VIΙΙ. ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΘΕΜΑΤΑ. Α. Η Τ.Μ. L t. Όπως είδαµε, κατά τη σύναψη µιας ασφάλισης, το ετήσιο ασφάλιστρο P ( A x

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "VIΙΙ. ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΘΕΜΑΤΑ. Α. Η Τ.Μ. L t. Όπως είδαµε, κατά τη σύναψη µιας ασφάλισης, το ετήσιο ασφάλιστρο P ( A x"

Transcript

1 IΙΙ ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΘΕΜΑΤΑ Α Η ΤΜ L Όπως είαµε, ατά τη σύναψη µιας ασφάλισης, το ετήσιο ασφάλιστρο υπολογίζεται T L υ α [Σηµειώνουµε ότι η είναι µηενίζοντας τη µαθηµατιή ελπία της τµ 0 στην πραγµατιότητα L 0 T, θέλουµε όµως να τονίσουµε ότι η L 0 είναι η απώλεια / έρος του ασφαλιστή όπως ιαµορφώνεται τη χρονιή στιγµή 0 αι γράφουµε L 0 ] Οι "οιονοµιές προοπτιές" του ασφαλιστή από τη συγεριµένη ασφάλιση προφανώς µεταβάλλονται συνεχώς ατά τη ιάρεια της ασφάλισης αι πρέπει τώρα να ασχοληθούµε µε τις τµ L, > 0, που είναι η τυχαία απώλεια / τυχαίο έρος του ασφαλιστή όπως ιαµορφώνεται άθε χρονιή στιγµή µετά την έναρξη της ασφάλισης αι αθ' όλη της ιάρειά της Η τµ L είναι η ιαφορά ανάµεσα στο όστος της υποχρέωσης του ασφαλιστή, όπως το όστος αυτό ιαµορφώνεται τη στιγµή > 0 ηλαή σε ηλιία του ασφαλισµένου, αι στην αξία της αποµένουσας απαίτησης του ασφαλιστή τα υπόλοιπα µελλοντιά ασφάλιστρα Μέτρο του όστους της ασφάλισης ενός ατόµου που είναι σε ηλιία είναι το ενιαίο ασφάλιστρο [Το όστος για άτοµο ηλιίας που είναι ήη ασφαλισµένο αι το όστος για άτοµο ηλιίας που ασφαλίζεται για πρώτη φορά εν µπορούν να ιαφέρουν, αφού το όστος της ασφάλισης είναι συνάρτηση της ηλιίας αι όχι της προϋπαρξης ή µη ασφάλισης!] Μέτρο της αντίστοιχης απαίτησης του ασφαλιστή είναι η αναλογιστιή παρούσα αξία, α, του ασφαλίστρου η ασφάλιση έγινε σε ηλιία µε ασφάλιστρο T [Είναι σηµαντιό να µη συγχέεται η τµ L υ α L 0! που αφορά στη στιγµή > 0 µιας ασφάλισης που έγινε σε ηλιία µε την τµ L 0 για άτοµο οποιασήποτε ηλιίας που αφορά όµως στη στιγµή που το άτοµο ασφαλίζεται Η τελευταία βέβαια σε ηλιία είναι T L υ α ] 0 Για την τµ L υ α σε ηλιία αι έχουµε E T, παρατηρούµε ότι στο 0 ανάγεται στην για ασφάλιση L 0 E 0 L α [ ] α 0 > αρχή της ισουναµίας Για > 0 όµως έχουµε Αυτό σηµαίνει ότι η αναλογιστιή παρούσα αξία της υποχρέωσης του ασφαλιστή όλες τις χρονιές στιγµές µετά την έναρξη της ασφάλισης υπερβαίνει την αναλογιστιή παρούσα αξία των υπολειπόµενων ασφαλίστρων Η θετιή ιαφορά E L ανάµεσα στις ύο αναλογιστιές παρούσες αξίες αι α είναι το µαθηµατιό απόθεµα τη στιγµή για µια ασφάλιση που έγινε σε ηλιία Για E L αποθέµατα χρησιµοποιούµε το σύµβολο αι έτσι έχουµε T E υ α α T E L > 0 ιαισθητιά, η για > 0 ιαιολογείται από το γεγονός ότι η ασφάλιση αλύπτει έναν συνεχώς αυξανόµενο ίνυνο τον ίνυνο του θανάτου µε ένα ασφάλιστρο σταθερό σε όλη τη ιάρεια της ασφάλισης Πιο συγεριµένα, το ετήσιο όστος της ασφάλισης θανάτου πληρωτέας στο τέλος του έτους αποτελεί αύξουσα αολουθία υq, υq, υq, Το σταθερό ετήσιο ασφάλιστρο,, της ισόβιας είναι σταθµισµένος µέσος των υq, 0,,, : υ q E υq E L 0 όπου οι "σταθµιστές" είναι τα E Ως µέσος, το είναι υ µεγαλύτερο από τα αρχιά υ q το τρέχον όστος των θανάτων ατά τα πρώτα χρόνια της

2 ασφάλισης αι µιρότερο από τα τελευταία υ q το όστος των θανάτων ατά τα τελευταία στάια της ασφάλισης Συνεπώς, το που εισπράττεται προς το τέλος της ασφάλισης εν αρεί να αλύψει το όστος των θανάτων υ q > τότε αι η ιαφορά αλύπτεται από το µαθηµατιό απόθεµα που έχει συγροτηθεί από τις ιαφορές υq που είναι θετιές τα αρχιά χρόνια της ασφάλισης Αόµα πιο συγεριµένα, στην αρχή του πρώτου έτους η ιαφορά υq "παραρατείται" το υq θα χρειασθεί για τους θανάτους του έτους!, τοίζεται αι γίνεται υq i στο τέλος του πρώτου έτους Το ποσό αυτό επιµερίζεται στο ποσοστό των ασφαλισµένων που επέζησαν αι αποτελεί το µαθηµατιό απόθεµα πρώτου υq i έτους που αντιστοιχεί σε αθένα από αυτούς Το προστίθεται στο εύτερο ασφάλιστρο, αφαιρείται το υ q, τοίζεται η ιαφορά, ιαιρείται το τοισµένο αποτέλεσµα µε αι έτσι προύπτει το µαθηµατιό απόθεµα εύτερου έτους υq i, ο Φυσιά, έχουµε ιάφορα είη µαθηµατιών αποθεµάτων ανάλογα µε το αν το ασφαλισµένο εφάλαιο πληρώνεται τη στιγµή του θανάτου ή στο τέλος του έτους αι ανάλογα µε τον τρόπο πληρωµής των ασφαλίστρων Τα σχετιά σύµβολα είναι,, αι αι οι µεταξύ τους σχέσεις είναι συνέπεια των αντίστοιχων σχέσεων µεταξύ των ασφαλίστρων ενιαίων ή/αι ετήσιων που απαιτούνται για να υπολογισθούν τα µεθηµατιά αποθέµατα Β ΙΑΣΠΟΡΑ ΤΗΣ L Η ιασπορά της υπολογίζεται αριβώς όπως η ιασπορά της L βλ απόειξη στην L 0 ar L Παράγραφο IIB Το αποτέλεσµα είναι, αριβώς της ίιας µορφής µε τη arl αλλά µε είτες αντί στον αριθµητή Εξάλλου, όπως είναι φυσιό, µε 0 η ar γίνεται arl L Γ ΚΥΡΙΟΤΕΡΟΙ ΤΥΠΟΙ ΜΑΘΗΜΑΤΙΚΩΝ ΑΠΟΘΕΜΑΤΩΝ Οι τύποι, α, α α & αι αλούνται προοπτιοί rosecive επειή υπολογίζουν το µαθηµατιό απόθεµα συγρίνοντας τις αναλογιστιές παρούσες αξίες των µελλοντιών παροχών αι των µελλοντιών ασφαλίστρων Οι προοπτιοί τύποι µπορούν να α, γραφούν ατά πολλούς άλλους τρόπους Επιλέγοντας, πχ, την έχουµε τις ισούναµες σχέσεις [ ] α, α α α [ ] α Η πρώτη από τις τρεις αυτές α σχέσεις προσφέρει µια αόµα αιτιολογία για το µαθηµατιό απόθεµα : είναι η αξία µιας ράντας το ύψος της οποίας είναι η ιαφορά ανάµεσα στο ετήσιο ασφάλιστρο που απαιτείται στην τρέχουσα ηλιία του ασφαλισµένου αι στο ασφάλιστρο που πράγµατι εισπράττουµε για ασφάλιση που έγινε σε ηλιία Η εύτερη σχέση επιτρέπει τον υπολογισµό αι

3 του αποθέµατος απολειστιά από τιµές ετήσιων ασφαλίστρων αι η τρίτη τον υπολογισµό του αποθέµατος απολειστιά από τιµές ενιαίων ασφαλίστρων ραντών Μια άλλη ατηγορία τύπων µαθηµατιών αποθεµάτων είναι οι ανασοπιοί rerosecive Στην περίπτωση αυτή, το µαθηµατιό απόθεµα θεωρείται ως η ιαφορά που αποµένει αν από την αναλογιστιή συσσωρευµένη αξία των παρελθόντων ασφαλίστρων των ήη εισραχθέντων ασφαλίστρων αφαιρέσουµε την αναλογιστιή συσσωρευµένη αξία των παρελθουσών παροχών των ήη αταβληθεισών παροχών Ας υποθέσουµε, πχ, ότι βρισόµαστε στο τέλος ετών µιας ισόβιας ασφάλισης Η αναλογιστιή παρούσα αξία των πρώτων ασφαλίστρων είναι &, η ε αναλογιστιή παρούσα αξία της άλυψης αυτά τα α : χρόνια είναι Η ιαφορά : α & όµως βασίζεται σε αξίες τη χρονιή στιγµή µηέν : : Για να φέρουµε αυτή τη ιαφορά στη χρονιή στιγµή πρέπει να τη ιαιρέσουµε µε E, οπότε : : παίρνουµε & s : k E E Η σχέση && s : : i ίνει τη συσσωρευµένη αξία της : E επιβίωση αι αντιστοιχεί στη σχέση s i α & µε επιτόιο αι : & & που συνέει τη συσσωρευµένη αξία αι την παρούσα αξία µιας βέβαιας ράντας Όσοι εξαολουθούν να επιβιώνουν στο αι να έχουν µαθηµατιό απόθεµα εν απολαµβάνουν µόνον τους τόους των ασφαλίστρων, αλλά αι τυχόν τµήµατα των των θανόντων που εν χρειάσθηαν για να αλύψουν θανάτους των πρώτων ετών Η ιαίρεση µε το επιτυγχάνει την πρόσθετη αυτή αύξηση αποθέµατος συσσώρευση από θνησιµότητα πέρα από την αύξηση µε τον παράγοντα είναι γνωστή ως το συσσωρευµένο όστος της ασφάλισης i Η συνάρτηση Και οι ανασοπιοί τύποι αποθεµάτων µπορεί να γραφούν µε ιάφορους τρόπους Έτσι, πχ, η : : : γράφεται να ερµηνευθεί λετιά αλύτερα στη µορφή E E : : : Είναι πολύ εύολο να ειχθεί ότι ο προοπτιός αι ο ανασοπιός υπολογισµός του µαθηµατιού αποθέµατος ίνουν την ίια τιµή για το απόθεµα Γράφουµε 0 E E 0 α & : : α : : E E E E && υπολογισµένο ανασοπιά αι στο εξιό µέλος το & : k : : Στο αριστερό µέλος αναγνωρίζουµε το υπολογισµένο προοπτιά E ΑΝΑ ΡΟΜΙΚΕΣ ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΙΑ ΟΧΙΚΩΝ ΑΠΟΘΕΜΑΤΩΝ Ετός από τους προοπτιούς αι τους ανασοπιούς τύπους, για τον υπολογισµό των µαθηµατιών αποθεµάτων µπορούµε να χρησιµοποιήσουµε αναροµιές σχέσεις µεταξύ των αι φυσιά, από την αρχή της ισουναµίας, 0 0 Χρησιµοποιούµε το "σπάσιµο" που άναµε στην απόειξη ότι ο ανασοπιός αι ο προοπτιός τύπος είναι ισούναµοι, εώ µε : υq υ υ υq υ υq υ

4 Η αναροµιή σχέση µεταξύ αι µπορεί να γραφεί εναλλατιά ως i q αλλά αι ως i q Στην τελευταία σχέση, το αλείται εφάλαιο ινύνου επειή είναι το ποσό που αλείται να αταβάλει η εταιρία σε περίπτωση θανάτου πέραν από το ήη σχηµατισµένο απόθεµα Υπενθυµίζουµε ότι το εφάλαιο θανάτου είναι αι ότι η αταβολή γίνεται στο τέλος του έτους, άρα το αποθεµατοποιηµένο ποσό είναι το Η σχέση που εµφανίζει το εφάλαιο ινύνου έχει τη σαφή ερµηνεία ότι το απόθεµα στην αρχή του έτους,, προσαυξηµένο µε το προαταβλητέο αι τοιζόµενο µαζί µε το µέχρι το τέλος του έτους, είναι αρετό για να σχηµατισθεί το τελιό απόθεµα για όλους θανόντες αι επιβιώσαντες, ο συντελεστής του είναι! αι να αταβληθεί για τους θανόντες, ετός από το απόθεµα, πρόσθετο ποσό µε πιθανότητα q Η άλλη από τις ύο παραπάνω εναλλατιές γραφές εφράζει το γεγονός ότι το i είναι αριβώς το ποσό που απαιτείται για να σχηµατισθεί το για τους επιβιώσαντες πιθανότητα αι το ποσό για τους θανόντες πιθανότητα q ιάφορες αθροίσεις των παραπάνω σχέσεων από το 0 µέχρι το n οηγούν σε ενιαφέροντα συµπεράσµατα βλ Ασήσεις Ε ΙΑΦΟΡΙΚΕΣ ΣΧΕΣΕΙΣ Στην περίπτωση ασφάλισης πληρωτέας τη στιγµή του θανάτου µε ασφάλιστρο που αταβάλλεται συνεχώς, εν είναι υνατόν να έχουµε αναροµιές σχέσεις : η µεταβολή στο είναι συνεχής αι αταλήγουµε σε ιαφοριές εξισώσεις Η ευολότερη γραφή του α για σοπούς παραγώγισης είναι η Παίρνουµε αµέσως α µ α α α µ µ α α α α Βλέπουµε λοιπόν ότι µ Η σχέση αυτή είχνει ότι το απόθεµα αυξάνει συνεχώς µε ρυθµό ίσο µε το σταθερό ρυθµό που αταβάλλεται το συνεχές ασφάλιστρο αι µε το ρυθµό συνεχούς τοισµού του υπάρχοντος αποθέµατος ταυτόχρονα όµως µειώνεται συνεχώς µε ρυθµό µ, όπου το εφάλαιο ινύνου αι η ένταση το αντίστοιχο του που εµφανίζεται στην αναροµιή σχέση Η εξίσωση Thiele µ q µ είναι γνωστή ως ιαφοριή εξίσωση ΣΤ ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΑΠΟΘΕΜΑΤΩΝ ΜΕ ΕΤΗΣΙΑ ΑΣΦΑΛΙΣΤΡΑ Άµεσα υπολογίσιµο από τον πίναα είναι µόνον το απόθεµα απόθεµα ασφάλισης αταβλητέας στο τέλος του έτους του θανάτου αι εξοφλητέας µε ετήσιο προαταβλητέο ασφάλιστρο Η απλούστερη σχέση ισχύει για ασφάλιση µε επίσης προαταβλητέο ασφάλιστρο αλλά πληρωτέα τη στιγµή του θανάτου : άτω από UDD,

5 i & εφόσον i i Εξίσου απλή : αι είναι η σχέση που βασίζεται στην προσέγγιση α α & Για ασφάλιση πληρωτέα τη στιγµή του θανάτου αι ασφάλιστρο συνεχές, γράφουµε α B B Με την α B B B υπόθεση α όπου η αντίστοιχη προσέγγιση για το λόγο Με UDD, αντιαθιστούµε i i i, B αι έχουµε i i, όπου ο συνελεστής του είναι ίσος, άτω από UDD, µε &, η προσέγγιση παίρνει τη µορφή i είναι ιιαίτερα ενιαφέρουσα γιατί; αι µε Η σχέση ή Ερχόµαστε τέλος στην ασφάλιση πληρωτέα στο τέλος του έτους του θανάτου αι ασφάλιστρο B B συνεχές : B Αν B B B υποθέσουµε γραµµιότητα του συντελεστής του αποεινύεται ίσος µε υ,, B αι, όπου ο αι οηγεί στην προσέγγιση B B, που B B Για την αντίστοιχη UDD προσέγγιση, i i είναι ίσο µε B, άρα Συναρτήσει του, η "ιόρθωση" i i γράφεται i i

A 20 =. (ii) Αν δ = 0,04, P( A 20. =. (Απάντηση : & e, βλέπουµε µια ακόµα φορά κ 0 για εκθετικές συναρτήσεις επιβίωσης. (iii) Να δειχθεί ότι γενικά 1

A 20 =. (ii) Αν δ = 0,04, P( A 20. =. (Απάντηση : & e, βλέπουµε µια ακόµα φορά κ 0 για εκθετικές συναρτήσεις επιβίωσης. (iii) Να δειχθεί ότι γενικά 1 Αν A, 3 αι A, A 5 4 αι A 4, 5, να ειχθεί ότι, να ειχθεί ότι A A, 5 3 7 A Αν,4, A, 5 : 5 A 4 : ίονται 5,445, A,7, α 8,5, 4 αι 3, 375 Να 5 : 5 4 : 4 : A ειχθεί ότι 5, 9 αι 5 5 :, 336 5 : 5 5 5 : 5 ίονται

Διαβάστε περισσότερα

ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ

ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Κ Ι ΚΟΥΤΣΟΠΟΥΛΟΣ ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ (ΠΕΡΙΛΗΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΩΝ ΠΑΡΑ ΟΣΕΩΝ ΚΑΙ ΑΣΚΗΣΕΙΣ) ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

1. Αν 1. x (Β) (Α) (Γ) (Ε) 2 (Δ)

1. Αν 1. x (Β) (Α) (Γ) (Ε) 2 (Δ) . Αν 4 x, 4 4 d d (Α) x x (Β) x x (Γ) x x x (Δ) x (Ε) x x . Δάνειο ύψους εξοφλείται με τρεις ληξιπρόθεσμες δόσεις, α αι α. Το ποσό τόου σε άθε δόση είναι σταθερό αι ίσο με β. Να βρεθούν τα α αι β αι το

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e =

ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e = ΑΣΚΗΣΕΙΣ Να συµπληρωθεί ο παρακάτω πίνακας 47 48 49 50 5 l 348480 299692 d 43306 q 0.0 0.2 0.5 2 3 4 5 Η ένταση θνησιµότητας µ +t, 0 t, αλλάζει σε µ +t - c, όπου το c είναι θετικός σταθερός αριθµός. Να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΜΒΑΝΤΑ ΖΩΗΣ & ΘΑΝΑΤΟΥ ΙΟΥΛΙΟΣ 0 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΟΥΛΙΟΥ 0 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 4 ΙΟΥΛΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. μ.)

Διαβάστε περισσότερα

V. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α. ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ

V. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α. ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ V ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ Όπως γνωρίζοε, η παρούσα αξία ενός ποσού C πο θα αταβληθεί τη ελλοντιή χρονιή C στιγή είναι ίση ε ( ) i, όπο i το "επιτόιο αποτίησης"

Διαβάστε περισσότερα

και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115

και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115 . Η πιθανότητα ο () να ζήσει για τουλάχιστον χρόνια είναι κατά 0% μεγαλύτερη από την πιθανότητα ο (+) να ζήσει για τουλάχιστον χρόνια. Αν / 0, 4, 9 / 0, και 0, 48 να βρεθεί η τιμή του Α) 0,048 Β) 0,88

Διαβάστε περισσότερα

ΣΤ. ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM

ΣΤ. ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM ΣΤ ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM Όπως σηειώσαε παραπάνω, οι πιθανότητες που εξαρτώνται από τη σειρά των θανάτων πορούν να εφρασθούν συναρτήσει "πιθανοτήτων πρώτου θανάτου" Κατά συνέπεια,

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016 Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: 1. Μια ισόβια ασφάλιση, με ασφαλισμένο κεφάλαιο ύψους 1, πληρωτέο τη χρονική στιγμή του θανάτου του (x), περιλαμβάνει πρόσθετη κάλυψη (rider),

Διαβάστε περισσότερα

ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ. x Ο πρώτος νόµος θνησιµότητας οφείλεται στον De Moivre, είναι γραµµικός, s(x)

ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ. x Ο πρώτος νόµος θνησιµότητας οφείλεται στον De Moivre, είναι γραµµικός, s(x) ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ Ο πρώτος νόµος θνησιµότητας οφείλεται στον D Moivr, είναι γραµµικός, s(), ω ω, ή ισοδύναµα κ( ω ), ω και κ θετική σταθερά, και φυσικά δεν έχει καµιά εφαρµογή

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 21 ΙΟΥΛΙΟΥ 2017

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 21 ΙΟΥΛΙΟΥ 2017 Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: 1) Να υπολογιστεί το A 11 θανάτων (UDD)". (2) 2 :1 χρησιμοποιώντας την υπόθεση της "ομοιόμορφης κατανομής των Δίνεται i=2%, q 0 = 0,2 και

Διαβάστε περισσότερα

Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011

Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 14 ΙΟΥΛΙΟΥ 2011 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ. 12 µ.) Σελίδα 1 από

Διαβάστε περισσότερα

VI. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ

VI. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ VI ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ Α ΕΙ Η ΡΑΝΤΩΝ ΚΑΙ ΣΥΝΑΦΕΙΣ ΤΜ Οι ράντες ζωής ιφέρον πό τις "βέβιες" ράντες (πο εξετάζοντι στ οιονοµιά µθηµτιά ιότι οι τβολές µις ράντς ζωής εξρτώντι πό την επιβίωση

Διαβάστε περισσότερα

IV.12 OΜΟΓΕΝΕΙΑ. 1. Μερικές ελαστικότητες. 2. Σχετικά ή ποσοστιαία διαφορικά.

IV.12 OΜΟΓΕΝΕΙΑ. 1. Μερικές ελαστικότητες. 2. Σχετικά ή ποσοστιαία διαφορικά. IV.1 OΜΟΓΕΝΕΙΑ 1.Μεριές ελαστιότητες.σχετιά ή ποσοστιαία διαφοριά 3.Ελαστιότητα λίμαας 4.Ομογενής μηδενιού βαθμού 5.Ομογενής βαθμού 6.Ιδιότητες ομογενών ΠΑΡΑΡΤΗΜΑ 7.Ισοσταθμιές ομογενών 8.Ελαστιότητα υποατάστασης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Οδηγός Επιβίωσης 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ : Διαφοριός Λογισμός ΚΕΦΑΛΑΙΟ : Στατιστιή Οδηγός Επιβίωσης Περιλαμβάνει: Ερωτήσεις Θεωρίας Όλες τις Αποδείξεις Χρήσιμο Τυπολόγιο ΑΜΕΡΙΚΑΝΙΚΗ

Διαβάστε περισσότερα

ΠΑΡΑ ΕΙΓΜΑΤΑ ΓΡΑΦΗΣ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΕΩΣ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ

ΠΑΡΑ ΕΙΓΜΑΤΑ ΓΡΑΦΗΣ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΕΩΣ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΠΑΡΑ ΕΙΓΜΑΤΑ ΓΡΑΦΗΣ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΕΩΣ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ ρ. Α. Μαγουλάς Οκτώβριος 4 Παράδειγµα ίδεται το ακόλουθο δίκτυο: E Είσοδος:

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016 Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: X Θεματική ενότητα: () 1. Α. Με επιτόκιο i=3,5% και πίνακα θνησιμότητας με q 108 =1, υπολογίστε το A και το (), χρησιμοποιώντας την υπόθεση της ομοιόμορφης κατανομής

Διαβάστε περισσότερα

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!!

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: X Θεματική ενότητα: Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! 1/6 1) A.Για μία ειδική πλήρως διακριτή πρόσκαιρη ασφάλιση θανάτου διάρκειας 10 ετών αυξανόμενου

Διαβάστε περισσότερα

Θρασύβουλος Κων. Μαχαίρας. Μικρές προσωπικές συνεντεύξεις

Θρασύβουλος Κων. Μαχαίρας. Μικρές προσωπικές συνεντεύξεις Κύµατα: Μιρές προσπιές συνεντεύξεις (β µέρος) 12η ερώτηση Θα θέλατε να γίνετε λίγο πιο σαφής σχετιά µε τη µαθηµατιή άρα αι διδατιή αξία τν αρµονιών (µονοχρµατιών) υµάτν ; Για να χειριστούµε µε µεγαλύτερη

Διαβάστε περισσότερα

δ 2 s Το είναι η προσφορά από τον παίχτη ΙΙ στον παίχτη Ι. Παίρνει ο Ι y

δ 2 s Το είναι η προσφορά από τον παίχτη ΙΙ στον παίχτη Ι. Παίρνει ο Ι y Κεφάλαιο 1 Το τελευταίο που κάναµε ήταν µια ιαπραγµάτευση στην οποία υπάρχουν ύο παίκτες, κάνει ο ένας µια προσφορά, ο άλλος τη έχεται ή όχι. Αν εν την εχτεί κάνει αντιπροσφορά την οποία ο πρώτο παίχτης

Διαβάστε περισσότερα

Ζ. ΠΡΟΣΕΓΓΙΣΕΙΣ ΓΙΑ ΣΥΝΕΧΕΙΣ ΡΑΝΤΕΣ. d A. A δ. α βασίζεται στην απλούστερη σχέση. + και 1 & : ( )

Ζ. ΠΡΟΣΕΓΓΙΣΕΙΣ ΓΙΑ ΣΥΝΕΧΕΙΣ ΡΑΝΤΕΣ. d A. A δ. α βασίζεται στην απλούστερη σχέση. + και 1 & : ( ) Ζ. ΠΡΟΣΕΓΓΙΣΕΙΣ ΓΙΑ ΣΥΝΕΧΕΙΣ ΡΑΝΤΕΣ Υποθέτοντς UDD γράφοµε s s I. Όπως είµε η σχέση είνι οριή περίπτωση ( της. Ένς εολότερος τρόπος ν τλήξοµε στην UDD προσέγγιση γι βσίζετι στην πλούστερη σχέση ι εµετλλεύετι

Διαβάστε περισσότερα

ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ 2 ΦΕΒΡΟΥΑΡΙΟΥ 2018

ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ 2 ΦΕΒΡΟΥΑΡΙΟΥ 2018 Όνομα: Επίθετο: Ημερομηνία: 2 Φεβρουαρίου 2018 Πρωί: X Απόγευμα: Θεματική ενότητα: Ασφαλίσεις Ζωής 1. Η αξία εξαγοράς είναι ίση με 19 20 t V, όπου t V το άρτιο μαθηματικό απόθεμα. Η αναλογιστική παρούσα

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 7

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 7 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαιο 7 ιασκοντες: Ν. Μαρµαρίης - Α. Μπεληγιάννης Βοηθοι Ασκησεων: Χ. Ψαρουάκης Ιστοσελια Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii.html - - Ασκηση.

Διαβάστε περισσότερα

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!!

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! 1/14 1) Για ένα χαρτοφυλάκιο 250 ατόμων ηλικίας xδίνεται: i. Οι χρόνοι μελλοντικής ζωής τωνατόμων

Διαβάστε περισσότερα

Ι ΑΣΚΟΝΤΑΣ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕ ΤΟ CABRI 3D

Ι ΑΣΚΟΝΤΑΣ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕ ΤΟ CABRI 3D Ι ΑΣΚΟΝΤΑΣ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕ ΤΟ CABRI 3D Νίος Α. Φωτιάδης ρ. Μαθηµατιών Επιµορφωτής Β επιπέδου λάδου ΠΕ 03 E-mail: nikos.fotiades@gmail.com Website: http://users.sch.gr/nfotiades/ Περίληψη Οι µαθητές

Διαβάστε περισσότερα

Θεωρία Γράφων - Εισαγωγή

Θεωρία Γράφων - Εισαγωγή Θεωρία Γράφων - Εισαγωγή Τοπολογιές απειονίσεις Τοπολογία Κλάδος των μαθηματιών που μελετά ανάμεσα σε άλλα τις ιδιότητες εείνες των γεωμετριών σχημάτων οι οποίες παραμένουν αναλλοίωτες ατά τις τοπολογιές

Διαβάστε περισσότερα

ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ 30 ΙΑΝΟΥΑΡΙΟΥ 2019 F3W2.PR09 ΚΑΛΗ ΕΠΙΤΥΧΙΑ!!!! F3W2.PR09 1/14

ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ 30 ΙΑΝΟΥΑΡΙΟΥ 2019 F3W2.PR09 ΚΑΛΗ ΕΠΙΤΥΧΙΑ!!!! F3W2.PR09 1/14 ΚΑΛΗ ΕΠΙΤΥΧΙΑ!!!! 1/14 Για τις ερωτήσεις 1-3 να χρησιμοποιηθούν τα παρακάτω δεδομένα. Χαρτοφυλάκιο περιέχει πανομοιότυπα ασφαλιστήρια συμβόλαια, με την ίδια ημερομηνία έναρξης, όπως περιγράφονται στον

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 3 Κεφάλαιο ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α) Σ 5. Σ. Σ β) Σ 6.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

XV. ΜΕΡΙ ΙΑ ΣΤΟ ΕΝΕΡΓΗΤΙΚΟ, ΙΑΝΟΜΗ ΤΟΥ ΠΛΕΟΝΑΣΜΑΤΟΣ, ΜΕΡΙΣΜΑΤΑ, ΕΛΕΓΧΟΙ ΚΕΡ ΟΦΟΡΙΑΣ Α. ΕΙΣΑΓΩΓΗ

XV. ΜΕΡΙ ΙΑ ΣΤΟ ΕΝΕΡΓΗΤΙΚΟ, ΙΑΝΟΜΗ ΤΟΥ ΠΛΕΟΝΑΣΜΑΤΟΣ, ΜΕΡΙΣΜΑΤΑ, ΕΛΕΓΧΟΙ ΚΕΡ ΟΦΟΡΙΑΣ Α. ΕΙΣΑΓΩΓΗ XV. ΜΕΡΙ ΙΑ ΣΤΟ ΕΝΕΡΓΗΤΙΚΟ, ΙΑΝΟΜΗ ΤΟΥ ΠΛΕΟΝΑΣΜΑΤΟΣ, ΜΕΡΙΣΜΑΤΑ, ΕΛΕΓΧΟΙ ΚΕΡ ΟΦΟΡΙΑΣ Α. ΕΙΣΑΓΩΓΗ Στο παρελθόν ασχοληθήκαµε µε τα µαθηµατικά αποθέµατα ("αποθέµατα καθαρού ασφαλίστρου" και µε τα αποθέµατα

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2002 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 24 ΙΑΝΟΥΑΡΙΟΥ 2002

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2002 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 24 ΙΑΝΟΥΑΡΙΟΥ 2002 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 00 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 4 ΙΑΝΟΥΑΡΙΟΥ 00 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9- π.μ.) . Αν 4 χρηματικές

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 4 o Γενιό Λύειο Χανίων Γ τάξη Μαθηματιά Γενιής Παιδείας γ Ασήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράης http://users.sch.gr/mipapagr 4 ο Γενιό Λύειο Χανίων 00 0 ΣΥΝΔΙΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ

Διαβάστε περισσότερα

ÏÅÖÅ [ ) ) ) ) Οπότε το σηµείο τοµής της γραφικής παράστασης µε τον x x είναι το Μ(-2,0).

ÏÅÖÅ [ ) ) ) ) Οπότε το σηµείο τοµής της γραφικής παράστασης µε τον x x είναι το Μ(-2,0). Θέµα ο Α.. Θεωρία από Σχ. Βιβλίο σελ. 9 Α.. Θεωρία από Σχ. Βιβλίο σελ. 9 Α.3. Απόδειξη από Σχ. Βιβλίο σελ. 8-9 Β. α Λάθος β Σωστό γ Σωστό δ Λάθος ε Λάθος Θέµα ο α) Πρέπει + 0 x αι x + 0 x αι έστω x + 0

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Φωτογραµµετρική Οπισθοτοµία

Φωτογραµµετρική Οπισθοτοµία Φτογραµµετριή Οπισθοτοµία είναι εείνη η διαδιασία µε την οποία προσδιορίζονται τα στοιχεία του εξτεριού προσανατολισµού µιας λήψης (Χο, Υο, Ζο,, αι µε τη βοήθεια τν εξισώσεν της Συνθήης Συγγραµµιότητας

Διαβάστε περισσότερα

Ο πυκνωτής και το πηνίο

Ο πυκνωτής και το πηνίο Πυκνωτής, ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο πυκνωτής και το πηνίο Αποτελείται από ύο οπλισµούς, µονωµένους µεταξύ τους, που µπορούν να αλληλεπιρούν. Κατά τη φόρτιση η πηγή µετακινεί φορτίο από τον ένα οπλισµό στον

Διαβάστε περισσότερα

Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής

Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής Αλέξανδρος Α. Ζυµπίδης Λέκτορας Οικονοµικού Πανεπιστηµίου Αθηνών Αναλογιστής τ. Πρόεδρος της Εθνικής Αναλογιστικής Αρχής Αθήνα, Φεβρουάριος 2009 ii Π Ε Ρ Ι Ε Χ Ο

Διαβάστε περισσότερα

Τεχνολογικό Πανεπιστήµιο Κύπρου

Τεχνολογικό Πανεπιστήµιο Κύπρου Τεχνολογιό Πανεπιστήµιο Κύπρου Σχολή Μηχανιής αι Τεχνολογίας Τμήμα Πολιτιών Μηχανιών αι Μηχανιών Γεωπληροφοριής ΦΥΣΙΚΗ (ΠΟΜ 114) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Διδάσων/ Συντονιστής μαθήματος Εξάμηνο Δρ Ευάγγελος Αύλας

Διαβάστε περισσότερα

35 = (7+ 109) =

35 = (7+ 109) = Άλγεβρα Α Λυείου Στεφανής Παναγιώτης Συνδυαστιές Ασήσεις Ασήσεις δηµοσιευµένες στο περιοδιό τεύχος 8 Άσηση α) Να δείξετε ότι: 7 + + + +... + 9 = β) Να λυθεί η ανίσωση: 7 7x + x + x +... +

Διαβάστε περισσότερα

Ο πυκνωτής και το πηνίο

Ο πυκνωτής και το πηνίο Πυκνωτής, ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο πυκνωτής και το πηνίο Αποτελείται από ύο οπλισµούς, µονωµένους µεταξύ τους, που µπορούν να αλληλεπιρούν. Κατά τη φόρτιση η πηγή µετακινεί φορτίο από τον ένα οπλισµό στον

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ

Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ ΤΑΞΗ: Β ΓΕΝΙΟΥ ΛΥΕΙΟΥ ΠΡΟΑΝΑΤΟΛΙΜΟ: ΘΕΤΙΩΝ ΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΙΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 6 ιάρεια Εξέτασης: ώρες ΑΠΑΝΤΗΕΙ ΘΕΜΑ Α A. β A. δ A. α A. γ A5. α. Λάθος β. Λάθος γ. ωστό δ. Λάθος ε. ωστό

Διαβάστε περισσότερα

ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ 2 ΦΕΒΡΟΥΑΡΙΟΥ 2018

ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ 2 ΦΕΒΡΟΥΑΡΙΟΥ 2018 Όνομα: Επίθετο: Ημερομηνία: 2 Φεβρουαρίου 2018 Πρωί: Απόγευμα: X Θεματική ενότητα: Ασφαλίσεις Ζωής 1. Α. Χαρτοφυλάκιο περιέχει ασφαλιστήρια συμβόλαια του ίδιου τύπου, όπως περιγράφονται στον παρακάτω πίνακα,

Διαβάστε περισσότερα

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΕ ΕΡΩΤΗΣΕΙΣ -ΑΠΑΝΤΗΣΕΙΣ Tι ονομάζουμε συνάρτηση ; Tι ονομάζουμε πραγματιή συνάρτηση πραγματιής μεταβλητής; Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β είναι

Διαβάστε περισσότερα

Θέματα. Α1. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (9 μονάδες)

Θέματα. Α1. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (9 μονάδες) Θέματα Θέμα Α Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α αι Β ενός δειγματιού χώρου Ω, ισχύει P(A-B)P(A)-P( A B) (9 μονάδες) Α. Να διατυπώσετε το νόμο των μεγάλων αριθμών. (6 μονάδες) Α. Να χαρατηρίσετε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

Η. ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ A ΚΑΙ Α. Στην Άσκηση IV.ΣΤ.14 δείξαµε ότι, κάτω από την υπόθεση οµοιόµορφης κατανοµής των

Η. ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ A ΚΑΙ Α. Στην Άσκηση IV.ΣΤ.14 δείξαµε ότι, κάτω από την υπόθεση οµοιόµορφης κατανοµής των Η ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΚΑΙ Α Στην Άσηση IVΣΤ4 είξε ότι, άτω πό την πόθεση οοιόορφης τνοής των + θνάτων σε άθε έτος ηλιίς (UDD, + q Η ισότητ τή είχνει ότι, άτω πό την πόθεση UDD, τ ενιί σφάλιστρ ι ινοποιούν τη

Διαβάστε περισσότερα

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ 1 1. ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΘΕΩΡΙΑ 1. Θεώρηµα γνησίως αύξουσας Αν µία συνάρτηση είναι παραγωγίσιµη σ ένα διάστηµα και για κάθε εσωτερικό σηµείο του ισχύει f () > 0 τότε η f είναι γνησίως αύξουσα στο.

Διαβάστε περισσότερα

ΚΕΦ. 3 Γενικές αρχές της κυματικής

ΚΕΦ. 3 Γενικές αρχές της κυματικής ΚΕΦ. 3 Γενικές αρχές της κυματικής 3.3- Συμπλήρωμα εαφίου 3.3: Το γενικό μεταβολικό πρόβλημα για συναρτη- 2 σιακό ολοκληρωτικού τύπου με C ολοκληρωτέα συνάρτηση, εξαρτώμενο από λεία καμπύλη με μεταβαλλόμενα

Διαβάστε περισσότερα

ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ ΤΙΜΟΛΟΓΙΟ Ρ23

ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ ΤΙΜΟΛΟΓΙΟ Ρ23 ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ ΤΙΜΟΛΟΓΙΟ Ρ23 ΑΡΘΡΟ 1ο : ΟΡΙΣΜΟΙ «ΑΣΦΑΛΙΖΟΜΕΝΟ ΠΟΣΟ»:Το κεφάλαιο επιβίωσης και το κεφάλαιο θανάτου όπου: α. «Κεφάλαιο επιβίωσης» είναι το ποσό της μηνιαίας σύνταξης

Διαβάστε περισσότερα

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ ΣΧΟΛΙΑ ΜΕΘΟ ΟΙ

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ ΣΧΟΛΙΑ ΜΕΘΟ ΟΙ .1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ 1. Αρχή της Μαθηµατιής Επαγωγής Έστω ισχυρισµός Ρ(ν), όπου ν θετιός αέραιος. Αν i) Ρ αληθής αι ii) Ρ(ν) Ρ(ν + 1) για άθε ν, τότε Ρ(ν) αληθής για άθε ν.. Ανισότητα Bernoulli

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ ΟΜΟΠΟΝ ΙΑ ΕΠΑΙ ΕΥΤΙΩΝ ΦΡΟΝΤΙΤΩΝ ΕΛΛΑ Ο (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΑ ΘΕΜΑΤΑ 6 Α ΦΑΗ Ε_3.ΦλΘ(α) ΤΑΞΗ: Β ΓΕΝΙΟΥ ΛΥΕΙΟΥ ΠΡΟΑΝΑΤΟΛΙΜΟ: ΘΕΤΙΩΝ ΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΙΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου

Διαβάστε περισσότερα

Πρόγραμμα «ΕΞΑΣΦΑΛΙΖΩ ΠΛΕΟΝΕΚΤΗΜΑ ΓΙΑ ΤΟ ΕΦΑΠΑΞ» - Δημιουργία Εγγυημένου Κεφαλαίου Εφάπαξ Ασφαλίστρου (κωδ )

Πρόγραμμα «ΕΞΑΣΦΑΛΙΖΩ ΠΛΕΟΝΕΚΤΗΜΑ ΓΙΑ ΤΟ ΕΦΑΠΑΞ» - Δημιουργία Εγγυημένου Κεφαλαίου Εφάπαξ Ασφαλίστρου (κωδ ) Πρόγραμμα «ΕΞΑΣΦΑΛΙΖΩ ΠΛΕΟΝΕΚΤΗΜΑ ΓΙΑ ΤΟ ΕΦΑΠΑΞ» - Δημιουργία Εγγυημένου Κεφαλαίου Εφάπαξ Ασφαλίστρου (κωδ. 10442) Η Εταιρία αναλαμβάνει την υποχρέωση να καταβάλλει στον Ασφαλισμένο, εάν αυτός βρίσκεται

Διαβάστε περισσότερα

) = a ο αριθµός των µηχανών n ο αριθµός των δειγµάτων που παίρνω από κάθε µηχανή

) = a ο αριθµός των µηχανών n ο αριθµός των δειγµάτων που παίρνω από κάθε µηχανή Ανάλυση Συνδιακύµανσης Alsis of Covrice Η ανάλυση συνδιακύµανσης είναι µία άλλη τεχνική για να βελτιώσουµε την ακρίβεια της προσέγγισης του µοντέλου µας στο πείραµα. Ας υποθέσουµε ότι σ ένα πείραµα εκτός

Διαβάστε περισσότερα

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός

Διαβάστε περισσότερα

Πρόγραμμα Ισοβιας συνταξης εφαπαξ ασφαλιστρου (κωδ ) Πρόγραμμα Easy Plan άμεση σύνταξη

Πρόγραμμα Ισοβιας συνταξης εφαπαξ ασφαλιστρου (κωδ ) Πρόγραμμα Easy Plan άμεση σύνταξη Πρόγραμμα Ισοβιας συνταξης εφαπαξ ασφαλιστρου (κωδ. 10547) Πρόγραμμα Easy Plan άμεση σύνταξη Πρόγραμμα εφάπαξ ασφαλίστρου με παροχή Ισόβιας Συνταξιοδότησης και με εγγυημένη 10ετή περίοδο συνταξιοδότησης.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Ας δούµε τώρα πως το εν λόγω υπόδειγµα µεταχειρίζεται τη συσσώρευση κεφαλαίου.

Ας δούµε τώρα πως το εν λόγω υπόδειγµα µεταχειρίζεται τη συσσώρευση κεφαλαίου. Το υπόδειγµα οικονοµικής µεγέθυνσης του Solow σχεδιάστηκε προκειµένου να δείξει πως η µεγέθυνση του κεφαλαίου, του εργατικού δυναµικού αλλά και οι µεταβολές στην τεχνολογία αλληλεπιδρούν σε µια οικονοµία,

Διαβάστε περισσότερα

(1) 98! 25! = 4 100! 23! = 4

(1) 98! 25! = 4 100! 23! = 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση ΙΙ και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 8// Γ ΕΡΓΑΣΙΑ Μαθηµατικά για την Πληροφορική Ι (ΘΕ ΠΛΗ Η ύλη της εργασίας είναι παράγραφοι 6 και 6 από τη Γραµµική Άλγεβρα και Ενότητες,,, από τον Λογισµό

Διαβάστε περισσότερα

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων : Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. (α) Εχουµε ότι : 6 5 x= y= 6 x= 6 x= c(x + y)dxdy = ) c

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: 13/7/2015 Πρωί: x Απόγευμα: Θεματική ενότητα: Ποσοτικοποίηση και Αναλογιστική Διαχείριση των Κινδύνων και Φερεγγυότητα 1. Στο πλαίσιο φερεγγυότητα ΙΙ, όσον αφορά στη δραστηριότητα

Διαβάστε περισσότερα

() 1 ω ΣΕΙΣ. είναι σταθερό -1- m Γ ΘΕΜΑ Α ΘΕΜΑ Β. και V. A A m. k A. υ υ. 2mV K Π= 2 υ1 Π= = 2 2m 2 1 DA A A. κ+ 1 E Π= E E. Aκ+ Γ Λυκείου. αρχ.

() 1 ω ΣΕΙΣ. είναι σταθερό -1- m Γ ΘΕΜΑ Α ΘΕΜΑ Β. και V. A A m. k A. υ υ. 2mV K Π= 2 υ1 Π= = 2 2m 2 1 DA A A. κ+ 1 E Π= E E. Aκ+ Γ Λυκείου. αρχ. ΘΕΜΑ Α ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣ ΣΕΙΣ Α β, Α γ, Α α,, Α4 δ, Α5 Λ, Λ, Λ, Σ, Σ ΘΕΜΑ Β Β Στο σχήµα φαίνεται το σύστηµ µα αριβώς ριν αι αµέσως µετά τηνν ρούση i) Εφαρµ µόζοντας Α Ο στον οριζόντιο άξονα, µε θετιή

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α ΑΡΧΕΣ ΟΙΟΝΟΜΙΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 15 Μαΐου 2013 Ασκηση 1. Εστω n 3 ακέραιος.

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2014 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 18 ΙΟΥΛΙΟΥ 2014

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2014 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 18 ΙΟΥΛΙΟΥ 2014 ΕΝΩΣΗ ΑΝΑΛΟΓΙΣΤΩΝ ΕΛΛΑΔΟΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2014 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 18 ΙΟΥΛΙΟΥ 2014 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (12 μ. 2 μ.μ.) 1. (5 βαθμοί) Δίνεται ο ακόλουθος πίνακας με εμπειρικά δεδομένα από

Διαβάστε περισσότερα

3. Η µερική παράγωγος

3. Η µερική παράγωγος 1 Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 1 Μερική παραγώγιση παράγωγος µιας συνάρτησης µερική παράγωγος ( ( µιας µεταβλητής ορίζεται ως d d ( ( (1 Για συναρτήσεις δύο

Διαβάστε περισσότερα

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j Το θεώρηµα Tor στις πολλές µεταβλητές Ο σκοπός αυτής της παραγράφου είναι η απόδειξη ενός θεωρήµατος τύπου Tor για συναρτήσεις πολλών µεταβλητών Το θεώρηµα για µια µεταβλητή θα είναι ειδική περίπτωση του

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ

ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ η Ερώτηση Γνωρίζουµε πως η κυµατοσυνάρτηση είναι η λύσης της κυµατικής εξίσωσης, που περιγράφει το µέγεθος της ιαταραχής, ( rt, ) r. Ψ= σε κάθε χρονική στιγµή, t, και σε κάθε θέση

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΟ ΤΩΝ ΜΕΤΑΒΟΛΩΝ. Β. Κουμούσης Καθηγητής ΕΜΠ

ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΟ ΤΩΝ ΜΕΤΑΒΟΛΩΝ. Β. Κουμούσης Καθηγητής ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΟ ΤΩΝ ΜΕΤΑΒΟΛΩΝ Β. Κουμούσης Καθηγητής ΕΜΠ ΑΘΗΝΑ ΜΑΡΤΙΟΣ 1998 Εισαγωγή Ορισμένες αρχές, πού ονομάζονται ενεργειακές αρχές ή παραλλακτικές αρχές (vritionl principles), παίζουν βασικό

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ

ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος Τµ. Επιστήµης των Υλικών Στοχαστικές ιαδικασίες Ορισµός Μία στοχαστική διαδικασία είναι µία οικογένεια τυχαίων µεταβλητών

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΤΡΙΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2008

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 8 ΙΑΝΟΥΑΡΙΟΥ 008 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt204/nt204.html htts://sites.google.com/site/maths4eu/home/4

Διαβάστε περισσότερα

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0) Όρια συναρτήσεων.5. Ορισµός. Έστω, f : Α συνάρτηση συσσώρευσης του Α και b σηµείο. Λέµε ότι η f έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li = ή f b f b αν και µόνο αν, για κάθε

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΜΕΓΕΘΟΥΣ ΔΕΙΓΜΑΤΟΣ ΣΤΟ ΠΡΟΒΛΗΜΑ ΘΕΡΑΠΕΥΤΙΚΗΣ ΙΣΟΔΥΝΑΜΙΑΣ ΔΥΟ ΦΑΡΜΑΚΕΥΤΙΚΩΝ ΑΓΩΓΩΝ

ΥΠΟΛΟΓΙΣΜΟΣ ΜΕΓΕΘΟΥΣ ΔΕΙΓΜΑΤΟΣ ΣΤΟ ΠΡΟΒΛΗΜΑ ΘΕΡΑΠΕΥΤΙΚΗΣ ΙΣΟΔΥΝΑΜΙΑΣ ΔΥΟ ΦΑΡΜΑΚΕΥΤΙΚΩΝ ΑΓΩΓΩΝ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνερίου Στατιστικής (005) σελ.519-56 ΥΠΟΛΟΓΙΣΜΟΣ ΜΕΓΕΘΟΥΣ ΔΕΙΓΜΑΤΟΣ ΣΤΟ ΠΡΟΒΛΗΜΑ ΘΕΡΑΠΕΥΤΙΚΗΣ ΙΣΟΔΥΝΑΜΙΑΣ ΔΥΟ ΦΑΡΜΑΚΕΥΤΙΚΩΝ ΑΓΩΓΩΝ Γιάννης Κ.

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ 2004 ΟΜΑ Α Α

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ 2004 ΟΜΑ Α Α ΑΡΕΣ ΟΙΟΝΟΜΙΗΣ ΘΕΩΡΙΑΣ ΛΥΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΗΣ ΙΑ ΟΛΕΣ ΤΙΣ ΑΤΕΥΘΥΝΣΕΙΣ 2004 ΟΜΑ Α Α ια τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

Άσκηση 1. i) ============================================================== Πρέπει αρχικά να είναι συνεχής στο x = 1: lim. lim. 2 x + x 2.

Άσκηση 1. i) ============================================================== Πρέπει αρχικά να είναι συνεχής στο x = 1: lim. lim. 2 x + x 2. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ 008-009: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

t, όπου t Ζ. , t Ζ. ΕΦΑΡΜΟΓΕΣ

t, όπου t Ζ. , t Ζ. ΕΦΑΡΜΟΓΕΣ 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Επίλυση Γραμμικής Διοφαντικής Εξίσωσης Έστω η εξίσωση x y, όπου,, ακέραιοι με και Αν αναζητούμε ακέραιες λύσεις της εξίσωσης αυτής, ηλαή ζεύγη ακεραίων

Διαβάστε περισσότερα

Ασκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις (3) (4)

Ασκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις (3) (4) σκήσεις σχ. ιβλίου σελίδας 5 5 ενικές ασκήσεις. ανονικό εξάγωνο ΕΖ είναι εγγεγραµµένο σε κύκλο (Ο, ) και έστω, Λ,, Ν, Ρ, Σ τα µέσα των πλευρών του. Να αποδείξετε ότι το ΛΝΡΣ είναι κανονικό εξάγωνο µε κέντρο

Διαβάστε περισσότερα

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x . Ασκήσεις σχολικού βιβλίου σελίδας 56 57 A µάδας. Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) () = ii) () = ln( ) iii) () = e + iv) () = ( ), i)

Διαβάστε περισσότερα

ΣΥΝΕΧΕΣ ΡΕΥΜΑ-ΝΟΜΟΣ ΤΟΥ ΟΗΜ-ΣΥΝΔΕΣΜΟΛΟΓΙΑ ΑΝΤΙΣΤΑΣΕΩΝ. 1. Ρεύμα με σταθερή ένταση 3 Α διαρρέει αγωγό. Να βρεθούν:

ΣΥΝΕΧΕΣ ΡΕΥΜΑ-ΝΟΜΟΣ ΤΟΥ ΟΗΜ-ΣΥΝΔΕΣΜΟΛΟΓΙΑ ΑΝΤΙΣΤΑΣΕΩΝ. 1. Ρεύμα με σταθερή ένταση 3 Α διαρρέει αγωγό. Να βρεθούν: ΣΥΝΧΣ ΡΥΜΑ-ΝΟΜΟΣ ΤΟΥ ΟΗΜ-ΣΥΝΔΣΜΟΛΟΓΙΑ ΑΝΤΙΣΤΑΣΩΝ Λυμένες ασκήσεις 1. Ρεύμα με σταθερή ένταση 3 Α ιαρρέει αγωγό. Να βρεθούν: α. Πόσα ηλεκτρόνια ιέρχονται από μια ιατομή του αγωγού σε χρόνο 1,6 s; β. Να

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 23 Νεµβρίου 2016 Ασκηση 1. Αν N, να

Διαβάστε περισσότερα

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn) MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ g( Έστω τυχαίες µεταβλητές οι οποίες έχουν κάποια από κοινού κατανοµή Ας υποθέσουµε ότι επιθυµούµε να προσδιορίσουµε την κατανοµή της τυχαίας µεταβλητής g( Η θεωρία των ένα-προς-ένα

Διαβάστε περισσότερα

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Να χαρακτηρίσετε µε Σ (Σωστό) ή Λ (Λάθος) τους παρακάτω ισχυρισµούς:. Για κάθε α R ισχύει ότι : α =α.. Για κάθε α R ισχύει ότι : α = α.. Για κάθε α R ισχύει ότι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 06 Κεφάλαιο ο: ΣΥΝΑΡΤΗΣΕΙΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Λ 0. i) Σ 9. Σ. Σ 0. ii) Σ 0. Σ 3. Σ. Σ. Σ 4. Σ. Λ. Λ 5. Λ 3. Σ 3. Σ 6. Σ 4. Σ 4. Λ 7.

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι

ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 008-9 ΜΙΧΑΗΛ ΒΕΛΓΑΚΗΣ, ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ Φροντιστήριο ο : Εξίσωση κίνησης των σωµάτων και επίλυση (ΣΤΗ ΜΕΤΑΦΟΡΙΚΗ

Διαβάστε περισσότερα