A 20 =. (ii) Αν δ = 0,04, P( A 20. =. (Απάντηση : & e, βλέπουµε µια ακόµα φορά κ 0 για εκθετικές συναρτήσεις επιβίωσης. (iii) Να δειχθεί ότι γενικά 1
|
|
- Οἰνεύς Δασκαλόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Αν A, 3 αι A, A 5 4 αι A 4, 5, να ειχθεί ότι, να ειχθεί ότι A A, A Αν,4, A, 5 : 5 A 4 : ίονται 5,445, A,7, α 8,5, 4 αι 3, 375 Να 5 : 5 4 : 4 : A ειχθεί ότι 5, 9 αι 5 5 :, : : 5 ίονται Α 35,3, Α 5,5, Α 6,65, α& 5 αι α& 4, 5 Να ειχθεί ότι 5 35,4 αι Να βρεθούν τα & :,65 & αι για : µ υ Εφόσον για είναι 35 : 5 : 5 4 : υ υ Απάντηση : & + & αι : υ υ, βλέπουµε µια αόµα φορά ότι & για εθετιές συναρτήσεις επιβίωσης Να ειχθεί ότι γενιά : & E : + 4 Το ενιαίο ασφάλιστρο για µια πρόσαιρη ασφάλιση θανάτου ετών είναι,5, το ε συσσωρευµένο όστος της ασφάλισης στη λήξη της είναι,375 Να βρεθεί το ενιαίο ασφάλιστρο A : : της αντίστοιχης ετούς µιτής Απάντηση:,55 Να ειχθεί ότι γενιά + E το συσσωρευµένο όστος µιας µιτής στη λήξη της! Να απλοποιηθεί Απάντηση : & : E : 5 Να ειχθεί ότι το απόθεµα ω στο τέλος του έτους ω της ασφάλισης είναι ίσο µε υ ισούναµα το απόθεµα στην αρχή του ω έτους της ασφάλισης είναι υ + υ Να ειχθεί ότι ω Τα αι υποεινύουν τη υνατότητα αναροµιού υπολογισµού των τιµών του ξεινώντας από το τέλος Να ειχθεί ότι η αναγαία αναροµιή σχέση είναι υq+ + υp + + v Να εφαρµοσθεί η σχέση στο για να βρεθεί το ω από το ω υ Στη συνέχεια, να βρεθεί το ω από το ω Απάντηση : υqω υ p ω + υp ω + 6 Αν,3, α& 6 αι Α, 7, να ειχθεί ότι, 4 : + : 7 Να γραφεί η ιαφοριή εξίσωση Thl για εθετιές συναρτήσεις επιβίωσης για τις οποίες A A µ + A µ Τι συµπέρασµα προύπτει; Απάντηση : + µ, άρα A µόνον για εθετιές συναρτήσεις επιβίωσης Να γραφεί η A A µ + A Ποια η : ιαφοριή εξίσωση Thl όταν Απάντηση : + λύση της εξίσωσης στο ; Απάντηση : A, όπου A
2 + 8 Να ειχθεί η σχέση + + q + Υπόειξη : άθροιση, από έως, της αναροµιής σχέσης + + q Η σχέση αυτή έχει λογιστιό ή ταµιαό χαρατήρα : αγνοεί τη ιαχρονιή αξία του χρήµατος αι απλώς εφράζει την ισότητα χωρίς προεξόφληση των εισροών αι των εροών της -ετίας 9 Να ειχθεί η σχέση α& A + υ p αθροίζοντας την αναροµιή σχέση + q+ + p + + : : + από έως αφού πρώτα πολλαπλασιασθούν αι τα υ + ύο µέλη της σχέσης µε p Να ειχθεί η σχέση + υ q q & + αθροίζοντας την αναροµιή σχέση αφού πρώτα πολλαπλασιασθούν αι τα ύο µέλη της σχέσης µε + Η σχέση αυτή είχνει ότι τα ασφάλιστρα ετών συσσωρευµένα µόνον µε το τεχνιό επιτόιο η & είναι βέβαια συσσωρευµένη αξία ισούνται µε το µαθηµατιό απόθεµα στο τέλος ετών αι µε τη συσσωρευµένη αξία πάλι µε επιτόιο µόνο των ποσοτήτων q +,,,, Η ποσότητα q + αλείται "όστος της ασφάλισης βασισµένο στο εφάλαιο ινύνου" Η Άσηση µας ίνει τη υνατότητα να υπολογίσουµε το ασφάλιστρο, πληρωτέο για χρόνια, για µια ειιή ασφάλιση θανάτου που, ετός από το ασφαλισµένο εφάλαιο µια µονάα, αταβάλλει αι το µαθηµατιό απόθεµα Το εφάλαιο ινύνου για αυτή την ασφάλιση είναι σε άθε ιάρεια γιατί; Αν το ετήσιο ασφάλιστρο είναι ~, η Άσηση ίνει + ~ & + υ q+, όπου το απόθεµα για "ανονιή ασφάλιση" µε εφάλαιο Φυσιά, ετός από το, ο υπολογισµός του ~ απαιτεί αι τον υπολογισµό του ειιού + αθροίσµατος υ q Η συνθήη µεταφράζεται σε α& α&& + + ότι, για να ισχύει η τελευταία σχέση, πρέπει σε άθε ηλιία να έχουµε α&& α&& &, άρα σε α + α & q q + υα&& Να ειχθεί 3 Για εθετιή συνάρτηση επιβίωσης αι ασφάλιστρο A µ, η ρίσιµη συνάρτηση c του Θεωρήµατος L είναι c µ, άρα σταθερή Συµπεραίνουµε ότι το A A είναι το ίιο για όλες τις εθετιές τεχνιές βάσεις φυσιά, εφόσον, όπως ξέρουµε, µ είναι ταυτοτιά µηέν για άθε! 4 Τα αποθέµατα φθίνουν µε τη ιάρεια Αν η βάση, q αντιατασταθεί µε τη βάση +, θετιή σταθερά, αι q q +, η ίια σταθερά, ποια η σχέση αι ; Απάντηση : > Η συνάρτηση φθίνει αι είναι υρτή Αν η βάση, q αντιατασταθεί µε τη βάση +, θετιή σταθερά, αι q q, η ίια σταθερά, ποια η σχέση αι ; Υπόειξη : για υρτή συνάρτηση, < Απάντηση : >
3 5 Όπως γνωρίζουµε, E L Να ειχθεί ότι το ίιο ισχύει για αθένα από τα Λ χωριστά, συγεριµένα ότι E Λ K αι Ε Λ Υπόειξη : χρήση του ορισµού των στην Παράγραφο Ι, του γεγονότος ότι r K p q+ αναροµιής σχέσης µεταξύ αι + αι r K + p p + Λ αι της 6 Να ειχθεί ότι, για j, Cv Λ, Λ j Υπόειξη : Λ, Λ j E Λ Λ j E Λ E Λ αι χωρίς απώλεια γενιότητας < j Εφόσον Cv Λ, Λ j έπεται αµέσως ότι Harf ar L ar υ Λ ar υ Λ υ ar Λ Cv εφόσον, j για j Θεώρηµα του, K 7 Να γραφεί η Λ για εθετιή συνάρτηση επιβίωσης Απάντηση : υ, K, + Κ E Λ, να ειχθεί ότι Από το αι υq+ υ που, όπως ξέρουµε, είναι πράγµατι το ετήσιο ασφάλιστρο για ασφάλιση πληρωτέα στο τέλος του έτους του θανάτου όταν 8 Αν η αναροµιή σχέση υq + + υ + r ασφάλιστρο αναλύεται σε ύο συνιστώσες υq + λυθεί για Ρ, βλέπουµε ότι το συνολιό + αι υ + Το προορίζεται να αλύψει τους "τρέχοντες θανάτους" θανάτους µέσα στο + έτος της ασφάλισης, είναι ατά συνέπεια "ασφάλιστρο ινύνου" το r γράφεται για rk Αντίθετα, το τµήµα του συνολιού ασφαλίστρου για avg είναι η αποταµιευτιή η επενυτιή συνιστώσα του Ρ εφόσον το άθροισµα + στην αρχή του έτους συσσωρεύεται µε επιτόιο σε + στο τέλος του έτους Να επαναιατυπωθεί ο ορισµός της τµ Λ συναρτήσει του ασφαλίστρου r r Απάντηση : για K, υ + για Κ, Ρ r για + K Να ειχθεί ότι E Λ από τον ορισµό στο Αν επαναλάβουµε την Άσηση 7 µε τα εοµένα του, ιαπιστώνουµε ότι, για, Ρ r Ρ, άρα Ρ Αυτό είναι φυσιό αφού : όλο το ασφάλιστρο είναι "ασφάλιστρο τρέχοντος ινύνου" ar 9 Να υπολογισθεί η Λ για µια ισόβια Υπόειξη : ar Λ E Λ, υπόειξη στην Άσηση 5 αι ατά προτίµηση ο εναλλατιός ορισµός της στην Άσηση 8 Απάντηση : + + υ + p q+ + + Έπεται αµέσως ότι ar L υ p q+ 3 Οι ύο συνήθεις προσεγγίσεις για A είναι αι Λ + Να συγριθούν τα αι + για,,,3,,4,,5 Απάντηση :, έναντι,9934,,4964 έναντι,47794,, έναντι,96356,, έναντι,43958 Τι συµπεράσµατα βγαίνουν από τα αποτελέσµατα στο ; Απάντηση : οι ύο προσεγγίσεις απολίνουν αθώς το επιτόιο αυξάνει, η ε προσέγγιση είναι η "πιο συντηρητιή" Το τελευταίο συµπέρασµα µπορεί να αποειχθεί µαθηµατιά αποεινύοντας 3 την ανισότητα > + Υπόειξη : ! 3! r
4 3 Ετός από τις προσεγγίσεις, υπάρχουν αι αριβείς σχέσεις ανάµεσα στις ιάφορες A ατηγορίες µαθηµατιών αποθεµάτων Να ειχθεί ότι Να ειχθεί ότι A + A + A A Από τα αι να ειχθεί ότι A A A + v Με + βάση τα,,, ποιες ιαφορές είναι "συγρίσιµες σε µέγεθος" αι για ποιες ιαφορές ο λόγος είναι "της τάξης του προς "; 3 Στην Άσηση 3 να βρεθούν οι τρεις ιαφορές αποθεµάτων προσεγγιστιά µε,5,,35 αι UDD Απάντηση : A,674979, A, , A, Να βρεθούν οι τιµές που προύπτουν από το για τους λόγους στην Άσηση 3, 3 αι 3 Απάντηση :,467763,,433444,,88853 Ποια αριβής τιµή αντιστοιχεί στο, σύµφωνα µε 8 την Άσηση 3; Απάντηση :, µε ιαφορά,5! 33 Να βρεθούν οι ιαφορές A, A αι A µε,5 αι,35 υποθέτοντας γραµµιότητα του υ p σε άθε έτος ηλιίας Απάντηση :,56834,,36399,,34636 Να βρεθούν οι τιµές που προύπτουν από το για τους λόγους στην Άσηση 3 Απάντηση :,467763,,43457,, Η προσέγγιση για τον πρώτο από τους τρεις λόγους συµφωνεί µε την προσέγγιση UDD στα πρώτα εννέα εαιά! 4 34 Τι ποσοστό ατά προσέγγιση του είναι η ιαφορά αν,3 αι, ; Απάντηση :,58%ο Ποιο το ποσοστό για τη ιαφορά αι ποιο για τη ιαφορά ; Απάντηση : 5,9%ο αι,6%ο 35 Αν,5 αι,5, ποια είναι προσεγγιστιά η τιµή του ; Απάντηση: m [ ],48 Να ειχθεί ότι, άτω από την υπόθεση γραµµιότητας του υ p, το m m είναι ανεξάρτητο των αι Απάντηση : είναι ίσο µε m [ ] 36 Το ετήσιο ασφάλιστρο µιας ισόβιας ασφάλισης αταβλητέας στο τέλος του έτους του θανάτου είναι,4 αι οφείλεται την Οτωβρίου Το µαθηµατιό απόθεµα είναι,46 στις 3 Σεπτεµβρίου αι,5 στις 3 Σεπτεµβρίου 3 Ποιο το µαθηµατιό απόθεµα στις 7 Μαρτίου 3; Απάντηση :, Να γραφεί το συναρτήσει των, + αι µε τη βοήθεια προσεγγίσεων που προύπτουν από γραµµιότητα του υ p Απάντηση :
5 38 Να ειχθεί ότι α α A I I A α + Να γραφεί συνθήη για να α είναι το απόθεµα A φθίνουσα συνάρτηση του για όλα τα Απάντηση : I α A < I α I α I α + µ Να βρεθεί Λ για p υ q+ p + µ Για µ ar, A αφού A Απάντηση : από Άσηση 9, να ερµηνευθεί η τελευταία γραφή! Να γραφεί η Λ αι η µ + µ συναρτήσει των υ αι µ Απάντηση : υ υ αι + µ αι υ + p q+ ar ar υ µ µ µ υ 4 Να ειχθεί ότι η ar L για ισόβια ασφάλιση µε ετήσιο προαταβλητέο ασφάλιστρο αι a&& πληρωτέα στο τέλος του έτους του θανάτου είναι ίση µε, όπου a& & είναι η αναλογιστιή && παρούσα αξία µιας ισόβιας προαταβλητέας ράντας µε συντελεστή προεξόφλησης q+ µεταβλητή ετήσια όση b + α +,,,, p + α υ υ L αι
VIΙΙ. ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΘΕΜΑΤΑ. Α. Η Τ.Μ. L t. Όπως είδαµε, κατά τη σύναψη µιας ασφάλισης, το ετήσιο ασφάλιστρο P ( A x
IΙΙ ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΘΕΜΑΤΑ Α Η ΤΜ L Όπως είαµε, ατά τη σύναψη µιας ασφάλισης, το ετήσιο ασφάλιστρο υπολογίζεται T L υ α [Σηµειώνουµε ότι η είναι µηενίζοντας τη µαθηµατιή ελπία της τµ 0 στην πραγµατιότητα
ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Κ Ι ΚΟΥΤΣΟΠΟΥΛΟΣ ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ (ΠΕΡΙΛΗΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΩΝ ΠΑΡΑ ΟΣΕΩΝ ΚΑΙ ΑΣΚΗΣΕΙΣ) ΣΕΠΤΕΜΒΡΙΟΣ
1. Αν 1. x (Β) (Α) (Γ) (Ε) 2 (Δ)
. Αν 4 x, 4 4 d d (Α) x x (Β) x x (Γ) x x x (Δ) x (Ε) x x . Δάνειο ύψους εξοφλείται με τρεις ληξιπρόθεσμες δόσεις, α αι α. Το ποσό τόου σε άθε δόση είναι σταθερό αι ίσο με β. Να βρεθούν τα α αι β αι το
4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ ΣΧΟΛΙΑ ΜΕΘΟ ΟΙ
.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ 1. Αρχή της Μαθηµατιής Επαγωγής Έστω ισχυρισµός Ρ(ν), όπου ν θετιός αέραιος. Αν i) Ρ αληθής αι ii) Ρ(ν) Ρ(ν + 1) για άθε ν, τότε Ρ(ν) αληθής για άθε ν.. Ανισότητα Bernoulli
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΣΥΜΒΑΝΤΑ ΖΩΗΣ & ΘΑΝΑΤΟΥ ΙΟΥΛΙΟΣ 0 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΟΥΛΙΟΥ 0 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 4 ΙΟΥΛΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. μ.)
V. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α. ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ
V ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ Όπως γνωρίζοε, η παρούσα αξία ενός ποσού C πο θα αταβληθεί τη ελλοντιή χρονιή C στιγή είναι ίση ε ( ) i, όπο i το "επιτόιο αποτίησης"
και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115
. Η πιθανότητα ο () να ζήσει για τουλάχιστον χρόνια είναι κατά 0% μεγαλύτερη από την πιθανότητα ο (+) να ζήσει για τουλάχιστον χρόνια. Αν / 0, 4, 9 / 0, και 0, 48 να βρεθεί η τιμή του Α) 0,048 Β) 0,88
Η. ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ A ΚΑΙ Α. Στην Άσκηση IV.ΣΤ.14 δείξαµε ότι, κάτω από την υπόθεση οµοιόµορφης κατανοµής των
Η ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΚΑΙ Α Στην Άσηση IVΣΤ4 είξε ότι, άτω πό την πόθεση οοιόορφης τνοής των + θνάτων σε άθε έτος ηλιίς (UDD, + q Η ισότητ τή είχνει ότι, άτω πό την πόθεση UDD, τ ενιί σφάλιστρ ι ινοποιούν τη
ΣΤ. ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM
ΣΤ ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΑΣΦΑΛΙΣΤΡΑ ΓΙΑ GOMPERTZ ΚΑΙ MAKEHAM Όπως σηειώσαε παραπάνω, οι πιθανότητες που εξαρτώνται από τη σειρά των θανάτων πορούν να εφρασθούν συναρτήσει "πιθανοτήτων πρώτου θανάτου" Κατά συνέπεια,
ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e =
ΑΣΚΗΣΕΙΣ Να συµπληρωθεί ο παρακάτω πίνακας 47 48 49 50 5 l 348480 299692 d 43306 q 0.0 0.2 0.5 2 3 4 5 Η ένταση θνησιµότητας µ +t, 0 t, αλλάζει σε µ +t - c, όπου το c είναι θετικός σταθερός αριθµός. Να
Ζ. ΠΡΟΣΕΓΓΙΣΕΙΣ ΓΙΑ ΣΥΝΕΧΕΙΣ ΡΑΝΤΕΣ. d A. A δ. α βασίζεται στην απλούστερη σχέση. + και 1 & : ( )
Ζ. ΠΡΟΣΕΓΓΙΣΕΙΣ ΓΙΑ ΣΥΝΕΧΕΙΣ ΡΑΝΤΕΣ Υποθέτοντς UDD γράφοµε s s I. Όπως είµε η σχέση είνι οριή περίπτωση ( της. Ένς εολότερος τρόπος ν τλήξοµε στην UDD προσέγγιση γι βσίζετι στην πλούστερη σχέση ι εµετλλεύετι
ÏÅÖÅ [ ) ) ) ) Οπότε το σηµείο τοµής της γραφικής παράστασης µε τον x x είναι το Μ(-2,0).
Θέµα ο Α.. Θεωρία από Σχ. Βιβλίο σελ. 9 Α.. Θεωρία από Σχ. Βιβλίο σελ. 9 Α.3. Απόδειξη από Σχ. Βιβλίο σελ. 8-9 Β. α Λάθος β Σωστό γ Σωστό δ Λάθος ε Λάθος Θέµα ο α) Πρέπει + 0 x αι x + 0 x αι έστω x + 0
Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις
Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o
VI. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ
VI ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ Α ΕΙ Η ΡΑΝΤΩΝ ΚΑΙ ΣΥΝΑΦΕΙΣ ΤΜ Οι ράντες ζωής ιφέρον πό τις "βέβιες" ράντες (πο εξετάζοντι στ οιονοµιά µθηµτιά ιότι οι τβολές µις ράντς ζωής εξρτώντι πό την επιβίωση
3. Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών)
Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών) Μια «πολύπλοη» συνάρτηση f, δυό μεταβλητών, μπορεί να προσεγγιστεί (στην γειτονιά ενός σημείου (,y)) από μια πολυωνιμιή συνάρτηση με την βοήθεια του αναπτύγματος
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Οδηγός Επιβίωσης 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ : Διαφοριός Λογισμός ΚΕΦΑΛΑΙΟ : Στατιστιή Οδηγός Επιβίωσης Περιλαμβάνει: Ερωτήσεις Θεωρίας Όλες τις Αποδείξεις Χρήσιμο Τυπολόγιο ΑΜΕΡΙΚΑΝΙΚΗ
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2002 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 24 ΙΑΝΟΥΑΡΙΟΥ 2002
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 00 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 4 ΙΑΝΟΥΑΡΙΟΥ 00 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9- π.μ.) . Αν 4 χρηματικές
Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 14 ΙΟΥΛΙΟΥ 2011 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ. 12 µ.) Σελίδα 1 από
IV.12 OΜΟΓΕΝΕΙΑ. 1. Μερικές ελαστικότητες. 2. Σχετικά ή ποσοστιαία διαφορικά.
IV.1 OΜΟΓΕΝΕΙΑ 1.Μεριές ελαστιότητες.σχετιά ή ποσοστιαία διαφοριά 3.Ελαστιότητα λίμαας 4.Ομογενής μηδενιού βαθμού 5.Ομογενής βαθμού 6.Ιδιότητες ομογενών ΠΑΡΑΡΤΗΜΑ 7.Ισοσταθμιές ομογενών 8.Ελαστιότητα υποατάστασης
ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΕΠΑ.Λ. 8 ΙΟΥΝΙΟΥ 07 ΕΚΦΩΝΗΣΕΙΣ Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι: ( f (x) + g (x)) = f (x) + g(x) Μονάδες 0 Α. Να χαρακτηρίσετε τις προτάσεις
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
XV. ΜΕΡΙ ΙΑ ΣΤΟ ΕΝΕΡΓΗΤΙΚΟ, ΙΑΝΟΜΗ ΤΟΥ ΠΛΕΟΝΑΣΜΑΤΟΣ, ΜΕΡΙΣΜΑΤΑ, ΕΛΕΓΧΟΙ ΚΕΡ ΟΦΟΡΙΑΣ Α. ΕΙΣΑΓΩΓΗ
XV. ΜΕΡΙ ΙΑ ΣΤΟ ΕΝΕΡΓΗΤΙΚΟ, ΙΑΝΟΜΗ ΤΟΥ ΠΛΕΟΝΑΣΜΑΤΟΣ, ΜΕΡΙΣΜΑΤΑ, ΕΛΕΓΧΟΙ ΚΕΡ ΟΦΟΡΙΑΣ Α. ΕΙΣΑΓΩΓΗ Στο παρελθόν ασχοληθήκαµε µε τα µαθηµατικά αποθέµατα ("αποθέµατα καθαρού ασφαλίστρου" και µε τα αποθέµατα
( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x
ΜΟΡΦΕΣ ΤΡΙΩΝΥΜΟΥ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Τριώνυµο λέγεται ένα πολυώνυµο της µορφής : f x = αx + βx+ γ, όπου α, β, γ R µε α. ( ) ιακρίνουσα και ρίζες του τριωνύµου f( x) = αx + βx+ γ λέγεται η διακρίνουσα και
ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 21 ΙΟΥΛΙΟΥ 2017
Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: 1) Να υπολογιστεί το A 11 θανάτων (UDD)". (2) 2 :1 χρησιμοποιώντας την υπόθεση της "ομοιόμορφης κατανομής των Δίνεται i=2%, q 0 = 0,2 και
Φωτογραµµετρική Οπισθοτοµία
Φτογραµµετριή Οπισθοτοµία είναι εείνη η διαδιασία µε την οποία προσδιορίζονται τα στοιχεία του εξτεριού προσανατολισµού µιας λήψης (Χο, Υο, Ζο,, αι µε τη βοήθεια τν εξισώσεν της Συνθήης Συγγραµµιότητας
ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016
Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: X Θεματική ενότητα: () 1. Α. Με επιτόκιο i=3,5% και πίνακα θνησιμότητας με q 108 =1, υπολογίστε το A και το (), χρησιμοποιώντας την υπόθεση της ομοιόμορφης κατανομής
xdx και κ xdx x. Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 1 9 8 3 8 9 ) 1 Να αποδειχθει οτι : α) Η συναρτηση f με f(x)= x ειναι γνησιως αυξουσα.
Π α ν ε λ λ α δ ι ε ς Ε ξ ε τ α σ ε ι ς ( 9 8 3 8 9 ) Να αποδειχθει οτι : Η συναρτηση f με f() ειναι γνησιως αυξουσα. Για ισχυουν : d αι d. Η f εχει πεδιο ορισμου το Α[, ) αι ειναι συνεχης σε αυτο. Αομη
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ
ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ η Ερώτηση Γνωρίζουµε πως η κυµατοσυνάρτηση είναι η λύσης της κυµατικής εξίσωσης, που περιγράφει το µέγεθος της ιαταραχής, ( rt, ) r. Ψ= σε κάθε χρονική στιγµή, t, και σε κάθε θέση
Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!!
Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! 1/14 1) Για ένα χαρτοφυλάκιο 250 ατόμων ηλικίας xδίνεται: i. Οι χρόνοι μελλοντικής ζωής τωνατόμων
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 3 ΩΡΕΣ ΘΕΜΑ Ο Α ) Να αποδείξετε ότι για δυο ασυµβίβαστα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω ισχύει P( A B) = P( A) + P( B) ( µονάδες 8 ) Β ) Να δώσετε τον
ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016
Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: 1. Μια ισόβια ασφάλιση, με ασφαλισμένο κεφάλαιο ύψους 1, πληρωτέο τη χρονική στιγμή του θανάτου του (x), περιλαμβάνει πρόσθετη κάλυψη (rider),
( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31.
1 4 η δεκάδα θεµάτων επανάληψης 31. ίνονται οι συναρτήσεις f() = ln(e e + 3) και g() = ln3 + ln(e 1) i. Να βρείτε το πεδίο ορισµού τους. ii. Να βρείτε τα σηµεία τοµής των γραφικών παραστάσεων των f, g
35 = (7+ 109) =
Άλγεβρα Α Λυείου Στεφανής Παναγιώτης Συνδυαστιές Ασήσεις Ασήσεις δηµοσιευµένες στο περιοδιό τεύχος 8 Άσηση α) Να δείξετε ότι: 7 + + + +... + 9 = β) Να λυθεί η ανίσωση: 7 7x + x + x +... +
Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).
1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ
- ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΕ ΕΡΩΤΗΣΕΙΣ -ΑΠΑΝΤΗΣΕΙΣ Tι ονομάζουμε συνάρτηση ; Tι ονομάζουμε πραγματιή συνάρτηση πραγματιής μεταβλητής; Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β είναι
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης: 3 ώρες
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 18 Φεβρουαρίου 005. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου
Ι ΑΣΚΟΝΤΑΣ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕ ΤΟ CABRI 3D
Ι ΑΣΚΟΝΤΑΣ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕ ΤΟ CABRI 3D Νίος Α. Φωτιάδης ρ. Μαθηµατιών Επιµορφωτής Β επιπέδου λάδου ΠΕ 03 E-mail: nikos.fotiades@gmail.com Website: http://users.sch.gr/nfotiades/ Περίληψη Οι µαθητές
Α1. Να διατυπωθεί και να δοθεί η γεωµετρική ερµηνεία του θεωρήµατος Μέσης Τιµής του ιαφορικού Λογισµού. (3 µονάδες)
Α Να διατυπωθεί και να δοθεί η γεωµετρική ερµηνεία του θεωρήµατος Μέσης Τιµής του ιαφορικού Λογισµού Α Έστω µια συνάρτηση ορισµένη σε ένα διάστηµα Αν η είναι συνεχής στο και ( ) = για κάθε εσωτερικό σηµείο
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι
δ 2 s Το είναι η προσφορά από τον παίχτη ΙΙ στον παίχτη Ι. Παίρνει ο Ι y
Κεφάλαιο 1 Το τελευταίο που κάναµε ήταν µια ιαπραγµάτευση στην οποία υπάρχουν ύο παίκτες, κάνει ο ένας µια προσφορά, ο άλλος τη έχεται ή όχι. Αν εν την εχτεί κάνει αντιπροσφορά την οποία ο πρώτο παίχτης
ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ 2 ΦΕΒΡΟΥΑΡΙΟΥ 2018
Όνομα: Επίθετο: Ημερομηνία: 2 Φεβρουαρίου 2018 Πρωί: X Απόγευμα: Θεματική ενότητα: Ασφαλίσεις Ζωής 1. Η αξία εξαγοράς είναι ίση με 19 20 t V, όπου t V το άρτιο μαθηματικό απόθεμα. Η αναλογιστική παρούσα
Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!!
Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: X Θεματική ενότητα: Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! 1/6 1) A.Για μία ειδική πλήρως διακριτή πρόσκαιρη ασφάλιση θανάτου διάρκειας 10 ετών αυξανόμενου
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,
Πρόγραμμα Ισοβιας συνταξης εφαπαξ ασφαλιστρου (κωδ ) Πρόγραμμα Easy Plan άμεση σύνταξη
Πρόγραμμα Ισοβιας συνταξης εφαπαξ ασφαλιστρου (κωδ. 10547) Πρόγραμμα Easy Plan άμεση σύνταξη Πρόγραμμα εφάπαξ ασφαλίστρου με παροχή Ισόβιας Συνταξιοδότησης και με εγγυημένη 10ετή περίοδο συνταξιοδότησης.
Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
= 2. iii) Αν το Q(χ) είναι περιττού βαθµού, βρείτε το άθροισµα των συντελεστών των άρτιων δυνάµεων του χ.
Σύλλογος Θετιών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του αθηγητή: Βασίλη Ξανθόπουλου Μαθηµατιά : Τάξη: Β ράµα 3 Απριλίου 11 Θέµα 1 ο ίνονται τα πολυώνυµα P(x) αι Q(x) ώστε η εξίσωση P (x) + Q (x) = (1)
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση
2x 4 0, αδύνατη. x Πανελλαδικές Εξετάσεις Μαθηματικά Κατεύθυνσης 11 Ιουνίου Θέμα Α Α1. Σχολικό βιβλίο σελ.99
Πανελλαδικές Εξετάσεις Μαθηματικά Κατεύθυνσης Ιουνίου 08 Θέμα Α Α Σχολικό βιβλίο σελ99 Α α Λ β Αντιπαράδειγμα, σχολικό βιβλίο σελ5, σχ g, 0, είναι - αλλά όχι γνησίως μονότονη, 0 Α Σχολικό βιβλίο σελ6 Α
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης:
Πρόγραμμα «ΕΞΑΣΦΑΛΙΖΩ ΠΛΕΟΝΕΚΤΗΜΑ ΓΙΑ ΤΟ ΕΦΑΠΑΞ» - Δημιουργία Εγγυημένου Κεφαλαίου Εφάπαξ Ασφαλίστρου (κωδ )
Πρόγραμμα «ΕΞΑΣΦΑΛΙΖΩ ΠΛΕΟΝΕΚΤΗΜΑ ΓΙΑ ΤΟ ΕΦΑΠΑΞ» - Δημιουργία Εγγυημένου Κεφαλαίου Εφάπαξ Ασφαλίστρου (κωδ. 10442) Η Εταιρία αναλαμβάνει την υποχρέωση να καταβάλλει στον Ασφαλισμένο, εάν αυτός βρίσκεται
Η. ΑΣΚΗΣΕΙΣ ( T) ( 1) ( 2) 3 x =
Αν είναι "εκ προοιίου φανερό" ότι η παραπάνω διαδικασία είναι συνεπής προς τον υπολογισό της Παραγράφου ΣΤ το προηγούενο παράδειγα επελέγη ε στόχο την επίδειξη αυτής της συνέπειας Η ΑΣΚΗΣΕΙΣ Σε ένα πίνακα
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδειχθεί ότι: Ρ (Α Β ) = Ρ (Α) Ρ (Α Β ). Μονάδες 7 Α. Πότε δύο ενδεχόµενα
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης: 3 ώρες
Πολυώνυµα - Πολυωνυµικές εξισώσεις
4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt204/nt204.html htts://sites.google.com/site/maths4eu/home/4
Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ
Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 999 Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ Α. Έστω Ρ(x) ένα πολυώνυµο του x και ρ ένας πραγµατικός αριθµός. Αν π(x) είναι το πηλίκο και υ(x) το υπόλοιπο της διαίρεσης του πολυωνύµου
ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ. x Ο πρώτος νόµος θνησιµότητας οφείλεται στον De Moivre, είναι γραµµικός, s(x)
ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ Ο πρώτος νόµος θνησιµότητας οφείλεται στον D Moivr, είναι γραµµικός, s(), ω ω, ή ισοδύναµα κ( ω ), ω και κ θετική σταθερά, και φυσικά δεν έχει καµιά εφαρµογή
ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής 6 Ιανουαρίου 013 1 Ασκήσεις 1.1 Ασκήσεις Επανάληψης 1. είξτε ότι : ηµ x + 3συν y 5.. Να αποδείξτε ότι
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 23 Νεµβρίου 2016 Ασκηση 1. Αν N, να
Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ
1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των
1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4
ΘΕΜΑ ο Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) Ρ (Α) Ρ (Α Β). Μονάδες 8, Α.. Να µεταφέρετε στο τετράδιό σας τις παρακάτω σχέσεις και να συµπληρώσετε
2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση
00-0 4 o Γενιό Λύειο Χανίων Γ τάξη Μαθηματιά Γενιής Παιδείας γ Ασήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράης http://users.sch.gr/mipapagr 4 ο Γενιό Λύειο Χανίων 00 0 ΣΥΝΔΙΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ
f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j
Το θεώρηµα Tor στις πολλές µεταβλητές Ο σκοπός αυτής της παραγράφου είναι η απόδειξη ενός θεωρήµατος τύπου Tor για συναρτήσεις πολλών µεταβλητών Το θεώρηµα για µια µεταβλητή θα είναι ειδική περίπτωση του
Θρασύβουλος Κων. Μαχαίρας. Μικρές προσωπικές συνεντεύξεις
Κύµατα: Μιρές προσπιές συνεντεύξεις (β µέρος) 12η ερώτηση Θα θέλατε να γίνετε λίγο πιο σαφής σχετιά µε τη µαθηµατιή άρα αι διδατιή αξία τν αρµονιών (µονοχρµατιών) υµάτν ; Για να χειριστούµε µε µεγαλύτερη
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2004
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 8 ΙΑΝΟΥΑΡΙΟΥ 004 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ.) . Αν δ t,
( ) 2. χρόνος σε min. 2. xa x. x x v
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Μ. ΤΕΤΑΡΤΗ 8 ΑΠΡΙΛΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Σχολικό βιβλίο
Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2
1994 ΘΕΜΑΤΑ 1. ίνεται η συνάρτηση f()=,. Α) Αν ε είναι η εφαπτοµένη της γραφικής παράστασης C της συνάρτησης f στο σηµείο Μ(α, α ), α >, να βρείτε το εµβαδόν του χωρίου που περικλείεται από τη C, την ευθεία
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 9: Διηνεκείς Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,
Θέματα. Α1. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (9 μονάδες)
Θέματα Θέμα Α Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α αι Β ενός δειγματιού χώρου Ω, ισχύει P(A-B)P(A)-P( A B) (9 μονάδες) Α. Να διατυπώσετε το νόμο των μεγάλων αριθμών. (6 μονάδες) Α. Να χαρατηρίσετε
Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής
Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής Αλέξανδρος Α. Ζυµπίδης Λέκτορας Οικονοµικού Πανεπιστηµίου Αθηνών Αναλογιστής τ. Πρόεδρος της Εθνικής Αναλογιστικής Αρχής Αθήνα, Φεβρουάριος 2009 ii Π Ε Ρ Ι Ε Χ Ο
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα
ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ 30 ΙΑΝΟΥΑΡΙΟΥ 2019 F3W2.PR09 ΚΑΛΗ ΕΠΙΤΥΧΙΑ!!!! F3W2.PR09 1/14
ΚΑΛΗ ΕΠΙΤΥΧΙΑ!!!! 1/14 Για τις ερωτήσεις 1-3 να χρησιμοποιηθούν τα παρακάτω δεδομένα. Χαρτοφυλάκιο περιέχει πανομοιότυπα ασφαλιστήρια συμβόλαια, με την ίδια ημερομηνία έναρξης, όπως περιγράφονται στον
Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ
Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος». * Αν µια συνάρτηση f είναι συνεχής στο διάστηµα [α, β], παραγωγίσιµη στο διάστηµα (α, β) και f (α) = f (β), τότε υπάρχει τουλάχιστον
cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα
( ) ( ) ( ) ( ) ( ) Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A ΘΕΜΑ Β
Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α. Θεωρία βιβλίο Ο.Ε..Β. σελίδα 50-5 Α. Θεωρία βιβλίο Ο.Ε..Β. σελίδα 70 Α. Θεωρία βιβλίο Ο.Ε..Β. σελίδα Α4. α.
Φροντιστήρια. Κεφαλά. ( x) = + ( ) ( ) ( )
Ασκήσεις Μαθηµατικών Όρια και Παράγωγος (4 ο θέµα) Έστω συνάρτηση παραγωγίσιµη στο µε ( ) =, η οποία για κάθε, y R * ικανοποιεί τη σχέση ( y) = + ( y) ( ) Να αποδείξετε ότι η συνάρτηση είναι παραγωγίσιµη
1 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 1. Έστω η εξίσωση (k 5k+ 4) x (k 1)x + 1= 0 Να βρείτε την τιµή του k ώστε η εξίσωση να έχει µία µόνο ρίζα την οποία ρίζα να προσδιορίσετε i Να βρείτε την τιµή του k ώστε η
ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία
ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση
2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 8// Γ ΕΡΓΑΣΙΑ Μαθηµατικά για την Πληροφορική Ι (ΘΕ ΠΛΗ Η ύλη της εργασίας είναι παράγραφοι 6 και 6 από τη Γραµµική Άλγεβρα και Ενότητες,,, από τον Λογισµό
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιµη στο σηµείο αυτό, να αποδείξετε
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2008
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 8 ΙΑΝΟΥΑΡΙΟΥ 008 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ.
Κριτήριο Παρεμβολής. και. άρα από το παραπάνω κριτήριο παρεµβολής το l im f ( x) (x 1) 2 f (x) 2x (x 1) 2 2x (x 1) 2 f (x) 2x + (x 1) 2
Κριτήριο Παρεμβολής Υποθέτουµε ότι κοντά στο µια συνάρτηση f εγκλωβίζεται ανάµεσα σε δύο συναρτήσεις h και g. Αν, καθώς το τείνει στο, οι g και h έχουν κοινό όριο l, τότε όπως φαίνεται και στο σχήµα, η
12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3.
ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρηµα Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση ότι: z 3i z 3i () Όµως z 3i z 3i z 3 i ()
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z
Κανόνες παραγώγισης ( )
66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014
Ε_ΜλΓ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Α Για δύο ενδεχόµενα Α και Β ενός
ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση
Απαντήσεις. Θέμα 1 ο. Α. α) v1. Άρα v1
Απαντήσεις Θέμα 1 ο 3 ( 3)( 1 ) ( 3)( 1 ) Α. α) v1 lm lm lm 3 1 3 ( 1 )( 1 ) 3 1 ( 3)( 1 ) ( 3)( 1 ) lm lm lm( 1 ) 3 1 3 3 3 3 3 Άρα v1 β) Η είναι παραγωγίσιμη για 0 ως πράξεις παραγωγίσιμων με 1 1 10
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 Σχολικό βιβλίο σελ Α2 Σχολικό βιβλίο σελ. 28 Α3. α σωστό, β σωστό, γ λάθος, δ λάθος, ε σωστό. ΘΕΜΑ Β
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β) ΔΕΥΤΕΡΑ 6 ΜΑΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ 6 6
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις
ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ & ΤΕΧΝΟΛΟΓΙΚΉΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Ε Ν Δ Ε
Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001
Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.