική φαινοτυπική παραλλακτικότητα (s 2 ): s 2 = s 2 G + s 2 E + s 2 GxE 1. s 2 G : Γενετική παραλλακτικότητα 2.
Απλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.
7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου
ΕΙΣΑΓΩΓΗ. Βασικές έννοιες
ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις
ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ
ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100
Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΕΙΣΑΓΩΓΙΚΟ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 011-01
i μιας μεταβλητής Χ είναι αρνητικός αριθμός
ΕΡΩΤΗΣΕΙΣ Σ Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακoλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών
Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας
Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2014 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής Με λόγια, η f ( x, y) δίνει την πιθανότητα να εμφανισθεί
ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:
Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του
Γ. Πειραματισμός Βιομετρία
Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση
Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου
Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
3.4.1 Ο Συντελεστής ρ του Spearman
3.4. Ο Συντελεστής ρ του Spearma Έστω (, ), (, ),..., (, ) ένα δείγμα παρατηρήσεων πάνω στο τυχαίο διάνυσμα (, ). Έστω ( ) ο βαθμός ή η τάξη μεγέθους της μεταβλητής όταν αυτή συγκρίνεται με τις άλλες Χ
Συσχέτιση μεταξύ δύο συνόλων δεδομένων
Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,
ΣΥΣΧΕΤΙΣΗ ΚΥΚΛΟΦΟΡΙΑΚΩΝ ΜΕΓΕΘΩΝ ΜΕ ΤΗ ΣΟΒΑΡΟΤΗΤΑ ΚΑΙ ΤΗΝ ΠΙΘΑΝΟΤΗΤΑ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ. Απόστολος Ζιακόπουλος
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟΔΟΜΗΣ ΣΥΣΧΕΤΙΣΗ ΚΥΚΛΟΦΟΡΙΑΚΩΝ ΜΕΓΕΘΩΝ ΜΕ ΤΗ ΣΟΒΑΡΟΤΗΤΑ ΚΑΙ ΤΗΝ ΠΙΘΑΝΟΤΗΤΑ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ Απόστολος Ζιακόπουλος
Στατιστική. 8 ο Μάθημα: Εφαρμογές Στατιστικής Ι: Διαστήματα Εμπιστοσύνης. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 8 ο Μάθημα: Εφαρμογές Στατιστικής Ι: Διαστήματα Εμπιστοσύνης Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας
Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής
Η ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΙΑTΡΙΚΗ ΣΧΟΛΗ Η ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ Έλενα Κριτσέλη, MPH PhD Επιστημονικός Συνεργάτης Επιδημιολόγος Χρόνιων Παθήσεων, Α Πανεπιστημιακή Παιδιατρική
Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση
Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση Οι επιδόσεις δέκα μαθητών σε τέσσερα μαθήματα Μαθητής Άλγεβρα Φυσική Νέα Ελληνικά Μουσική Α 65 63 35 61 Β 60 58 38 35 Γ 60 60 40 46
Στατιστική, Άσκηση 2. (Κανονική κατανομή)
Στατιστική, Άσκηση 2 (Κανονική κατανομή) Στον πίνακα που ακολουθεί δίνονται οι μέσες παροχές όπως προέκυψαν από μετρήσεις πεδίου σε μια διατομή ενός ποταμού. Ζητείται: 1. Να αποδειχθεί ότι το δείγμα προσαρμόζεται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ
Θεώρημα Bolzano. ΑΠΑΝΤΗΣΗ. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει
Θεώρημα Bolzno. ΑΠΑΝΤΗΣΗ Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει f f 0, τότε υπάρχει ένα, τουλάχιστον, 0 (, ) τέτοιο, ώστε f( 0
Μάθηµα Τέταρτο-Πέµπτο -Ασκήσεις Μικροοικονοµικής (Προσφορά) Ασκήσεις
Μάθηµα Τέταρτο-Πέµπτο -Ασκήσεις Μικροοικονοµικής (Προσφορά) Ασκήσεις Άσκηση 1 Ένας παραγωγός καλλιεργεί 1 στρέµµα εδάφους µε τη χρησιµοποίηση 100 κιλών σπόρων. Το µέγεθος της παραγωγής µε πλήρη αξιοποίηση
F x h F x f x h f x g x h g x h h h. lim lim lim f x
3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, ) ΘΕΜΑ Α 1 Έχουμε F h F f( h) g h f() g f( h)
Στατιστική. Βασικές έννοιες
Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό
3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
Διάλεξη 5: Τυχαία Μεταβλητή Κατανομές Πιθανότητας
Διάλεξη 5: ΑΣΚΗΣΕΙΣ 1. Έστω η ποιότητα ενός προϊόντος που παίρνουμε από ένα σύνολο προϊόντων με απλή τυχαία δειγματοληψία. Ανάλογα με το αν το προϊόν είναι ελαττωματικό, καλο ή άριστο, η παίρνει τις τιμές,
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη
ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m
H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r)
5 H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) Περίληψη Σκοπός του κεφαλαίου είναι η εφαρμογή της ανάλυσης συσχέτισης (Pearson r) μέσω του PASW. H ανάλυση συσχέτισης Pearson r χρησιμοποιείται για να εξεταστεί η
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
ΧΡΗΣΗ ΚΙΝΗΤΟΥ ΤΗΛΕΦΩΝΟΥ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΥΚΛΟΦΟΡΙΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟ ΟΜΗΣ ΧΡΗΣΗ ΚΙΝΗΤΟΥ ΤΗΛΕΦΩΝΟΥ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΥΚΛΟΦΟΡΙΑΣ Παπαντωνίου Παναγιώτης και Πετρέλλης Νικόλαος Επιβλέπων:
Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΝΟΕΜΒΡΙΟΣ 2003 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α (40%)
ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΝΟΕΜΒΡΙΟΣ 00 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α (0%) ) Η αντοχή ενός τύπου σκυροδέματος ως γνωστόν θεωρείται κανονική. Ελέγχω δοκίμια: από αυτά έχουν αντοχή
Διερεύνηση της επιρροής των καιρικών συνθηκών στη συμπεριφορά και την ασφάλεια νέων οδηγών σε αστικές οδούς με τη χρήση προσομοιωτή οδήγησης
Διερεύνηση της επιρροής των καιρικών συνθηκών στη συμπεριφορά και την ασφάλεια νέων οδηγών σε αστικές οδούς με τη χρήση προσομοιωτή οδήγησης Μαρία Χαιρέτη Επιβλέπων καθηγητής: Γιώργος Γιαννής, Καθηγητής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα
Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).
Νίκος Σούρµπης - - Γιώργος Βαρβαδούκας ΘΕΜΑ ο Α. α) ίνεται η συνάρτηση F()=f()+g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F ()=f ()+g (). β)να γράψετε στο τετράδιό σας τις παραγώγους
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα
ΘΕΜΑΤΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ
ΘΕΜΑΤΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ 1. ΘΕΜΑ α. Έστω ο δειγµατικός χώρος Ω = {ΑΑ, ΑΒ, ΒΑ, ΒΒ} ενός πειράµατος τύχης µε τα ενδεχόµενα Α, Β τέτοια ώστε Α Β = Ω και Α Β = Φ. Να ορισθεί µια τυχαία µεταβλητή
9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα
Στόχος: Η προσθήκη ενός γνωρίσματος, συνήθως μονογονιδιακού, σε μια καλή ποικιλία
Στόχος: Η προσθήκη ενός γνωρίσματος, συνήθως μονογονιδιακού, σε μια καλή ποικιλία Απαιτούμενα: - επαναλαμβανόμενος γονέας σειρά λήπτης - μη επαναλαμβανόμενος γονέας σειρά δότης ή δωρητής - σαφής έκφραση
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΕΙΣΑΓΩΓΙΚΟ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ρ. Κουνετάς Η Κωνσταντίνος Ακαδηµαϊκό Έτος 01-013 ΕΠΙΧ Οικονοµετρικά
Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation. Σταμάτης Πουλακιδάκος
Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation Σταμάτης Πουλακιδάκος Μερικά εισαγωγικά λόγια Οι έλεγχοι των ερευνητικών υποθέσεων πραγματοποιούνται με διάφορους στατιστικούς ελέγχους,
Χ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
Μεθοδολογία επίλυσης προβληµάτων καταβύθισης
Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα
Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;
σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C
Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία
Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν
ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,
Εισαγωγή στην Ανάλυση Δεδομένων
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Απλή Γραμμική Παλινδρόμηση II
. Ο Συντελεστής Προσδιορισμού Η γραμμή Παλινδρόμησης στο δείγμα, αποτελεί μία εκτίμηση της γραμμής παλινδρόμησης στον πληθυσμό. Αν και από τη μέθοδο των ελαχίστων τετραγώνων προκύπτουν εκτιμητές που έχουν
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε
Ογενικός(πλήρης) έλεγχος των Dickey Fuller
ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης
II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c
II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδειχθεί ότι: Ρ (Α Β ) = Ρ (Α) Ρ (Α Β ). Μονάδες 7 Α. Πότε δύο ενδεχόµενα
από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης.
ΕΛΑΣΤΙΚΟΤΗΤΑ ΖΗΤΗΣΗΣ Ορισμός: Η ελαστικότητα ζήτησης, ενός αγαθού ως προς την τιμή του δίνεται από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία μεταβολή της τιμής του. Δηλαδή %
Έλεγχος των Phillips Perron
ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα
ΓΕΝΕΤΙΚΗ ΒΕΛΤΙΩΣΗ. 5η ΙΑΛΕΞΗ ΠΟΣΟΤΙΚΗ ΚΛΗΡΟΝΟΝΟΜΙΚΟΤΗΤΑ. ΤΕΙ ΚΡΗΤΗΣ Σχολή Τεχνολογίας Γεωπονίας Γενετική Βελτίωση Φυτών ρ. Πριµηκύριος Νικόλας
ΓΕΝΕΤΙΚΗ ΒΕΛΤΙΩΣΗ ΦΥΤΩΝ 5η ΙΑΛΕΞΗ ΠΟΣΟΤΙΚΗ ΚΛΗΡΟΝΟΝΟΜΙΚΟΤΗΤΑ Ποιοτικά και Ποσοτικά Χαρακτηριστικά Ποιοτικά χαρακτηριστικά και ποιοτική κληρονοµικότητα (πικρότητα αγγουριού, ανθεκτικότητες σε κλαδοσπόριο
Σηµειώσεις Οικονοµετρίας Ι.. ικαίος Τσερκέζος
Ο ΚΕΦΑΛΑΙΙΟ 33 Η ΣΣΥΜΜΕΕΤΤΑΒΛΗΤΤΟΤΤΗΤΤΑ ΤΤΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΜΕΕΓΓΕΕΘΩΝ.. (ΣΣΥΣΣΧΕΕΤΤΙ ( ΙΣΣΗ) ) Γραµµική και Μη Γραµµική Συσχέτιση. Συντελεστής Αυτοσυσχέτισης. Μνήµη Χρονοσειρών. 8 7 6 F F F3 F4 F5 F6 F7
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική
Βελτίωση Φυτών. Ανάμεικτες ποικιλίες
Στόχος: Η παράκαμψη των δυσμενών επιπτώσεων της απόλυτης ομοιομορφίας μιας μονογονοτυπικής ποικιλίας ως προς την: - ανθεκτικότητα σε διάφορες φυλές ενός παθογόνου - προσαρμοστικότητα σε διάφορα περιβάλλοντα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : σ =Ε(Χ )-µ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : Cov(X,Υ)=Ε(ΧΥ)-Ε(Χ)Ε(Υ) ΑΣΚΗΣΗ 3 Να δείξετε ότι
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 1: Εισαγωγή στη Στατιστική Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ
ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2
013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ
ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ
ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Μαρία Κατσικίνη E-mal: katsk@auth.gr Web: users.auth.gr/katsk Τηλ: 0 99800 Γραφείο : Β όροφος, Τομέας Φυσικής Στερεάς Κατάστασης Σειρά των ασκήσεων Θεωρία : Σφάλματα Θεωρία :
Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή
Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική