ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ
|
|
- Ευτύχιος Καραμήτσος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ύλη µαθήµατος. Lead-Lag ελεγκτές 2. PID ελεγκτές (95%) (εκτός διαγράµµατα Nyquist-Nichols) ιακριτός & Ψηφιακός Αυτόµατος Έλεγχος ΨΗΦΙΑΚΟΣ ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Εργαστήριο Matlab LABview : συλλογή και αποστολή δεδοµένων (National Instruments) /8
2 ΙΑΚΡΙΤΟΣ ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ 2 /8
3 Παράδειγµα υλοποίησης ελεγκτή στο συνεχές πεδίο u e = u() t edt s = ( ) e( k) u kts l= 0 K = 3 /8
4 2 Q [ ] Μετρήσεις, όπου Q: # bits µε Q 8,6 4 /8
5 Έστω Σύστηµα G( s) = Να σχεδιαστεί ελεγκτής ( + )( s+ 5) s s α) Έτσι ώστε οι κυρίαρχοι πόλοι να έχουν απόσβεση ζ=0.4. Αν C(s)=k, o Γ.Τ.Π. είναι Έχω δύο κυρίαρχους πόλους που υπολογίζονται από την τοµή του Γ.Τ.Π. µε µια ευθεία 0s γωνίας s0( Re) = cos ζ = 66.4 o Αυτό επιτυγχάνεται για k= /8
6 Αν r(t)=(t) e ss = 0 ess = = = = Αν r(t)=t(t) ΤΡΙΓ k lim sg( s) 0,976 4,88 s 0 Root Locus 5 Για να µειωθεί το πρέπει να αυξηθεί το k. 8 e ss k Αν Cs () = τότε ο Γ.Τ.Π. είναι s Και το κλειστό σύστηµα είναι... ασταθές Imaginary Axis Real Axis 6 /8
7 Ελεγκτής καθυστέρησης φάσης Τρόπος υλοποίησης µε παθητικά στοιχεία (Α=) a R + R R 2 = > 2 T = R C 2 7 /8
8 Για να αλλάξει ριζικά ο Γ.Τ.Ρ. Θέτω τον πόλο και το µηδενικό όσο γίνεται πιο κοντά στο φανταστικό άξονα Ο µόνος περιορισµός είναι λόγω κατασκευαστικών δυσκολιών. A s+ 0,05 Π.χ. Αν Cs () = 0 s + 0,005 R = MΩ R = 8MΩ C = 0µ F 2 2 Root Locus 0.06 Ονέος Γ.Τ.Ρ. είναι zoom Imaginary Axis Real Axis 8 /8
9 Imaginary Axis Όπου για τον ίδιο συντελεστή ζ=0.4 και συνάρτηση µεταφοράς ανοιχτού βρόχου A s+ 0,05 0 s+ 0,005 s s+ s ( )( ) Root Locus System: g Gain: 44. Pole: i Damping: 0.4 Overshoot (%): 25.4 Frequency (rad/sec): A Ητιµή του είναι 0 A ss+ s+ 5 s+ 0,005 = 0 s + 0,05 s=σηµ. τοµης Real Axis 9 /8
10 A Για αυτό το κέρδος έχουµε 0 e ss ΤΡΙΓ Παρατηρώ ότι.. Υπάρχει σηµαντική ελάττωση του σφάλµατος µόνιµης κατάστασης για τις ίδιες τιµές των κυρίαρχων πόλων. Ο Lag ελεγκτής βελτιώνει κύρια τη µόνιµη απόκριση του συστήµατος, ενώ χειροτερεύει ανεπαίσθητα τη µεταβατική (την κάνει ανεπαίσθητα πιο αργή λόγω µεταβολής της φυσικής συχνότητας ) w n Τι γίνεται σε περίπτωση όπου ο πόλος και το µηδενικό του Lag δεν τεθούν κοντά στον φανταστικό άξονα? Π.χ. ( ) s C s = s + 0. = = 0, Imaginary Axis A( s+ ) ( + )( + )( + ) lim s s ,05 s s s s Root Locus Real Axis ΟΓ.Τ.Π αλλάζει αισθητά 0 /8
11 Ελεγκτής προήγησης φάσης (Lead) u( s) + Ts = Aa e( s) + ats Χρησιµοποιείται κύρια για τη βελτίωση της µεταβατικής απόκρισης Τρόπος υλοποίησης µε παθητικά στοιχεία ιάγραµµα πόλων-µηδενικών όπου a R R + R = 2 < 2 T = RC /8
12 Αν ζητείται η ταχύτερη απόκριση του συστήµατος αύξηση του (και διατήρηση του ζ) Αν (ακύρωση του πόλου του συστήµατος ) T =+ w n Η τοποθέτηση του πόλου στο /{ατ) Ορίζεται από τη συνθήκη της φάσης ( ) ( ) ( ) + G s = 0 G s = G s = 80 o όπου As ( + ) Ak G ( s) = = s s s s at s s s at ( + )( + 5)( + ) ( + 5)( + ) Αν το επιθυµητό σηµείο είναι το τότε πρέπειφ0 φ2 φ3 = 80 o s 2 /8
13 Ενδεικτικά ο Γ.Τ.Ρ. για C(s)=k είναι Ενώ ο Γ.Τ.Ρ. µετατοπίζεται αισθητά προς τα αριστερά (ταχύτερη απόκριση) Π.χ. για s + Cs () = k s /8
14 Αν δεν ακυρωθεί ακριβώς ο πόλος του συστήµατος στο (π.χ. ). Ο Γ.Τ.Π. είναι T =.00 Η µεγέθυνση στην περιοχή ενδιαφέροντος δείχνει ότι ένας πόλος του κλειστού Συστήµατος «οδεύει» προς το µηδενικό στο.00 4 /8
15 Αντιστάθµιση προήγησης φάσης (συνέχεια...) Χρησιµοποιείται για την ταχύτερη απόκριση του συστήµατος, µετατοπίζοντας τον Γ.Τ.Ρ προς τα αριστερά Αντί της ακύρωσης του πόλου του συστήµατος στο, γιατί δεν ακυρώνω τον πόλο στο 0? Π.χ s + ε Cs () = k, ε 0 s + at Το σύστηµα θα γίνει από τύπου τύπου 0 µε άµεση συνέπεια στο Ένεκα πιθανώς κατασκευαστικών προβληµάτων είναι δυνατόν το µηδενικό να µετατοπισθεί + στο δεξί ηµιεπίπεδο ( ε 0 ) και να υπάρχουν προβλήµατα ευστάθειας e ss 5 /8
16 Σχεδιασµός αντισταθµιστή προήγησης φάσης µε Γ.Τ.Ρ. (µέθοδος διχοτόµου) CsGs () () Αν s είναι ένας επιθυµητός πόλος του κλειστού συστήµατος + CsGs ( ) ( ) s+ zlead Όπου Cs () =, zlead < plead s+ plead Από τη συνθήκη της φάσης για το σύστηµα CsGs () ()(δες Γ.Τ.Ρ) Πρέπει φ φ φ φ φ o p z = 80 LEAD LEAD φ φ = 80 ( φ + φ + φ ) o ή p z 2 3 LEAD LEAD = φ 6 /8
17 Το µηδενικό και ο πόλος του ελεγκτή µπορούν να υπολογιστούν µε βάση τον εξής αλγόριθµο s s 0. Εύρεση διχοτόµου γωνίας s s Εύρεση 2 ηµιευθειών s s και s s 3 έτσι ώστε sss = φ 2 και 3 3. Το σηµείο τοµής της s s µε τον πραγµατικό άξονα είναι ο πόλος του ελεγκτή 4 4. Το σηµείο τοµής της s s µε τον πραγµατικό άξονα είναι το µηδενικό του ελεγκτή z LEAD 4 = sss p LEAD φ 2 o φ + 80 φ + φ = 80 Απόδειξη: plead z (άθροισµα γωνιών τριγώνου) LEAD o 7 /8
18 ( k ) ( ) P(0) Π t P p σ ct () = + 2kG e cos ωdt P( p) p Q( p) G(0) + + pkq pk dq Q = ds dc() t π = 0 Tp = P p Q p dt ω + d 2 ( ) ( ) ( 0) ( 0) w d m= p 2 G n Q ωn k = 2 ( p z ) m P ω M = + 2 k e ( p p ) k σtp 8 /8
Αυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών 6 Nicolas Tsapatsoulis ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος []: Κεφάλαιο
Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 1: ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα
Αυτόματος Έλεγχος. Ενότητα 10 η : Σχεδίαση αντισταθμιστών στο πεδίο της συχνότητας. Παναγιώτης Σεφερλής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1 η : Σχεδίαση αντισταθμιστών στο πεδίο της συχνότητας Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν
Σχεδίαση Σ.Α.Ε: Σχεδίαση µε το Γεωµετρικό Τόπο Ριζών
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Σχεδίαση Σ.Α.Ε: Σχεδίαση µε το Γεωµετρικό Τόπο Ριζών ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος []: Εφαρµογές, Κεφάλαιο 9: Ενότητες 9.-9.4
ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ
Τ.Ε.Ι. ΚΡΗΤΗΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Μ. Σφακιωτάκης msfak@staff.teicrete.gr Χειµερινό εξάµηνο 18-19
Βαθμολογία Προβλημάτων ΘΕΜΑ 1 ΘΕΜΑ 2.1 ΘΕΜΑ 2.2 ΘΕΜΑ 2.3 ΘΕΜΑ 3.1 ΘΕΜΑ 3.2 ΘΕΜΑ 4 ΘΕΜΑ 5.1 ΘΕΜΑ 5.2
1 4 5 6 7 8 9 10 11 1 1 14 ΑΠΑΓΟΡΕΥΕΤΑΙ Η ΑΝΑΤΥΠΩΣΗ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΙΝ ΤΗΝ Ιουνίου 008 ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Ιουνίου 008 Να επιστραφεί η εκφώνηση των θεμάτων (υπογεγραμμένη από
Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. 1 το οποίο περιγράφεται από το δυναµικό µοντέλο
ΨΣΕ 3 η Εργαστηριακή Άσκηση Γραµµικοποιήση µε ανατροφοδότηση εξόδου και έλεγχος Κινούµενου Ανεστραµµένου Εκκρεµούς Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. το οποίο περιγράφεται
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Γεωμετρικός Τόπος Ριζών Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Βαθµολογία Προβληµάτων ΘΕΜΑ 1 ΘΕΜΑ 2.1 ΘΕΜΑ 2.2 ΘΕΜΑ 2.3 ΘΕΜΑ 3.1 ΘΕΜΑ 3.2 ΘΕΜΑ 4 ΘΕΜΑ 5.1 ΘΕΜΑ 5.2. G(s)
ΑΠΑΓΟΡΕΥΕΤΑΙ Η ΑΝΑΤΥΠΩΣΗ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΙΝ ΤΗΝ 3 Σεπτεµβρίου 4 ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Σεπτεµβρίου 4 Να επιστραφεί η εκφώνηση των θεµάτων (υπογεγραµµένη από τον εξεταστή) ΕΠΩΝΥΜΟ
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #5: Σχεδιασμός ελεγκτών με τη μέθοδο του Τόπου Ριζών 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής
Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1
Ψηφιακός Έλεγχος 10 η διάλεξη Ασκήσεις Ψηφιακός Έλεγχος 1 Άσκηση1 Ασκήσεις Επιθυμούμε να ελέγξουμε την γωνία ανύψωσης μιας κεραίας για να παρακολουθείται η θέση ενός δορυφόρου. Το σύστημα της κεραίας και
Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί
Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα
. Οι ιδιοτιμές του 3 3 canonical-πίνακα είναι οι ρίζες της. , β) η δεύτερη είσοδος επηρεάζει μόνο το μεσαίο 3 3 πίνακα και
ο ΘΕΜΑ [6. βαθμοί] 5 u x x + u Ax + Bu Έστω συνεχές σύστημα 4 5 3 u3 y [ ] x. [ β] Ποιες είναι οι ιδιοτιμές του πίνακα Α; 5 Με το ακόλουθο partinioning του πίνακα A οι ιδιοτιμές του είναι 4 5 eig(a) eig(
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 5 η : ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ
ΑΣΚΗΣΗ Για τα µαθήµατα: Εισαγωγή στον Αυτόµατο Έλεγχο (5 ο Εξάµηνο ΣΗΜΜΥ) Σχεδίαση Συστηµάτων Αυτοµάτου Ελέγχου (6 ο Εξάµηνο ΣΗΜΜΥ)
ΑΣΚΗΣΗ 7-2-27 Για τα µαθήµατα: Εισαγωγή στον Αυτόµατο Έλεγχο (5 ο Εξάµηνο ΣΗΜΜΥ) Σχεδίαση Συστηµάτων Αυτοµάτου Ελέγχου (6 ο Εξάµηνο ΣΗΜΜΥ) Ακαδηµαϊκό Έτος: 27-28 ιδάσκων:γ. Π. Παπαβασιλόπουλος Επιµέλεια
Ρυθµιστές PID. Βρόχος Ανατροφοδότησης Αναλογικός Ρυθµιστής (Ρ) Ολοκληρωτικός Ρυθµιστής (Ι) ιαφορικός Ρυθµιστής (D) Ρύθµιση PID
Ρυθµιστές PID Βρόχος Ανατροφοδότησης Αναλογικός Ρυθµιστής (Ρ) Ολοκληρωτικός Ρυθµιστής (Ι) ιαφορικός Ρυθµιστής (D) Ρύθµιση PID 1 Βρόχος Ανατροφοδότησης! Θεωρούµε το βρόχο ανατροφοδότησης SP ιεργασία D G
Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Εργαστηριακές Ασκήσεις με χρήση του λογισμικού Matlab Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab ΣΚΟΠΟΣ: Ο βασικός σκοπός της άσκησης αυτής είναι η μελέτη
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ T.E. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμογών: Σ. ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID
Κεφάλαιο 6 Έλεγχος στο Πεδίο της Συχνότητας u Έλεγχος στο Πεδίο της Συχνότητας Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Τόπος Ριζών Για τον τόπο των ριζών δεν χρειάζεται καµία ιδιαίτερη
(είσοδος) (έξοδος) καθώς το τείνει στο.
Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου
ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 2008)
ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 008) Για τον Γεωμετρικό Τόπο των Ριζών της συνάρτησης μεταφοράς as + s + 9 G(s) s(s 5)(s + b) με Κ>0 δίδεται ότι η τομή των ασυμπτώτων είναι το σημείο σ -(0+Ν 0 ) όπου Ν 0 το τελευταίο
Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος
Στα θέματα πολλαπλής επιλογής η λανθασμένη απάντηση βαθμολογείται αρνητικά όσο και η ορθή. Επιτρέπεται η χρήση του βιβλίου των Dorf & Bishop
Ε.Μ.Π. ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: Σ. Ε. Ρ. ΜΑΘΗΜΑ: Εισαγωγή στον Αυτόματο Έλεγχο ΕΞΑΜΗΝΟ: 5 ο ΚΑΘΗΓΗΤEΣ: Τ. Γ. Κουσιουρής Γ. Παπαβασιλόπουλος Αριθμός Μητρώου Ονοματεπώνυμο
Βαθμολογία Προβλημάτων Θέμα (μέγιστος βαθμός) (βαθμός εξέτασης)
4 5 6 7 8 9 0 4 5 6 7 8 9 0 4 5 6 7 8 9 0 4 5 6 7 8 ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Ιουλίου 007 ΕΠΩΝΥΜΟ (εξεταζόμενου/ης) ΟΝΟΜΑ (εξεταζόμενου/ης) Αριθμός Μητρώου Υπογραφή (εξεταζόμενου/ης)
Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID
Κεφάλαιο 6 Έλεγχος στο Πεδίο της Συχνότητας u Έλεγχος στο Πεδίο της Συχνότητας Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Τόπος Ριζών Για τον τόπο των ριζών δεν χρειάζεται καµία ιδιαίτερη
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επικ Καθ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
ΕΝΟΤΗΤΑ 11: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΗΜΕΘΟΔΟΣ ΓΕΩΜΕΤΡΙΚΟΥ
Συστήματα Αυτομάτου Ελέγχου ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #6: Σχεδιασμός Ελεγκτών με Χρήση Αναλυτικής Μεθόδου Υπολογισμού Παραμέτρων Δημήτριος Δημογιαννόπουλος
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ T.E. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμογών: Σ. ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #6: Σχεδιασμός ελεγκτών με χρήση αναλυτικής μεθόδου υπολογισμού παραμέτρων 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr
Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος
ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ
ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Κριτήριο Nyquist Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
10 2a 1 0 x. 1) Να εξεταστεί η ελεγξιμότητα και η παρατηρησιμότητα του συστήματος για τις διάφορες
Ε.Μ.Π. ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: Σ. Ε. Ρ. ΜΑΘΗΜΑ: Εισαγωγή στον Αυτόματο Έλεγχο Κ-Ω ΕΞΑΜΗΝΟ: 5 ο Ονοματεπώνυμο ΚΑΘΗΓΗΤEΣ: Τ. Γ. Κουσιουρής Γ. Παπαβασιλόπουλος ΠΕΡΙΟΔΟΣ:
ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ
ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) 1 Πόλος στην αρχή των αξόνων: 2 Πόλος στον αρνητικό πραγματικό ημιάξονα: 3 Πόλος στον θετικό πραγματικό ημιάξονα: 4 Συζυγείς πόλοι πάνω
ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09
ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτµατισµύ Συστήµατα Αυτµάτυ Ελέγχυ ΙΙ Ασκήσεις Πράξης. Καλλιγερόπυλς Σ. Βασιλειάδυ Χειµερινό εξάµην 8/9 Ασκήσεις Μόνιµα Σφάλµατα & Κριτήρια ευστάθειας Άσκηση.. ίνεται σύστηµα µε συνάρτηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ
Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:
1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16. Υπολογισμός αντισταθμιστή με χρήση διοφαντικών εξισώσεων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 13: PD controllers, Lead compensators Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΚΕΦΑΛΑΙΟ 4 ο ΕΥΣΤΑΘΕΙΑ ΣΥΣΤΗMAΤΩΝ
ΚΕΦΑΛΑΙΟ 4 ο ΕΥΣΤΑΘΕΙΑ ΣΥΣΤΗMAΤΩΝ Εισαγωγή - Έννοιες Ένα ασταθές αντικείμενο προκαλεί γενικά ανεπιθύμητες παρενέργειες ή και καταστροφές Γενικά ένα ευσταθές σύστημα έχει μία οριοθετημένη τιμή στην απόκρισή
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ Εφαρμ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ : ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός
ΣΦΑΛΜΑΤΑ ΜΟΝΙΜΗΣ ΚΑΤΑΣΤΑΣΗΣ
ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ Χρονική Απόκριση Συστηµάτων Τα περισσότερα συστήµατα είναι από την φύση τους δυναµικά και παρουσιάζουν κάποιας µορφής αδράνεια
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία
ΚΕΦΑΛΑΙΟ 5 ο. ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS
ΚΕΦΑΛΑΙΟ 5 ο ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS Εισαγωγή Η μελέτη ενός ΣΑΕ μπορεί να γίνει με την επίλυση της διαφορικής εξίσωσης που το περιγράφει και είναι τόσο πιο δύσκολο, όσο μεγαλυτέρου βαθμού
ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE Δρ Γιώργος Μαϊστρος, Χημικός Μηχανικός
Σεµινάριο Αυτοµάτου Ελέγχου
Σεµινάριο Αυτοµάτου Ελέγχου Μάθηµα 4 Αναλυτική σύνθεση συστηµάτων αυτοµάτου ελέγχου Με συνθήκη µόνιµου σφάλµατος Με συνθήκη επιθυµητών πόλων Με επιθυµητό πρότυπο Καλλιγερόπουλος 4 1 Αναλυτική Σύνθεση συστηµάτων
Συστήματα Αυτομάτου Ελέγχου ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #4: Ευστάθεια Συστημάτων Κλειστού Βρόχου με τη Μέθοδο του Τόπου Ριζών Δημήτριος Δημογιαννόπουλος
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών
ΣΧΕ ΙΑΣΜΟΣ ΕΛΕΓΚΤΩΝ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΕΛΕΓΧΟΥ
Σχεδιασµός Ελεγκτών Σειράς ΣΧΕ ΙΑΣΜΟΣ ΕΛΕΓΚΤΩΝ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΕΛΕΓΧΟΥ Για την βελτίωση των συστηµάτων αυτοµάτου ελέγχου χρησιµοποιούµε τους λεγόµενους ελεγκτές ή αντισταθµητές. Οι ελεγκτές ή αντισταθµητές
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Απόκριση Συχνότητας Αναλογικών Σ.Α.Ε Διαγράμματα BODE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Α Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών
Ερωτήσεις 1 ου Θέματος [8 Χ 0.25= 2.0 β.] Οι απαντήσεις πρέπει υποχρεωτικά νε βρίσκονται εντός του περιγεγραμμένου χώρου G()
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Τελική εξέταση Ιουνίου Να επιστραφεί η εκφώνηση των θεμάτων υπογεγραμμένη από τον εξεταστή ΕΠΩΝΥΜΟ εξεταζόμενου/ης ΟΝΟΜΑ εξεταζόμενου/ης Αριθμός Μητρώου Έτος π.χ. ΓΔΕΕκ.λ.π.
