Χάσιμο επαφής Παρατηρήσεις
|
|
- Βακχος Μακρή
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Χάσιμο επαφής Α) Έστ σύστημα δύο σμάτν και Σ, με μάζες m και m, που βρίσκονται σε επαφή πάν σε οριζόντιο επίπεδο. Το είναι δεμένο στο άκρο οριζόντιου ελατηρίου (όπς στο σχήμα) σταθεράς ενώ το Σ δεν είναι κολλημένο με το. Μετακινούμε το σύστημα συμπιέζοντας το ελατήριο και το αφήνουμε ελεύθερο, οπότε εκτελεί α.α.τ. Θα μελετήσουμε την κίνηση του Σ, το οποίο F έχει την ίδια γνιακή συχνότητα με το, αλλά σταθερά επαναφοράς, ώστε = (m + m ) m m m. = m ΣF = -. F = -.. H επαφή χάνεται αν F = 0 crit = 0, δηλαδή στη θέση Παρατηρήσεις. Το σύστημα τν σμάτν θα περάσει υποχρετικά από τη ΘΦΜ (αφού είναι η ΘΙ) οπότε η επαφή θα χαθεί οπσδήποτε.. Μπορούμε να προβλέψουμε την απώλεια επαφής στη ΘΦΜ αφού μετά απ αυτήν το μέτρο της ταχύτητας του θα αρχίσει να μειώνεται λόγ της δράσης της δύναμης από το ελατήριο ενώ το Σ δεν δέχεται οριζόντιες δυνάμεις που μπορούν να μειώσουν το μέτρο της ταχύτητάς του και θα συνεχίσει κάνοντας Ευθύγραμμη Ομαλή Κίνηση με ταχύτητα τη μέγιστη ταχύτητα ταλάντσης. 3. Μετά την απώλεια επαφής το σώμα, καθώς παραμένει δεμένο στο ελατήριο, θα κάνει νέα Απλή Αρμονική Ταλάντση η οποία λόγ αλλαγής μάζας θα έχει: την ίδια Θέση Ισορροπίας σταθερά ταλάντσης = διαφορετική γνιακή συχνότητα, αφού = m ίδια μέγιστη ταχύτητα ταλάντσης διαφορετικό πλάτος αφού υ ma, = υ ma,. Α =. Α N Σ Σ B F ελ N F B
2 Β) Έστ σύστημα δύο σμάτν και Σ, με μάζες m και m, που βρίσκονται επαφή. Το είναι δεμένο στο άκρο κατακόρυφου ελατηρίου (όπς στο σχήμα) σταθεράς ενώ το Σ δεν είναι κολλημένο με το. Μετακινούμε το σύστημα συμπιέζοντας το ελατήριο κατά Α και το αφήνουμε ελεύθερο, οπότε εκτελεί α.α.τ. Θα μελετήσουμε την κίνηση του Σ, το οποίο έχει την ίδια γνιακή συχνότητα με το, αλλά σταθερά επαναφοράς, ώστε = (m + m ) = m m m m συστήματος ΣF = 0 F ελ + Β ολ = 0 -.Δl 0 - (m + m )g ( m m )g = 0 Δl 0 = - Σ ΣF = -. F + B = -. F - m g = -. F = m g -., -Α A. Όταν -Α 0 ( κάτ από τη ) F > 0 δεν χάνεται η επαφή. Όταν 0 < Α ( πάν από τη ) η F μπορεί να μηδενιστεί αν F = 0 m g -. crit = 0 crit = mg m g crit = m g crit = Με δεδομένο, το μέγιστο επιτρεπόμενο πλάτος για να μη χαθεί η επαφή είναι g Α = ( m m )g Αν θέσουμε =, βρίσκουμε crit = = Δl 0, δηλαδή η επαφή m m χάνεται στη θέση Παρατηρήσεις. Το σύστημα τν σμάτν δεν περνά υποχρετικά από τη θέση Φ.Μ οπότε δεν είναι βέβαιο ότι η επαφή θα χαθεί. Αυτό εξαρτάται από το πλάτος της ταλάντσης. Η επαφή χάνεται μόνο αν ισχύει Α > Δl 0.. Μπορούμε να προβλέψουμε την απώλεια επαφής στη θέση μια και στη θέση F ελ Δ l 0 Σ F (+) B Σ B F F = - F
3 αυτή το βάρος προσδίδει σε κάθε σώμα επιτάχυνση g, αλλά το σώμα που είναι δεμένο στο ελατήριο θα έχει επιπλέον επιτάχυνση με φορά προς τα κάτ λόγ της δύναμης που δέχεται από το ελατήριο. 3. Μετά την απώλεια επαφής (εφόσον υπάρξει) το σώμα Σ, θα κάνει κατακόρυφη βολή με αρχική ταχύτητα της οποίας το μέτρο (έστ u ) μπορεί να προσδιοριστεί με εφαρμογή της Αρχής Διατήρησης της Ενέργειας της ταλάντσης του συστήματος τν δύο σμάτν: ½ m υ + ½ crit = ½ A 4. Μετά την απώλεια επαφής (εφόσον υπάρξει) το σώμα, καθώς παραμένει δεμένο στο ελατήριο, θα κάνει νέα Απλή Αρμονική Ταλάντση η οποία λόγ αλλαγής μάζας θα έχει: διαφορετική Θέση Ισορροπίας σταθερά ταλάντσης = διαφορετική γνιακή συχνότητα, αφού = m πλάτος ταλάντσης Α που υπολογίζεται με εφαρμογή της Αρχής Διατήρησης της Ενέργειας της ταλάντσης, για την νέα ταλάντση του. Εννοείται πς πρέπει να απομακρυνθεί με κάποιον τρόπο το σώμα Σ ώστε να μην έχουμε κρούση τν δύο σμάτν κατά την κάθοδό του. Γ) Έστ σύστημα δύο σμάτν και Σ, με μάζες m και m, που βρίσκονται επαφή πάν σε κεκλιμένο επίπεδο γνίας κλίσης φ. Το είναι δεμένο στο άκρο ελατηρίου σταθεράς (όπς στο σχήμα), ενώ το Σ δεν είναι κολλημένο με το. Μετακινούμε το σύστημα συμπιέζοντας το ελατήριο κατά Α και το αφήνουμε ελεύθερο, οπότε εκτελεί α.α.τ. Θα μελετήσουμε την κίνηση του Σ, το οποίο έχει την ίδια γνιακή συχνότητα με το, αλλά σταθερά επαναφοράς, ώστε = (m + m ) = m m m m. Δ l 0 F ελ N B ψ Σ B F F B ψ F = - F (+) φ Σ N B συστήματος ΣF = 0 F ελ + Β ολ, = 0 -.Δl 0 - (m + m )gημφ = 0
4 m Δl 0 = - ( m )gημφ Σ ΣF = -. F + B, = -. F - m gημφ = -. F = m gημφ -., -Α A Όταν -Α 0 ( κάτ από τη ) F > 0 δεν χάνεται η επαφή. Όταν 0 < Α ( πάν από τη ) η F μπορεί να μηδενιστεί αν mgημφ mgημφ F = 0 m gημφ - crit = 0 crit = crit = m gημφ crit = Με δεδομένο, το μέγιστο επιτρεπόμενο πλάτος για να μη χαθεί η επαφή είναι gημφ Α = ( m m)gημφ Αν θέσουμε =, βρίσκουμε crit = = Δl 0, δηλαδή η m m επαφή χάνεται στη θέση Παρατηρήσεις. Το σύστημα τν σμάτν δεν περνά υποχρετικά από τη θέση οπότε δεν είναι βέβαιο ότι η επαφή θα χαθεί. Αυτό εξαρτάται από το πλάτος της ταλάντσης. Η επαφή χάνεται μόνο αν ισχύει Α> Δl 0.. Μπορούμε να προβλέψουμε την απώλεια επαφής στη θέση μια και στη θέση αυτή η συνιστώσα Β του βάρους προσδίδει σε κάθε σώμα επιτάχυνση gημφ, αλλά το σώμα που είναι δεμένο στο ελατήριο θα έχει επιπλέον επιτάχυνση με φορά προς τα κάτ λόγ της δύναμης που δέχεται από το ελατήριο. 3. Μετά την απώλεια επαφής (εφόσον υπάρξει) το σώμα Σ, θα κάνει ομαλά επιβραδυνόμενη κίνηση με αρχική ταχύτητα της οποίας το μέτρο (έστ u ) μπορεί να προσδιοριστεί με εφαρμογή της Αρχής Διατήρησης της Ενέργειας της ταλάντσης του συστήματος τν δύο σμάτν: ½ m υ + ½ crit = ½ A 4. Μετά την απώλεια επαφής (εφόσον υπάρξει) το σώμα, καθώς παραμένει δεμένο στο ελατήριο, θα κάνει νέα Απλή Αρμονική Ταλάντση η οποία θα έχει: διαφορετική Θέση Ισορροπίας σταθερά ταλάντσης = διαφορετική γνιακή συχνότητα, αφού = m πλάτος ταλάντσης Α που υπολογίζεται με εφαρμογή της Αρχής Διατήρησης της Ενέργειας της ταλάντσης, για την νέα ταλάντση του. Εννοείται πς πρέπει να απομακρυνθεί με κάποιον τρόπο το σώμα Σ ώστε να μην έχουμε κρούση τν δύο σμάτν κατά την κάθοδό του.
5 Δ) Έστ σύστημα δύο σμάτν και Σ, με μάζες m και m, που βρίσκονται σε επαφή πάν σε οριζόντιο επίπεδο. Το είναι δεμένο στο άκρο οριζόντιου ελατηρίου (όπς στο σχήμα) σταθεράς ενώ το Σ βρίσκεται πάν στο, είναι κολλημένο με το και παρουσιάζει συντελεστή στατικής τριβής μ σ. Μετακινούμε το σύστημα συμπιέζοντας το ελατήριο και το αφήνουμε ελεύθερο, οπότε εκτελεί α.α.τ. Θα μελετήσουμε την κίνηση του Σ, το οποίο έχει την ίδια γνιακή συχνότητα με το, αλλά σταθερά επαναφοράς, ώστε = (m + m ) = m m m m Σ ΣF = -. Τ σ = -., -Α A Δ) Με δεδομένο πλάτος Α. Στις ακραίες θέσεις απαιτείται το μεγαλύτερο μέτρο της στατικής τριβής, που είναι Τ σ,ma =.A A Για να μη χάνεται η επαφή Τ σ,ma Τ ορ.a μ σ m g μ σ μ σ,min = m g m Α μ σ,min = m g Α g T σ N B Σ N F N ελ T σ = - Τ σ B Σ T σ Δ) Με δεδομένο συντελεστή στατικής τριβής μ σ μσg μσg Τ σ,ma Τ ορ.a μ σ m g A A ma = E) Έστ σύστημα δύο σμάτν και Σ, με μάζες m και m, που βρίσκονται σε επαφή πάν σε κεκλιμένο επίπεδο γνίας κλίσης φ. Το είναι δεμένο στο άκρο οριζόντιου ελατηρίου (όπς στο σχήμα) σταθεράς ενώ το Σ βρίσκεται πάν στο, είναι κολλημένο με το και παρουσιάζει συντελεστή στατικής τριβής μ σ. Το σύστημα αρχικά ισορροπεί. Μετακινούμε το σύστημα συμπιέζοντας το ελατήριο και το αφήνουμε ελεύθερο, οπότε εκτελεί α.α.τ.
6 Θα μελετήσουμε την κίνηση του Σ, το οποίο έχει την ίδια γνιακή συχνότητα με το, αλλά Δ l 0 (+) σταθερά επαναφοράς, ώστε = (m + m ) = m m m m. Σ φ συστήματος ΣF = 0 F ελ + Β ολ, = 0 -.Δl 0 - (m + m )gημφ = 0 ( m m)gημφ Δl 0 = - Σ ΣF = -. T σ + B, = -. T σ - m gημφ = -. T σ = m gημφ -. Ε) Με δεδομένο πλάτος Α Στην κάτ ακραία θέση = -A απαιτείται το μεγαλύτερο μέτρο της στατικής τριβής, που είναι Τ σ,ma = m gημφ +.A F ελ N N Για να μη χάνεται η επαφή Τ σ,ma Τ ορ m gημφ +.A μ σ m gσυνφ T σ B N ψ B T σ μ σ mgnμφ A m gσυνφ μ σ,min = mgnμφ m Α m gσυνφ μ σ,min = gnμφ Α gσυνφ Ε) Με δεδομένο συντελεστή στατικής τριβής μ σ mg.(μ σσυνφ ημφ) Τ σ,ma Τ ορ m gημφ +.A μ σ m gσυνφ Α m g.(μ σσυνφ ημφ) Α ma = Ανδρέας Ριζόπουλος
Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση
Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σε όλες τις περιπτώσεις που θα εξετάσουμε το δάπεδο είναι λείο. Επίσης τα σύμβολα των διανυσματικών μεγεθών αντιπροσωπεύουν τις αλγεβρικές τους τιμές. Α. Η επιφάνεια
Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση
Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σε όλες τις περιπτώσεις που θα εξετάσουμε το δάπεδο είναι λείο. Επίσης τα σύμβολα των διανυσματικών μεγεθών αντιπροσωπεύουν τις αλγεβρικές τους τιμές. Α. Η επιφάνεια
ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.
Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.. Σώμα μάζας = 0,5 g έχει το ένα άκρο στερεωμένο σε οριζόντιο ιδανικό ελατήριο σταθεράς = 50 / και το άλλο άκρο του βρίσκεται
Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή
ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή μεταξύ τους. Η επαφή αυτή μπορεί να υπάρχει στη διάρκεια της ταλάντωσης είτε να
ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ 2. έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε σταθερό σημείο.
ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ. Ένα ιδανικό ελατήριο σταθεράς = 00 N/ που έχει τον άξονα του κατακόρυφο έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε
Α. Για ποιο από τα δυο σώματα καταναλώσαμε περισσότερη ενέργεια;
1. Στην κάτω άκρη ενός ιδανικού ελατήριου είναι δεμένο ένα σώμα που έχει μάζα m 1 = m και ισορροπεί. Στην κάτω άκρη ενός άλλου ομοίου ελατήριου είναι δεμένο ένα άλλο σώμα που έχει μάζα m 2 = 4m και ισορροπεί.
1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου.
ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ.. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Σώμα μάζας = g κινείται σε λείο οριζόντιο επίπεδο με ταχύτητα υ μέτρου υ = 5 /s συγκρούεται
Ενδεικτικές απαντήσεις στα θέματα της φυσικής προσανατολισμού με το νέο σύστημα. Ημερομηνία εξέτασης 23 Μαΐου 2016
Ενδεικτικές απαντήσεις στα θέματα της φυσικής προσανατολισμού με το νέο σύστημα. Ημερομηνία εξέτασης 3 Μαΐου 06 ΘΕΜΑ Α Α β, Α γ, Α3 β, Α4 δ Α5 α Σ, β Λ, γ Σ, δ Λ, ε Λ ΘΕΜΑ Β Β Σωστή είναι η απάντηση (ιιι).
Θέμα 1 ο (Μονάδες 25)
ΙΙΑΑΓΓΩΝΝΙΙΣΣΜΑΑ ΦΦΥΥΣΣΙΙΚΚΗΗΣΣ ΚΚΑΑΤΤΕΕΥΥΘΘΥΥΝΝΣΣΗΗΣΣ ΑΑΠΟΟΦΦΟΟΙΙΤΤΩΝΝ 0055 -- -- 00 Θέμα ο. Ένα σημειακό αντικείμενο που εκτελεί ΑΑΤ μεταβαίνει από τη θέση ισορροπίας του σε ακραία θέση σε χρόνο s. Η
2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α
ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο τετράδιο σας τον αριθµό της
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα
ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.
ΜΑΘΗΜΑ / Προσανατολισμός / ΤΑΞΗ ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΦΥΣΙΚΗ/ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / Γ ΛΥΚΕΙΟΥ 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ) ΘΕΜΑ Α A1. Στις ερωτήσεις
7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.
ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου
Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις
Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη
1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.
1.1. Μηχανικές. Ομάδα Ε. 1.1.81. Δυο ΑΑΤ και μία Ταλάντωση. Ένα σώμα μάζας 1kg ηρεμεί σε λείο κεκλιμένο επίπεδο κλίσεως θ=30, δεμένο στο άκρο ελατηρίου σταθεράς k 1 =40Ν/m, ενώ εφάπτεται στο ε- λεύθερο
ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ
ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ 1. Κατακόρυφο ελατήριο σταθεράς k=1000 N /m έχει το κάτω άκρο του στερεωμένο σε ακίνητο σημείο. Στο πάνω άκρο του ελατηρίου έχει προσδεθεί σώμα Σ 1 μάζας m 1 =8 kg, ενώ ένα δεύτερο
1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:
ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 33 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες
ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α.
ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α 1 Α 6 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. Α.1. Ένα σύστηµα ελατηρίου-µάζας
γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m;
ΘΕΜΑ Γ 1. Ένα σώμα εκτελεί αρμονική ταλάντωση με εξίσωση 0,6 ημ 8 S.I.. α. Να βρείτε την περίοδο και τον αριθμό των ταλαντώσεων που εκτελεί το σώμα σε ένα λεπτό της ώρας. β. Να γράψετε τις εξισώσεις της
ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 2
ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ) Ένα ιδανικό ελατήριο σταθεράς 00 N/m που έχει τον άξονα του κατακόρυφο έχει το φυσικό του µήκος και η πάνω άκρη του είναι δεµένη σε σταθερό
1.1 Κινηματική προσέγγιση
1.1 Κινηματική προσέγγιση ΣΑ 1.8: Η απομάκρυνση από τη θέση ισορροπίας ενός σώματος που κάνει αατ δίνεται σε συνάρτηση με το χρόνο από τη σχέση x=10 ημ(π/4t) (x σε cm και t σε s). Να βρείτε: Α) το πλάτος
ΑΣΚΗΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΡΟΥΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΡΟΥΣΕΙΣ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ 1.Ένα σώμα μάζας m=4kg είναι δεμένο στο άκρο οριζόντιου ελατηρίου σταθεράςk=400n/m, το άλλο άκρο του οποίου είναι είναι ακλόνητα στερεωμένη. To
ΔΙΑΡΚΕΙΑ: 180min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ: 80min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΜΟΝΑΔΕΣ ΘΕΜΑ ο ΘΕΜΑ ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΘΕΜΑ Α:. Κατά την διάρκεια της φθίνουσας ταλάντωσης ενός αντικειμένου, το
Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 6/0/06 ΕΩΣ 30/0/06 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τετάρτη 6 Οκτωβρίου 06 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις
1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.
.. Μηχανικές. Ομάδα Ε...8. Δυο ΑΑΤ και μία Ταλάντωση. Ένα σώμα μάζας kg ηρεμεί σε λείο κεκλιμένο επίπεδο κλίσεως θ=30, δεμένο στο άκρο ελατηρίου σταθεράς k =40Ν/m, ενώ εφάπτεται στο ε- λεύθερο άκρο ενός
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 03 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα στο γράμμα που αντιστοιχεί στη φράση, η οποία
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΘΕΜΑ Α Α1.Ένα σώμα μάζας m είναι δεμένο και ισορροπεί στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k 1 του
Ενδεικτικές Λύσεις. Θέµα Α
3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Στη σύνθεση δύο απλών αρµονικών ταλαντώσεων της ίδιας συχνότητας που γίνονται γύρω από το ίδιο σηµείο και στην ίδια διεύθυνση,
Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής
έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε
ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις -4 να βρείτε τη σωστή απάντηση. Α. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και
1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:
ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες
[ Απ. α) , β) µατος. Εκτρέπουµε το σύστηµα προς τα κάτω κατά x=0,5 m και το αφήνουµε ελεύθερο.
47. Σώµα (Σ 1 ) είναι τοποθετηµένο πάνω σε σώµα (Σ ) και το σύστηµα εκτελεί Α.Α.Τ. κατακόρυφα µε περίοδο Τ. α) Να εκφράσετε τη δύναµη αντίδρασης F του σώµατος (Σ ) στο σώµα (Σ 1 ), σε συνάρτηση µε την
ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ.
ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. Θα μελετήσουμε τώρα συστήματα που διεγείρονται σε ταλάντωση μέσω εξωτερικής ς που μπορεί να είναι (όπως θα δούμε παρακάτω) σταθερή, μεταβλητού
4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη
1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα
1.1. Μηχανικές Ταλαντώσεις. Ομάδα Στ.
1.1. Μηχανικές Ταλαντώσεις. Ομάδα Στ. 101) Δυο σώματα αφήνονται να κινηθούν. Δυο σώματα Σ 1 και Σ 2, ίδιας μάζας m=2kg, συγκρατιόνται σε λείο κεκλιμένο επίπεδο απέχοντας κατά D=1,5m από την κορυφή του
1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα.
Γενικές ασκήσεις Θέματα εξετάσεων από το 1ο κεφάλαιο ΚΕΦΑΛΑΙΟ 1 1 Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα α Να βρείτε
2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί
Φροντιστήρια Εν-τάξη Σελίδα 1 από 6
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 11/09/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα
ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ 14/4/2019
ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ 4/4/209 ΘΕΜΑ Α Α.α, Α2.δ, Α3.γ, Α4.α, Α5.α)Λ, β)σ, γ)λ, δ)λ, ε)λ. ΘΕΜΑ Β Β. α) Σωστό το (i). β) Η ροπή αδράνειας της ράβδου ως προς το τον άξονα
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 24/07/2014
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 4/07/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Ποιο είναι το πλάτος της ταλάντωσης ;
Ποιο είναι το πλάτος της ταλάντωσης ; 1. Ένα σώμα είναι δεμένο στο δεξιό άκρο οριζόντιου ιδανικού ελατηρίου και στο αριστερό άκρο οριζόντιου νήματος και ηρεμεί σε ισορροπία όπως δείχνει το σχήμα. Το ελατήριο
α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/09/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4
2 ο Διαγώνισμα Γ Λυκείου
ο Διαγώνισμα Γ Λυκείου 03-09-08 Διάρκεια Εξέτασης 3 ώρες Ονοματεπώνυμο. Αξιολόγηση : Θέμα Α Στις ερωτήσεις Α ως και Α4 επιλέξτε την σωστή απάντηση: Α. Όταν ένα κινούμενο σώμα συγκρουστεί κεντρικά και ελαστικά
ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ
ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΠΛΑΓΙΑ ΚΡΟΥΣΗ.. Σώμα που κινείται με κάποια ταχύτητα που σχηματίζει γωνία ως προς το κεκλιμένο επίπεδο συγκρούεται πλαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Ξύλινο
1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012 ΘΕΜΑ Α A 1. Α 2. Α 3. Α 4. γ β γ γ Α 5. α. Σ β. Σ γ. Λ δ. Λ ε. Σ ΘΕΜΑ Β Β 1. Σωστή η απάντηση γ Αιτιολόγηση: Για την αρχική
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Η απλή αρµονική ταλάντωση είναι κίνηση : (δ) ευθύγραµµη περιοδική Α.2. Σώµα εκτελεί απλή αρµονική
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α
Α.1. ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α Ακίνητο πυροβόλο όπλο εκπυρσοκροτεί (δ) Η ορµή του συστήµατος
- -
- 1 - - - - 3 - - 4 - - 5 - - 6 - ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. β Α. γ Α3. β Α4. γ Α5. α. Λάθος, β. Λάθος, γ. Σωστό, δ. Λάθος, ε. Σωστό ΘΕΜΑ Β Β1. α Το σημείο Σ ταλαντώνεται με πλάτος Α άρα η διαφορά των αποστάσεών
Ταλαντώσεις - Λύσεις
Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου Ταλαντώσεις - Λύσεις Θέμα Α 1. (ii) 2. (i) 3. (ii) 4. (iii) 5. i. Λ ii. Λ iii. Σ iv. Λ v. Λ Θέμα Β 1. Η σωστή απάντηση είναι το (β). Από το σχήμα υπολογίζουμε
ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: /10/1 ΘΕΜΑ 1 ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Τρίτη 15 Απριλίου 2014 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΓΙΑ ΤΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Επιμέλεια: ΦΡΟΝΤΙΣΤΗΡΙΑ «ΟΜΟΚΕΝΤΡΟ» ΦΛΩΡΟΠΟΥΛΟΥ
Τρίτη 5 Απριλίου 04 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΓΙΑ ΤΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 04 Επιμέλεια: ΦΡΟΝΤΙΣΤΗΡΙΑ «ΟΜΟΚΕΝΤΡΟ» ΦΛΩΡΟΠΟΥΛΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό
Α1 γ, Α2 γ, Α3 β, Α4 α, Α5 α Σ, β Λ, γ Λ, δ Σ, ε Λ. άρα. p. Έχοντας ίσες μάζες
Λύσεις διαγωνίσματος 5 Θέμα Α Α γ, Α γ, Α β, Α4 α, Α5 α Σ, β Λ, γ Λ, δ Σ, ε Λ Θέμα Β Β. Σωστή απάντηση είναι η (γ). Στην η περίπτωση αφού το συσσωμάτωμα μετά την κρούση παραμένει ακίνητο τα σώματα πριν
Πρόχειρες Λύσεις. Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις Πρόχειρες Λύσεις Θέµα Α Α.1 Σε µια εξαναγκασµένη ταλάντωση η συχνότητα του διεγέρτη είναι µεγαλύτερη της ιδιοσυχνότητας του ταλαντωτή. Αν µειώνουµε συνεχώς
ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) 30/9/208 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ
ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ 30/9/08 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ.: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΘΕΜΑ Β Ερώτηση. Ένα σώμα, μάζας,
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
17-10-11 ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ Α Θέµα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 δίπλα το γράµµα που αντιστοιχεί
w w w.k z a c h a r i a d i s.g r
Πως αποδεικνύουμε ότι ένα σώμα εκτεί απλή αρμονική ταλάντωση Μεθοδολογία i) Βρίσκουμε την θέση ισορροπίας του σώματος και σχεδιάζουμε το σώμα σε αυτή την θέση. ii) Σχεδιάζουμε τις δυνάμεις που ενεργούν
ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 1. Ένα σώμα μάζας m= 2 kg εκτελεί απλή αρμονική ταλάντωση σε οριζόντια διεύθυνση. Στη θέση με απομάκρυνση x 1 =+2m το μέτρο της ταχύτητας του είναι u 1 =4m /s, ενώ στη θέση με απομάκρυνση
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Φυσική Προσανατολισμού, Θετικών Σπουδών. Ημ/νία: 12 Ιουνίου 2017
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Φυσική Προσανατολισμού, Θετικών Σπουδών Ημ/νία: 12 Ιουνίου 2017 Απαντήσεις Θεμάτων ΘΕΜΑ Α Α1. δ Α2. γ Α3. α Α4. δ Α5. α) Λάθος β) Σωστό
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α:. Σωστό το B.. Σωστό το Γ. 3. Σωστό το Δ. 4. Σωστά τα Α, Β, Γ. 5. Σωστό το Δ. ΘΕΜΑ Β:. Σωστό το Β. Αιτιολόγηση: Έχουµε διαδοχικά:. Σωστό το Α. D D K E U =
Φυσική Α Λυκείου Σχολικό Έτος Διαγώνισμα Φυσικής Α Λυκείου Ευθύγραμμη κίνηση Δυναμική σε μία διάσταση Δυναμική στο επίπεδο ~~ Λύσεις ~~
Διαγώνισμα Φυσικής Α Λυκείου Ευθύγραμμη κίνηση Δυναμική σε μία διάσταση Δυναμική στο επίπεδο ~~ Λύσεις ~~ 1) iv ) iii 3) iv 4) ii 5) Λ, Σ, Σ, Λ, Σ Θέμα Α 1) Δh Θέμα Β Σημείο Β Σημείο Α ha hb Για την ελεύθερη
ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΟΥ ΜΕΤΑΤΡΕΠΕΤΑΙ ΣΕ ΦΘΙΝΟΥΣΑ Ένα σώμα Σ μάζας m=2kg είναι δεμένο στο ένα άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=50n/m, το άλλο άκρο του οποίου είναι Θ.Φ.Μ στερεωμένο σε ακλόνητο
1 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ
1 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ Αβαρές και μη εκτατό νήμα είναι δεμένο στο ένα άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k = 100 N/m, το άλλο άκρο του οποίου είναι στερεωμένο στο έδαφος. Το ελεύθερο άκρο
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Β έκδοση Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Β έκδοση Θέµα Α Α.1. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων
ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.
ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. (0,5 μόριο) m1υ1 -m2 υ. 0,5 m/s (1 μόριο)
ΑΡΧΗ Η ΕΛΙΔΑ ΛΥΕΙ ΔΙΑΓΩΝΙΜΑΤΟ ΠΕΡΙΟΔΟΥ ΕΠΤΕΜΒΡΙΟΥ Γ ΤΑΞΗ ΗΜΕΡΗΙΟΥ ΚΑΙ Δ ΤΑΞΗ ΕΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΕΠΤΕΜΒΡΙΟΥ 8 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΙΚΗ ΠΡΟΑΝΑΤΟΛΙΜΟΥ ΥΝΟΛΟ ΕΛΙΔΩΝ: ΟΚΤΩ (8) Θέμα Α(5 Μονάδες)
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Α.1
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως και Α.4 να γράψετε τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή πρόταση. Α1) Ένα σώμα κάνει α.α.τ.
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4
ΘΕΜΑ Β Β1. Ένας ταλαντωτής εκτελεί φθίνουσα ταλάντωση με πλάτος που μειώνεται εκθετικά με το
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2015-2016 ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 08/11/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Α1 δ Α2 γ Α3 δ Α4 α Α5 β ΘΕΜΑ Β Β1 Ένας ταλαντωτής
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. 1. Δ 2. Α 3. Β 4. Α 5. Α Β. 1.Λ 2.Λ 3.Λ 4.Σ 5.Λ Ν 1 Ν 2
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Δ Α Β 4 Α 5 Α Β Λ Λ Λ 4Σ 5Λ Ν Ν ΘΕΜΑ Β Β Σωστή η α) Αρχικά απο την ισορροπία έχουμε N+ N = w= 00N και ως προς το
ΘΕΜΑΤΑ. Θέμα Α (5X5=25μον) Α1. Σώμα μάζας m που είναι προσδεμένο σε οριζόντιο ελατήριο σταθεράς k, όταν. Α2. Όταν δυο σώματα συγκρούονται πλαστικά:
ΔΙΑΓΩΝΙΣΜΑ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Καθηγητής/τρια: Ονοματεπώνυμο: Τμήμα: ΘΕΜΑΤΑ Θέμα Α (5X5=25μον) Α1. Σώμα μάζας m που είναι προσδεμένο σε οριζόντιο ελατήριο σταθεράς k, όταν απομακρύνεται
2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις
2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α (μονάδες 25) Α1. Σε μια Α.Α.Τ. η εξίσωση της απομάκρυνσης είναι x=a.συνωt. Τη χρονική στιγμή
ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ
ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ. Θα μελετήσουμε τώρα συστήματα που η ταλάντωση ξεκινά εξαιτίας μίας κρούσης ή έχουμε ήδη μία ταλάντωση και κάπου στην πορεία συμβαίνει και μία κρούση.. Σώμα που κινείται με κάποια
Γενικό κριτήριο αξιολόγησης στις ταλαντώσεις
Ταλαντώσεις ΚΕΦΑΛΑΙΟ 1 Θέμα 1 Γενικό κριτήριο αξιολόγησης στις ταλαντώσεις 1. Σε απλή αρμονική ταλάντωση ποια από τις επόμενες προτάσεις είναι σωστή; α. Η επιτάχυνση έχει φορά προς τη θέση ισορροπίας.
ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ
ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ 1. Ελατήριο σταθεράς K τοποθετείται κατακόρυφα με το πάνω άκρο του στερεωμένο σε ακλόνητο σημείο. Ένα σώμα μάζας M=1 kg δένεται στο κάτω άκρο του ελατηρίου και η επιμήκυνση που προκαλεί
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΚΕΜΒΡΙΟΣ 2018 ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΑΙ ΣΤΙΣ ΚΡΟΥΣΕΙΣ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΚΕΜΒΡΙΟΣ 2018 ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΑΙ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α. Α1. Κατά τη διάρκεια μιας
D α x γ. α D m x δ. m
ΚΟΨΙΔΑΣ Η. ΔΗΜΗΤΡΙΟΣ Καθηγητς Φυσικς ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ (ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) Διάρκεια εξέτασης: ώρες ΘΕΜΑ ο Οδηγία: Στις ερωτσεις -4 να γράψετε στο τετράδιο σας
ΟΡΟΣΗΜΟ Ένα υλικό σημείο που κάνει α.α.τ πλάτους Α=10cm τη χρονική στιγμή t=0s έχει απομάκρυνση x 5 3 cm. Να βρείτε την αρχική φάση φ 0
Απλή Αρμονική Ταλάντωση ΚΕΦΑΛΑΙΟ 1 Σώμα που εκτελεί απλή αρμονική ταλάντωση και χρησιμοποιούμε τις εξισώσεις. 1.56 Ένα υλικό σημείο που κάνει α.α.τ πλάτους Α=10cm τη χρονική στιγμή t=0s έχει απομάκρυνση
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
17-10-11 ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ Α Θέµα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 δίπλα το γράµµα που αντιστοιχεί στη
Επαναληπτικό Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου ~~~ Λύσεις ~~~
Επαναληπτικό Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου ~~~ Λύσεις ~~~. δ 2. δ 3. α 4. δ 5. Σ, Λ, Σ, Σ, Λ. Θέμα Α Θέμα Β. α. Όταν το σώμα ισορροπεί αρχικά με τη βοήθεια του νήματος ισχύει: ΣF = 0 ή F
ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ.
ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΕΡΩΤΗΣΗ 1 Στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k = 400 N/m είναι κρεμασμένο σώμα μάζας m = 1 kg. Το σύστημα ελατήριο-σώμα εξαναγκάζεται
Ημερομηνία: Παρασκευή 27 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /0/07 ΕΩΣ //07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 7 Οκτωβρίου 07 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις
2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Παρασκευή 4 Σεπτέµβρη 2015 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Λύσεις. Θέµα Α
2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Παρασκευή 4 Σεπτέµβρη 2015 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις Λύσεις Θέµα Α Α.1. Απλός αρµονικός ταλαντωτής εκτελεί ταλάντωση πλάτους Α. ιατηρούµε σταθερό το πλάτος
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
Λυμένες ασκήσεις. Έργο σταθερής δύναμης
Λυμένες ασκήσεις Έργο σταθερής δύναμης 1. Στο σώμα που απεικονίζεται δίπλα τα μέτρα των δυνάμεων είναι F = 20 N, F 1 = 20 N, T = 5 N, B = 40 N. Το σώμα μετατοπίζεται οριζόντια κατά S = 10 m. Να βρεθούν
ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ Μ.ΤΕΤΑΡΤΗ 0 ΑΠΡΙΛΙΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ - ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 ο 1. γ. γ 3. α 4. δ 5. α) Λ β) Σ γ)
Διαγώνισμα Φυσικής Α Λυκείου
Διαγώνισμα Φυσικής Α Λυκείου Ευθύγραμμη κίνηση Δυναμική σε μία διάσταση Δυναμική στο επίπεδο Θέμα Α 1) Μέτρο της αδράνειας των σωμάτων είναι: i) Η ταχύτητα. ii) Η επιτάχυνση. iii) Το βάρος. iv) Η μάζα.
ΕΝΟΤΗΤΑ 2: ΡΟΠΗ ΔΥΝΑΜΗΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Γ. γ) η στατική τριβή στον δίσκο καθώς και το μέτρο της δύναμης που ασκεί το κεκλιμένο επίπεδο στο δίσκο.
ΚΕΦΑΛΑΙΟ 4 Ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ : ΡΟΠΗ ΔΥΝΑΜΗΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Γ Άσκηση 1. Ο δίσκος ισορροπεί με τη βοήθεια ενός νήματος παράλληλου στο κεκλιμένο επίπεδο. Αν το βάρος του δίσκου είναι
Physics by Chris Simopoulos
ΟΙ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ - ΤΡΙΒΗ 1ος νόμος του Νεύτωνα ή νόμος της αδράνειας της ύλης. «Σε κάθε σώμα στο οποίο δεν ενεργούν δυνάμεις ή αν ενεργούν έχουν συνισταμένη μηδέν δεν μεταβάλλεται η κινητική του κατάσταση.
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει
Επαναληπτικές εξετάσεις Φυσικής Κατεύθυνσης Γ Λυκείου
Επαναληπτικές εξετάσεις Φυσικής Κατεύθυνσης Γ Λυκείου 3-6-0 ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία
ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις (Α1-Α4) και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 06-07 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Φυσική Προσανατολισμού, Θετικών Σπουδών. Ημ/νία: 12 Ιουνίου 2017
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Φυσική Προσανατολισμού, Θετικών Σπουδών Ημ/νία: 12 Ιουνίου 2017 Απαντήσεις Θεμάτων ΘΕΜΑ Α Α1. δ Α2. γ Α3. α Α4. δ Α5. α) Λάθος β) Σωστό
α. να υπολογίσετε το πλάτος της ταλάντωσης K=25N/m
1 Θέμα 1 ο Tο σώμα με μάζα m 1=0,75Kg ισορροπεί. Πάνω από το σώμα και σε απόσταση από αυτό 40cm εκτοξεύουμε κατακόρυφα μια μπίλια με μάζαm 2 =0,25Kg προς τα πάνω με ταχύτητα 2m/s και κατά την επιστροφή
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝ- ΣΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝ- ΣΗΣ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο ΑΠΑΝΤΗΣΕΙΣ Α1 γ Α β Α3 γ Α4 γ Α5. (α) Σ (β) Λ (γ) Σ (δ) Λ (ε) Λ ΘΕΜΑ ο Β1. Σωστό είναι