Σχεδίαση Σ.Α.Ε: Μορφές Αντισταθµιστών και Κλασικές Μέθοδοι Σχεδίασης
ΚΕΣ Αυτόµατος Έλεγχος Σχεδίαση Σ.Α.Ε: Μορφές Αντισταθµιστών και Κλασικές Μέθοδοι Σχεδίασης Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 9: Ενότητες 9.-9.9 Παρασκευόπουλος [5]: Εφαρµογές, Κεφάλαιο
ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ
7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Σεπτεμβρίου 2008 ΕΠΩΝΥΜΟ (εξεταζόμενου/ης)
3 4 5 6 7 8 9 0 3 4 ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ - Τελική εξέταση Σεπτεμβρίου 008 ΕΠΩΝΥΜΟ (εξεταζόμενου/ης) ΟΝΟΜΑ (εξεταζόμενου/ης) Αριθμός Μητρώου Έτος (π.χ. Γ,Δ,Ε,Ε,κ.λ.π.) Υπογραφή εξεταστή Υπογραφή
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 6
ΗΜΥ 00 Εισαγωγή στην Τεχνολογία Διάλεξη 6 5 Σεπτεμβρίου, 0 Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τα θέματά μας σήμερα Χρονικά
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Γεωμετρικός τόπος των ριζών Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΑΣΚΗΣΗ 2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ
Σήματα και Συστήματα
Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες
Αυτόματος Έλεγχος. Ενότητα 5 η : Απόκριση Συχνότητας Δυναμικών Συστημάτων. Παναγιώτης Σεφερλής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5 η : Απόκριση Συχνότητας Δυναμικών Συστημάτων Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #9: Αναλογικά Συστήματα Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν
M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br
ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση
Συστήματα αυτομάτου ελέγχου Αρμονική απόκριση συστημάτων
ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ Θεωρούμε το σύστημα με συνάρτηση μεταφοράς G(s διεγείρεται από το σήμα με μετασχηματισμό Laplace έξοδος του συστήματος θα είναι με δύο συζυγείς φανταστικούς πόλους jω
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ. ΘΕΜΑ Βαθμολογία Βαθμός Σπουδαστή ΘΕΜΑ ΘΕΜΑ
Ε.Μ.Π. ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: Σ. Ε. Ρ. ΜΑΘΗΜΑ: Εισαγωγή στον Αυτόματο Έλεγχο ΕΞΑΜΗΝΟ: 5 ο ΚΑΘΗΓΗΤEΣ: Τ. Γ. Κουσιουρής Γ.Π. Παπαβασιλόπουλος Γ. Ρηγάτος ΠΕΡΙΟΔΟΣ:
ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ. 1. Το περιεχόμενο του μαύρου κουτιού. 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση. (απλά ηλεκτρικά στοιχεία)
ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ Είσοδος ΜΑΥΡΟ ΚΟΥΤΙ Έξοδος 1. Το περιεχόμενο του μαύρου κουτιού (απλά ηλεκτρικά στοιχεία) 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση 2019Κ1-1 ΚΥΜΑΤΟΜΟΡΦΕΣ 2019Κ1-2 ΤΙ
ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ
ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ Μ. Σφακιωτάκης mfak@taff.teicrete.gr Χειµερινό Οκτώβριος εξάµηνο 2010-11 2017 Σύστηµα Μάζας-Ελατηρίου-Αποσβεστήρα
ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΧΕΙΜ5-6 ΗΜΕΡΟΜΗΝΙΑ: ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΕΛΕΓΧΟΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. 6o Εγραστήριο Σ.Α.Ε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 6o Εγραστήριο Σ.Α.Ε Ενότητα: Προσομοίωση Σ.Α.Ε. με το πρόγραμμα Comprehensive Control Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης
Αυτόματος Έλεγχος. Ενότητα 3 η : Δυναμικά Χαρακτηριστικά Τυπικών Συστημάτων Ευστάθεια Δυναμικών Συστημάτων. Παναγιώτης Σεφερλής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Δυναμικά Χαρακτηριστικά Τυπικών Συστημάτων Ευστάθεια Δυναμικών Συστημάτων Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Γ: Αντιστάθμιση Συστήματος Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε.
ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ
ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ Μ. Σφακιωτάκης fak@taff.teirete.gr Χειµερινό
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #11: Ελεγκτές PID & Συντονισμός Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν
ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.
x x Ax Bu u = 0. Η ιδιοτιμή του κάτω δεξιά πίνακα είναι η -3. = s + = = + = +
y = [ ] Έστ συνεχές σύστημα ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΗΣ ΠΡΟΟΔΟΥ ΣΑΕ ΙΑΝΟΥΑΡΙΟΣ 6 ΘΕΜΑ ο u = + = + x x Ax Bu 3 3 u 3 x [ β] Ποιες είναι οι ιδιοτιμές του πίνακα Α; Ο πίνακας Α διαχρίζεται σε block, κάθε ένα από τα
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 13 Πάτρα 28 Προσαρμοστικός έλεγχος με μοντέλο αναφοράς
5o Εργαστήριο Σ.Α.Ε Ενότητα : Ελεγκτές PID
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 5o Εργαστήριο Σ.Α.Ε Ενότητα : Ελεγκτές PID Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ
Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Δ Μέρος Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ E() ε() Διορθωτής D() ε c () Σύστημα G() S() Η() Ανάδραση H() E() ε() Διορθωτής D() ε c () Σύστημα G() S() Υπολογιστής Η() Ανάδραση H() Αναλογικό και ψηφιακό ΣΑΕ Πλεονεκτήματα
Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο
1.1. ΜΕΛΕΤΗ ΣΑΕ ΣΤΟ ΠΕΔΙΟ ΣΥΧΝΟΤΗΤΑΣ (ΠΟΛΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ) 1.1.1. Γενικά Το κριτήριο Nyquist είναι μια γραφική μέθοδος με την οποία προσδιορίζεται η συμπεριφορά ενός συστήματος Αυτομάτου Ελέγχου. Το κριτήριο
Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο
1.1. ΕΥΣΤΑΘΕΙΑ Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο Ένα από τα βασικά πρακτικά προβλήματα της επιστήμης των συστημάτων αυτομάτου ελέγχου είναι η σχεδίαση ενός συστήματος τέτοιου ώστε η έξοδος του να
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 2004., η οποία όµως µπορεί να γραφεί µε την παρακάτω µορφή: 1 e
ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 4 AΣΚΗΣΗ () [ ] (.5)
e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς-Λύσεις 4ης Σειράς Ασκήσεων 7/5/ Λύσεις 4ης Σειράς Ασκήσεων
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : v(t)
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : p(t) v(t) v(t) Πίεση στό γκάζι Σήµα εισόδου t ΣΥΣΤΗΜΑ Ταχύτης του αυτοκινήτου Σήµα εξόδου t
ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου
ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
ΕΞΟΜΟΙΩΣΗ Σ.Α.Ε ΜΕ ΤΟ SIMULINK (MATLAB)
ΕΞΟΜΟΙΩΣΗ Σ.Α.Ε ΜΕ ΤΟ SIMULINK (MATLAB) ΤΕΙ Α.Μ.Θ. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΘΗΓΗΤΗΣ ΤΣΙΡΙΓΩΤΗΣ ΓΕΩΡΓΙΟΣ ΚΑΒΑΛΑ 08 ΕΞΟΜΟΙΩΣΗ Σ.Α.Ε ΜΕ ΤΟ SIMULINK (MATLAB). ΕΞΟΜΟΙΩΣΗ ΑΝΑΛΟΓΙΚΩΝ Σ.Α.Ε. Εισαγωγή στο
HMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά
LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης
Αυτόματος Έλεγχος. Ενότητα 8 η : Βελτίωση απόδοσης βρόχου ανάδρασης Α. Έλεγχος διαδοχικών βρόχων. Παναγιώτης Σεφερλής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8 η : Βελτίωση απόδοσης βρόχου ανάδρασης Α. Έλεγχος διαδοχικών βρόχων Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. 3o Εργαστήριο Σ.Α.Ε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 3o Εργαστήριο Σ.Α.Ε Ενότητα : Μελέτη και Σχεδίαση Σ.Α.Ε Με χρήση του LabVIEW Control Design Toolkit Aναστασία Βελώνη Τμήμα Η.Υ.Σ
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #13: Ψηφιακός Έλεγχος Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Έλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Ελεγκτές - Controller Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην