Άσκηση 1. i) ============================================================== Πρέπει αρχικά να είναι συνεχής στο x = 1: lim. lim. 2 x + x 2.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Άσκηση 1. i) ============================================================== Πρέπει αρχικά να είναι συνεχής στο x = 1: lim. lim. 2 x + x 2."

Transcript

1 Τηλ: Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ : Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση αντιγραφής ή ύπαρξης παροραµάτων δεν φέρουµε καµία ευθύνη. Άσκηση. i Πρέπει αρχικά να είναι συνεχής στο x : - f( x + f( x > - 3 x + x + x > 3 3 Αληθές Πρέπει επίσης οι πλευρικές παράγωγοι να είναι ίσες στο x : f - ( f + ( > 3 x x + x x > 3 3 Αληθές

2 Άρα η συνάρτηση είναι παραγωγίσιµη στο x και η παράγωγός της είναι f ( 3 Άσκηση. ii α f( x x x ( 3 lnx( x > f( x x ( 3/ ( 3 ln( x > f ( x ( x ( / ( 3 ln( x + x ( 3/ ( 3 ln( x 3 3 x ( 3/ { } ( 3 ln( x + x ( 3/ 3 { 0 } x 3 x { } ( 3 ln( x + x ( 3/ 3 { } x > f 3 ( x x ( 3 ln( x + 3 x Άσκηση. ii β f( x sin( x sin( x f ( x ( sin( x sin( x sin( x sin( x sin( x

3 sin( x sin( x sin( x sin( x cos( x ( sin( x x [ sin( x cos( x ] sin( x sin( x cos( x x sin( x [ sin( x ] sin( x sin( x cos( x x sin( x > f ( x sin( x ( sin x sin( x cos( x x sin( x όπου χρησιµοποιήσαµε την ταυτότητα: sin( a sin( a cos( a Επίσης χρησιµοποιούµε την σύµβαση: sin( a sin ( α Άσκηση. ii γ f( x ln ( x + x + Έστω ότι f( x ln ( u( x, µε u( x x + x + άρα από τον κανόνα σύνθετης παραγώγισης: f ( x u ( x u( x ( 3

4 u ( x [ x + x + ] x + ( x + άρα από τον κανόνα σύνθετης παραγώγισης: ( g( x g ( x g( x > u ( x + x x + > u ( x x + x + x + ( Από την ( η ( δίνει: f ( x x + Άσκηση. ii δ f( x e sin( x 3 Aπό τον κανόνα σύνθετης παραγώγισης: ( e g( x e g( x g ( x 4

5 f ( x sin( x 3 e ( sin( x 3 Aπό τον κανόνα σύνθετης παραγώγισης: ( u( x n n u( x ( n u ( x f sin( x 3 ( x e sin( x 3 sin( x 3 sin( x 3 e sin( x 3 cos( x 3 ( x 3 sin( x 3 6 e sin( x 3 cos( x 3 x > f ( x 3 x sin( x 3 e sin( x 3 όπου χρησιµοποιήσαµε την ταυτότητα: sin( a sin( a cos( a Επίσης χρησιµοποιούµε την σύµβαση: sin( x 3 sin ( x 3 Άσκηση. iii Έστω η συνάρτηση f µε f ( x ln( x ορισµένη στο [, e ] Η f είναι συνεχής στο [, e ] 5

6 Η f είναι παραγωγίσιµη στο (, e µε f ( x x άρα από το θεώρηµα µέσης τιµής τουν διαφορικού λογισµού υπάρχει ξ (,e τέτοιο ώστε: f( e f( e f ( ξ > f( e f( f ( ξ ( e > ln( e ξ Όµως ισχύει: < ξ < e > /e < /ξ < / > (e- / e < (e- / ξ < (e- / > - / e < (e- / ξ < e / - - / e < - ln < e / - > - e / + < - + ln < / e - > - e / + < - + ln < + / e - > - e / < ln < / e maths@maths.gr, Τηλ: Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ : Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση αντιγραφής ή ύπαρξης παροραµάτων δεν φέρουµε καµία ευθύνη. Άσκηση. i f( x x x 6

7 > f( x e ( x ln( x Aπό τον κανόνα σύνθετης παραγώγισης: ( e g( x e g( x g ( x f ( x e ( x ln( x ( x ln( x e ( x ln( x ( x ln( x + x ln( x e ( x ln( x ( ln( x + > f ( x x x ( ln( x + Άσκηση. ii α x + x + sin( x e x + x Με εφαρµογή του κανόνα L Hospital έχουµε: x + x + sin( x e x + x ( x + x + sin( x ( + e x x ( x + x + sin( x ( e x + x 7

8 x+ + cos( x e x + Με εφαρµογή πάλι του κανόνα L Hospital έχουµε: ( x+ + cos( x ( + e x sin( x e x Όµως έχουµε ότι: - < -sinx < > - < -sinx < + > < - sin(x < 3 > > e x sin( x, e x 3 e x κι επειδή: 0 e x συµπεραίνουµε ότι και: sin( x 0 e x > x + x + sin( x e x + x 0 Άσκηση. ii β 8

9 - x x x ln( x x+ x x x ln( x x+ Με εφαρµογή του κανόνα L Hospital έχουµε: x x x ln( x x+ ( x x x ( ln( x x+ ( x x x ( ln( x x + x x ( ln( x + x Με εφαρµογή πάλι του κανόνα L Hospital έχουµε: ( x x ( ln( x + + x x ( ln( x + x x x ( ln( x + x x + x x > x x x ln( x x+ x x ( ln( x + x x + x x 9

10 > x x x ln( x x+ ( ln ( + + > x x x ln( x x+ - Άσκηση. ii γ f( x sin( x x > ln ( f( x ln ( sin( x x > ln ( f( x x ln ( sin( x Από τον κανόνα σύνθετης παραγώγισης: ln ( g( x g ( x g( x βρίσκουµε ότι: ln ( f( x ( x ln ( sin( x > 0

11 f ( x f( x ( x ln ( sin( x > f ( x f( x x ln ( sin( x + x ln ( sin( x > f ( x f( x ln ( sin( x + x cos( x sin( x > f ( x f( x ln ( sin( x + x cos( x sin( x > f ( x sin( x x ln ( sin( x + x cos( x sin( x > f ( x sin( x x ln ( sin( x + sin( x x x cos( x sin( x > f ( x sin( x x ln ( sin( x + sin( x ( x x cos( x Επίσης χρησιµοποιούµε την σύµβαση: sin( x x (sin(x x sin( x ( x (sin(x ( x

12 Άσκηση. iii A A c b B 60 o a C C Έστω ότι µετά από χρόνο t το αυτοκίνητο είναι στην θέση A ενώ το τρένο είναι στη θέση C. Επειδή έχουν διανύσει αντίστοιχα: AA 80 t CC 50 t αν ονοµάσουµε: a BC > a t b A C c BΑ > c 5 50 t τότε ο νόµος συνηµιτόνων µε κορυφή το Β στο τρίγωνο A BC γράφεται:

13 b c + a c a cos( B > b ( 5 50 t + ( t ( 5 50 t ( t cos π 3 > b ( 5 50 t + ( t ( 5 50 t ( t > b 4900 t 4500 t a 4900 β γ 3065 β 4 aγ > 0 άρα οι ρίζες είναι: β + - t, a 5 t 5 t Συνεπώς το τριώνυµο γράφεται: 3

14 b t Το οποίο προφανώς έχει ελάχιστο όταν: 5 t t.5 h 5 ηλαδή έχουµε ελάχιστο b 0 για t t.5 h Που σηµαίνει ότι δεν υπάρχει πλέον τρίγωνο δηλ. το Α ταυτίζεται µε το Α και το C ταυτίζεται µε το C Πράγµατι αντικαθιστώντας τον χρόνο στις πλευρές c και α βρίσκουµε : a t c 5 50 t 5 t > a 0 c 0 Oι πλευρές ΒC και BC ταυτίζονται. Το ίδιο και οι πλευρές AA και AB Συνεπώς η ελάχιστη απόσταση τότε είναι η πλευρά BC 5 Km maths@maths.gr, Τηλ: Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ : Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση αντιγραφής ή ύπαρξης παροραµάτων δεν φέρουµε καµία ευθύνη. 4

15 Άσκηση 3. i f( x x ( x 3 Υπολογίζουµε την πρώτη παράγωγο: f ( x x ( x 3 + x {( x 3 } ( x 3 + x ( x 3 ( x 3 ( x 3 ( x + (x - 3 ( x 3 ( 3 x 3 > f ( x 3 ( x ( x 3 Άρα η πρώτη παράγωγος θα είναι θετική κι εποµένως η συνάρτηση θα είναι αύξουσα, όταν: x < ή x > 3 Επίσης η πρώτη παράγωγος θα είναι αρνητική κι εποµένως η συνάρτηση θα είναι φθίνουσα, όταν: < x < 3 Άσκηση 3. ii Βρίσκουµε τα τοπικά ακρότατα: 5

16 f ( x 0 <> 3 ( x ( x 3 0 <> x x 3 Υπολογίζουµε την δεύτερη παράγωγο: f ( x 6 x f ( -6 < 0 άρα έχουµε τοπικό µέγιστο όταν x το οποίο είναι ίσο µε f ( 4 f ( 3 6 > 0 άρα έχουµε τοπικό ελάχιστο όταν x 3 το οποίο είναι ίσο µε f (3 0 Άσκηση 3. iii Βρίσκουµε τα διαστήµατα που στρέφει τα κοίλα άνω ή κάτω: Στρέφει τα κοίλα άνω όταν f ( x > 0 <> 0 < 6 x <> 6

17 < 6 x <> < x Στρέφει τα κοίλα κάτω όταν f ( x < 0 <> 6 x< <> 6 x< <> x< Άσκηση 3. iv Βρίσκουµε τα σηµεία καµπής: f ( x 0 <> 6 x 0 <> 6 x <> 7

18 x Άσκηση 3. v Βρίσκουµε τις ρίζες της συνάρτησης: f( x 0 <> x ( x 3 0 <> x 0 x 3 Επίσης για x 0 έχουµε: f( 0 0 άρα τέµνει τον άξονα x στα σηµεία (0,0, (3,0 και τον άξονα y στο σηµείο (0,0 Άσκηση 3. vi Υπολογίζουµε αρχικά το όριο: f( x x ( x 3 > 8

19 f( x x άρα δεν υπάρχουν ασύµπτωτες Άσκηση 3. vii Έχουµε τον ακόλουθο πίνακα: 0 3 f f f Και την γραφική παράσταση: 9

20 Τηλ: Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ : Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση αντιγραφής ή ύπαρξης παροραµάτων δεν φέρουµε καµία ευθύνη. Άσκηση 4. i Υπολογίζουµε τις παραγώγους της συνάρτησης: f (x [ x e ( x ] 0

21 x e ( x + x ( e ( x e ( x x e ( x e ( x ( x > f ( (- e ( x ( x f (x (- ( e ( x ( x + (- e ( x ( x e ( x ( x e ( x e ( x ( x > f ( (- e ( x ( x ηλαδή βλέπουµε ότι ισχύει: f (n ( x (- n e ( x ( x n το οποίο µπορούµε να αποδείξουµε και επαγωγικά: Ισχύει για n, έστω ότι ισχύει για n, τότε παραγωγίζοντας βρίσκουµε: f (n+ ( x (- n ( e ( x ( x n + (- n e ( x ( x n ( - ( n+ e ( x ( x n + (- n e ( x ( - ( n+ e ( x ( x n + (- ( n+ { e ( x }

22 - ( n+ e ( ( x ( x n > f (n+ ( x ( - ( n + e ( x ( x (n+ δηλ. ισχύει για n +, άρα ισχύει για κάθε n µεγαλύτερο ή ίσο του : Άρα οι παράγωγοι της συνάρτησης υπολογισµένες στο x 0 είναι: f (n (0 ( - n e 0 n > f (n (0 ( - n n µε n,,3... Εποµένως το ανάπτυγµα Taylor στο σηµείο x 0 είναι: f( x f( 0 + f (n (0 x n n! n > x e ( x n ( - n n x n n! > x e ( x x x + x3 6 x4 +...

23 ( > f( 0. x x + x3 6 x4 x 0. > f( Η πραγµατική τιµή: f( Άσκηση 4. ii Από την σχέση ( ολοκληρώνοντας βρίσκουµε: x e ( x x x + x3 6 x > x e ( x dx d x + x x3 6 x4 x > x e ( x dx x dx+ x x 3 dx+ d + x x 4 6 dx Με τον κανόνα ολοκλήρωσης: 3

24 x ν dx x ( ν+ ν+ x e ( x dx + x 3 x3 8 x4 30 x5 > x e ( x dx + x 3 x3 8 x4 + x 3 x3 8 x x5 x 30 x5 x 0 > x e ( x 3 dx 0 0 > x e ( x dx (3 Άσκηση 4. iii x e ( x d x x ( ex d x x e x e x x dx x e ( x + e ( x dx 4

25 x e ( x e ( x d(-x x e ( x e ( x > x e ( x dx ( + x e ( x > x e ( x d x ( ( + x e ( x ( ( + x e ( x 0 x x 0 > x e ( x dx e ( e 0 > x e ( x dx e ( > x e ( x dx (4 Από τις (3 και (4 το σφάλµα µας είναι: I Ι προσεγγ. πραγµατ

26 δηλ. αρκετά µικρό Τηλ: Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ : Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση αντιγραφής ή ύπαρξης παροραµάτων δεν φέρουµε καµία ευθύνη. Άσκηση 5. i I ( a x + b x+ c e ( x dx ( a x+ b x + c ( e ( x dx ( a x + b x+ c e ( x x d e( ( a x + b x+ c x ( a x + b x+ c e ( x e ( x ( a x+ b dx ( a x + b x+ c e ( x + e ( x ( a x+ b dx ( a x + b x+ c e ( x + e ( x d + a x x e ( x b d x ( a x + b x+ c e ( x + a e ( x d + x x b e ( x d x ( a x + b x+ c e ( x e ( x b + a e ( x x d x > ( a x + b x+ c e ( x d x ( a x + b x+ c e ( x e ( x b a ( + x e ( x 6

27 > ( a x + b x+ c e ( x d x ( a x b x c b a ( + x e ( x + c Όπου χρησιµοποιήσαµε το αποτέλεσµα της άσκησης 4 ii Άσκηση 5. ii I dx ( 3 x ( / 3 > I ( 3 x - 3 dx 3 ( 3 x - 3 d( - 3 x 3 ( 3 x > dx ( 3 x ( / 3 3 { 3 ( 3 x ( / 3 } > 7

28 ( 3 x ( / 3 dx + c ( 3 x ( / 3 Άσκηση 5. iii I 3 x + e ( e x + dx Κάνουµε την αντικατάσταση: e x u > e x dx du > dx du e x > dx du u και έχουµε: 3 x + e ( e x + u 3 + dx d ( u+ u u µε βάση την υπόδειξη: 8

29 u u+ u du d u + u u d + + u u - d u d u u u u + ln( u > 3 x + e ( e x + dx + ( ex e x ln( e x > 3 x + e ( e x + x dx e x + ln( e x e( 9

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ.

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ 007-008: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε

Διαβάστε περισσότερα

x + ax x x 4 να είναι παραγωγίσιμη στο x Υπόδειξη: Μπορείτε να εφαρμόσετε κανόνα L Hospital ή μπορεί σας χρειαστεί η sin sin = 2sin cos

x + ax x x 4 να είναι παραγωγίσιμη στο x Υπόδειξη: Μπορείτε να εφαρμόσετε κανόνα L Hospital ή μπορεί σας χρειαστεί η sin sin = 2sin cos http://lar.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ -: Άσκηση. (5 μονάδες) i) ( μονάδες) Υπολογίστε την παράγωγο για κάθε μία από τις επόμενες συναρτήσεις: a)

Διαβάστε περισσότερα

Άσκηση 1 (α) ============================================================== Έχουµε L = π, εποµένως η σειρά Fourier είναι: 1 2 a. cos. a n. b n.

Άσκηση 1 (α) ============================================================== Έχουµε L = π, εποµένως η σειρά Fourier είναι: 1 2 a. cos. a n. b n. http://elear.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις 6ης Γραπτής Εργασίας ΠΛΗ 7-8: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Η ύλη της εργασίας είναι οι ενότητες 5, 6 και 7 από τον Λογισµό µιας Μεταβλητής Η άσκηση αφορά στην έννοια

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Υπολογίζουµε την πρώτη παράγωγο: f ' ( x ) = 3 x 2 6 x. Βρίσκουµε τα διαστήµατα µονοτονίας: Στο τριώνυµο είναι: = β 2 4 aγ. άρα οι ρίζες είναι: x 1,2

Υπολογίζουµε την πρώτη παράγωγο: f ' ( x ) = 3 x 2 6 x. Βρίσκουµε τα διαστήµατα µονοτονίας: Στο τριώνυµο είναι: = β 2 4 aγ. άρα οι ρίζες είναι: x 1,2 ================================================= Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών. Θ. Χριστόπουλος, www.maths.gr, Tηλ.: 69 79 21 251 Ασκήσεις

Διαβάστε περισσότερα

Άσκηση 1. i) ============================================================== Α n ( 3 n 1 ) A ) 5 4. Α n 1 2 ( n n 2.

Άσκηση 1. i) ============================================================== Α n ( 3 n 1 ) A ) 5 4. Α n 1 2 ( n n 2. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6995 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 18 Φεβρουαρίου 005. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής

Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής. * Έστω µια συνάρτηση f για την οποία ισχύουν οι υποθέσεις του θεωρήµατος του Rolle στο διάστηµα [α, β]. Τότε θα υπάρχει ξ (α, β), ώστε η εφαπτοµένη της C f στο (ξ, f (ξ))

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Mαίου 8 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

7 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 61. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε. (e + 1)dt = x 1

7 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 61. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε. (e + 1)dt = x 1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 7 η ΕΚΑ Α 6. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε t (e + )dt για κάθε R Για δυνατούς παίκτες i) είξτε ότι e f() + f() ii) είξτε ότι η f αντιστρέφεται και βρείτε την f iii)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ηµεροµηνία Αποστολής στον Φοιτητή: 4 Φεβρουαρίου 006 Ηµεροµηνία Παράδοσης της Εργασίας από τον Φοιτητή:

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 3 Κεφάλαιο ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α) Σ 5. Σ. Σ β) Σ 6.

Διαβάστε περισσότερα

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { }

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { } http://elearn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 94 Κεφάλαιο ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ o ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Λ 4. Λ 43. Λ. Σ 5. Λ 44. Σ 3. Λ 6. Λ 45. α) Σ 4. Σ 7. Λ β) Λ 5. Σ 8. Σ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν η συνάρτηση f είναι παραγωγίσιµη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β).. * Αν η συνάρτηση f

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: Φεβρουαρίου Ημερομηνία παράδοσης της Εργασίας: 6 Μαρτίου Πριν από την λύση κάθε άσκησης καλό είναι να

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις 1 ΘΕΩΡΙΑ ΜΑΘΗΜΑ 4.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις 1. Ορισµός Έστω συνεχής σε διάστηµα και παραγωγίσιµη στο εσωτερικό του. Θα λέµε ότι η στρέφει

Διαβάστε περισσότερα

ln x e οπότε lim x x lim lim = + lim = 0 1 x = 0. x 1 ) = = 1 (ln x) (x)

ln x e οπότε lim x x lim lim = + lim = 0 1 x = 0. x 1 ) = = 1 (ln x) (x) 983 ΘΕΜΑΤΑ. Να βρεθεί το όριο της συνάρτησης f στο µε f() + ( + ). Πρέπει >, άρα το πεδίο ορισµού της f είναι το (, ) εποµένως έχει νόηµα η αναζήτηση του ορίου της στο. Για >, έχουµε + + ln e οπότε + +

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (Θ.Ε. ΠΛΗ 1) 4 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Ημερομηνία Ανάρτησης 14 Φεβρουαρίου 014 Ημερομηνία Παράδοσης της εργασίας από τον Φοιτητή 14 Μαρτίου

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 Θέµα ο ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ B. α) Λάθος διότι η f είναι «-» που σηµαίνει δεν είναι πάντα γνησίως µονότονη. β) Σωστό διότι

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C f

Διαβάστε περισσότερα

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i)

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.8 Ασκήσεις σχολικού βιβλίου σελίδας 77 79 A Οµάδας 1.i) Να βρείτε τα διαστήµατα στα οποία η συνάρτηση () 5 5 4 + είναι κυρτή ή κοίλη και να προσδιορίσετε (αν υπάρχουν) τα σηµεία καµπής της γραφικής της

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης. . Έστω συνάρτηση f, δύο φορές παραγωγίσιµη στο R, µε συνεχή δεύτερη παράγωγο και σύνολο τιµών το διάστηµα [, ] a β, όπου a< < β. Να αποδείξετε ότι: i) υπάρχουν δύο τουλάχιστον σηµεία,, µε, ώστε f ( ) =

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών

Διαβάστε περισσότερα

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2 1994 ΘΕΜΑΤΑ 1. ίνεται η συνάρτηση f()=,. Α) Αν ε είναι η εφαπτοµένη της γραφικής παράστασης C της συνάρτησης f στο σηµείο Μ(α, α ), α >, να βρείτε το εµβαδόν του χωρίου που περικλείεται από τη C, την ευθεία

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής

Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής. * Το θεώρηµα µέσης τιµής του διαφορικού λογισµού για κάθε α, β R και τη συνάρτηση f () = e εξασφαλίζει την ύπαρξη ενός αριθµού κ R, ώστε να ισχύει Α. e α-β = e κ (α - β) Β.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( ) Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =

Διαβάστε περισσότερα

ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου

ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου Σύλλογος Θετικών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου Μαθηµατικά : Τάξη: Γ ράµα Απριλίου Θέµα ο ίνεται η συνάρτηση :, δύο φορές παραγωγίσιµη για την οποία ισχύει: ) )

Διαβάστε περισσότερα

12 Το αόριστο ολοκλήρωµα

12 Το αόριστο ολοκλήρωµα Το αόριστο ολοκλήρωµα. Αντιπαράγωγοι Εστω ότι η y = f ( ορίζεται στο διάστηµα I, οποιουδήποτε τύπου. Αν µια δεύτερη συνάρτηση y = F(, που ορίζεται στο ίδιο διάστηµα I, έχει την ιδιότητα F ( = f (, για

Διαβάστε περισσότερα

και γνησίως αύξουσα στο 0,

και γνησίως αύξουσα στο 0, ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελ 6 (i) A. Σχολικό βιβλίο σελ 141 Α. Σχολικό βιβλίο σελ 46-47 Α4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β Β1. Ισχύει D f επειδή 1 1 1 Για κάθε η f είναι παραγωγίσιμη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 -6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ 2 Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 18 ΜΑΙΟΥ 2018 ΘΕΜΑ Α. η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης.

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ 2 Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 18 ΜΑΙΟΥ 2018 ΘΕΜΑ Α. η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης. ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 8 ΜΑΙΟΥ 8 ΘΕΜΑ Α Α. Εστω μια συνάρτηση f και x ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x, όταν Α. lim f ( x) f

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιµη στο σηµείο αυτό, να αποδείξετε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C

Διαβάστε περισσότερα

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016 ΘΕΜΑ Α Απαντήσεις στα Μαθηματικά Κατεύθυνσης 6 Α.. Σχολ. Βιβλίο, Θεωρία, σελ.6-(i) Α.. Σχολ. Βιβλίο, Θεωρία, σελ. 4 Α. Σχολ. Βιβλίο, Θεωρία, σελ. 46,47 Α.4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β B. Η συνάρτηση

Διαβάστε περισσότερα

Έντυπο Υποβολής Αξιολόγησης Γ.Ε.

Έντυπο Υποβολής Αξιολόγησης Γ.Ε. Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Πανελλαδικές εξετάσεις Μαθηµατικά Προσανατολισµού Γ Λυκείου. Ενδεικτικές Απαντήσεις ϑεµάτων. Θέµα Β. (α) ϑεωρία. (ϐ) i, ii) ϑεωρία.

Πανελλαδικές εξετάσεις Μαθηµατικά Προσανατολισµού Γ Λυκείου. Ενδεικτικές Απαντήσεις ϑεµάτων. Θέµα Β. (α) ϑεωρία. (ϐ) i, ii) ϑεωρία. Πανελλαδικές εξετάσεις 09 Μαθηµατικά Προσανατολισµού Γ Λυκείου Ενδεικτικές Απαντήσεις ϑεµάτων Θέµα Α Α α) ϑεωρία ϐ) i, ii) ϑεωρία Α ϑεωρία Α3 ϑεωρία Α4 α) Λάθος {, x < 0 διότι για τη συνάρτηση fx) = ισχύει

Διαβάστε περισσότερα

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /4/7 έως τις /4/7 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Απριλίου 7 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος». * Αν µια συνάρτηση f είναι συνεχής στο διάστηµα [α, β], παραγωγίσιµη στο διάστηµα (α, β) και f (α) = f (β), τότε υπάρχει τουλάχιστον

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ A. Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα. Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις

Διαβάστε περισσότερα

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x ΕΞΕΤΑΣΕΩΝ 05 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα. Αν η F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ (

ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ ( ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ 0 ΘΕΜΑ Α Α. Θεωρία : Σχολικό βιβλίο σελίδα 53 Α. Θεωρία : Σχολικό βιβλίο σελίδα 9 Α3. Θεωρία : Σχολικό βιβλίο σελίδα 58 Α4.. α.σ, β.σ, γ.λ, δ.λ, ε.λ ΘΕΜΑ Β Β. Έστω yi 4 ( ) yi ( ) yi 4 (

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 1. i) Να δείξετε ότι υπάρχει μοναδικό 3 3 0 1, ώστε: 3 e, 1 ln 0 + 0 = 0 ii) Δίνεται ο μιγαδικός 3 z = ln + i, > 0 a) Να βρείτε την ελάχιστη απόσταση k της εικόνας του z από την αρχή

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Συνοπτικές Ενδεικτικές Λύσεις

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Συνοπτικές Ενδεικτικές Λύσεις ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 6 ΙΟΥΝΙΟΥ 00 Συνοπτικές Ενδεικτικές Λύσεις Άσκηση. ( µον.) ίνεται το σύστηµα y +

Διαβάστε περισσότερα

============================================================== Σχηµατίζουµε τον πίνακα µε στήλες τα διανύσµατα v1,v2,v3,u1,u2:

============================================================== Σχηµατίζουµε τον πίνακα µε στήλες τα διανύσµατα v1,v2,v3,u1,u2: http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ -: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

1, x > 0 η οποία είναι συνεχής και παραγωγίσιμη σε κάθε ένα από τα διαστήματα (, 0) και (0, + ) του πεδίου ορισμού της D f = R.

1, x > 0 η οποία είναι συνεχής και παραγωγίσιμη σε κάθε ένα από τα διαστήματα (, 0) και (0, + ) του πεδίου ορισμού της D f = R. ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΥΛΗ: Όρια Συνέχεια Διαφορικός Λογισμός Ορισμένο Ολοκλήρωμα ΗΜΕΡΟΜΗΝΙΑ: 4 Μαρτίου 8 Θερινά Τμήματα Απαντήσεις ΘΕΜΑ Α Α. Σχολικό Βιβλίο Σελίδα 33. (Μονάδες 5) Α. Σχολικό

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010 Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3//00 Θέµα ( µονάδα) Θεωρούµε το σύνολο B = {x Q : x < 5}. είξτε ότι sup B = 5. Απάντηση : Για να δείξουµε ότι sup B = 5 αρκεί να δειχθεί ότι α) Το 5 είναι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΓΙΑ «ΜΑΘΗΜΑΤΙΚΑ ΙΙ» ΑΚΟΛΟΥΘΙΕΣ ΚΑΙ ΟΡΙΑ ΑΚΟΛΟΥΘΙΩΝ. lim. (β) n +

ΘΕΜΑΤΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΓΙΑ «ΜΑΘΗΜΑΤΙΚΑ ΙΙ» ΑΚΟΛΟΥΘΙΕΣ ΚΑΙ ΟΡΙΑ ΑΚΟΛΟΥΘΙΩΝ. lim. (β) n + ΘΕΜΑΤΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΓΙΑ «ΜΑΘΗΜΑΤΙΚΑ ΙΙ» ΑΚΟΛΟΥΘΙΕΣ ΚΑΙ ΟΡΙΑ ΑΚΟΛΟΥΘΙΩΝ ) Να υπολογιστούν τα όρια των κάτωθι ακολουθιών με : (α) + 5 + 7 + + (β) + 5 + + (γ) + + + (δ) ( 5 ) + + 4 + ( ) + 5 ) Να βρεθούν

Διαβάστε περισσότερα

Πανελλαδικές εξετάσεις 2017

Πανελλαδικές εξετάσεις 2017 Πανελλαδικές εξετάσεις 7 Ενδεικτικές απαντήσεις στο μάθημα «Μαθηματικά ΟΠ» Θέμα Α Α Θεωρία σχολικού βιβλίου σελ 36 Α α) Λ β) H συνάρτηση ( ) είναι παραγωγίσιμη σε αυτό αφού: ( ) () lim lim είναι συνεχής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΙΟΥΝΙΟΥ 4 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σελ. 5 σχολικού βιβλίου. Α. Θεωρία σελ. 73 σχολικού βιβλίου. Α3. Θεωρία σελ. 5 σχολικού βιβλίου. Α4. α) Λ, β) Σ, γ) Σ,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Άσκηση i. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της στο Δ, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της

Διαβάστε περισσότερα

2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du.

2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 8: Τεχνικές ολοκλήρωσης Α Οµάδα. Υπολογίστε τα ακόλουθα ολοκληρώµατα : + + d, + + ( + 3)( ) d, 3 + 3 + 3 + + + d. Υπόδειξη. (α) Γράφουµε + + d

Διαβάστε περισσότερα

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων 5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι

Διαβάστε περισσότερα

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3.

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3. ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρηµα Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση ότι: z 3i z 3i () Όµως z 3i z 3i z 3 i ()

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ / ΤΜΗΜΑ : ΘΕΤΙΚΩΝ & ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ 2018

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ / ΤΜΗΜΑ : ΘΕΤΙΚΩΝ & ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ 2018 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ / ΤΜΗΜΑ : ΘΕΤΙΚΩΝ & ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ 18 ΑΡΙΘΜΟΣ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α Α1. Πότε η ευθεία : λέγεται κατακόρυφη

Διαβάστε περισσότερα

Λύσεις του διαγωνίσματος στις παραγώγους

Λύσεις του διαγωνίσματος στις παραγώγους Λύσεις του διαγωνίσματος στις παραγώγους Θέμα ο Α Έστω ότι f ), για κάθε α, ), β) Επειδή η f είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα α, ] και [, β) Επομένως, για ισχύει

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

f (x) g(h) = 1. f(x + h) f(x) f(x)f(h) f(x) = lim f(x) (f(h) 1) = lim = lim = lim f(x)g(h) g(h) = f(x) lim = f(x) 1 = f(x)

f (x) g(h) = 1. f(x + h) f(x) f(x)f(h) f(x) = lim f(x) (f(h) 1) = lim = lim = lim f(x)g(h) g(h) = f(x) lim = f(x) 1 = f(x) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - Λύσεις 2ης Σειράς Ασκήσεων Ασκηση 1. Για κάθε a,b και x 2, η f είναι παραγωγίσιµη.

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016 Λύσεις θεμάτων προσομοίωσης -Πανελλαδικές Εξετάσεις 06 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 06 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ Επαναληπτικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α. α. Έστω δυο συναρτήσεις f, g ορισµένες σε ένα διάστηµα. Αν οι f, g είναι συνεχείς στο και f () g ()

Διαβάστε περισσότερα

Θέµα 3 ο : Έστω οι µιγαδικοί z και z µε z = z = και z z. Έστω ο µιγαδικός αριθµός zz! = z z Να δείξετε ότι: α. z = και z =. z z β.! " R γ.! " ΜΟΝΑΔΕΣ

Θέµα 3 ο : Έστω οι µιγαδικοί z και z µε z = z = και z z. Έστω ο µιγαδικός αριθµός zz! = z z Να δείξετε ότι: α. z = και z =. z z β.!  R γ.!  ΜΟΝΑΔΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θέµα ο : Α. Έστω f µια συνεχής συνάρτηση σε ένα διάστηµα [α,β]. Αν G είναι µια παράγουσα της f στο [α,β], τότε να δείξετε ότι:! $ " f ( ) d = G(! ) # G( ") ΜΟΝΑΔΕΣ 7 Α.

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση: ΘΕΜΑΤΑ ΘΕΜΑ Γ. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f () f(), η οποία ικανοποιεί τη σχέση: (f () + f () ) f () + f (), για κάθε. Γ. Να αποδείξετε ότι f() ln( ),. Μονάδες 8 Γ. Να μελετήσετε

Διαβάστε περισσότερα

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

********* Β ομάδα Κυρτότητα Σημεία καμπής********* ********* Β ομάδα Κυρτότητα Σημεία καμπής********* 5 Για την δύο φορές παραγωγίσιμη στο R συνάρτηση ισχύει: e για κάθε R. Να αποδείξετε ότι η γραφική παράσταση της δεν παρουσιάζει σημείο καμπής. Υποθέτουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 8 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A Να αποδειχθεί ότι η συνάρτηση f ln, * είναι παραγωγίσιµη στο * και ισχύει: ln Μονάδες Α Πότε µια συνάρτηση f λέµε ότι είναι συνεχής σε

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑΪΟΥ 23 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1o A. Για x x έχουµε: f (

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 05 ΜΑΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 05 ΜΑΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 5 ΜΑΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Θεωρία Σχολικού Βιβλίου σελ 5 Α ) Θεωρία Σχολικού Βιβλίου σελ 46-47 ) Θεωρία Σχολικού Βιβλίου σελ 8 Α3 ) Λ ) Σ 3)

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ Κεφάλαιο ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α Σ 5. Σ. Σ β Σ 6. Λ.

Διαβάστε περισσότερα

Μαθηµατικα Γενικης Παιδειας Γ Λυκειου

Μαθηµατικα Γενικης Παιδειας Γ Λυκειου Μαθηµατικα Γενικης Παιδειας Γ Λυκειου 1 ιαφορικός Λογισµός Θέµα 1. ίνεται η συνάρτηση = ln(x 1)+1. α ) Να ϐρεθεί το πεδίο ορισµού της f. ϐ ) Να ϐρεθεί η f και το πεδίο ορισµού της. γ ) Να µελετηθεί η f

Διαβάστε περισσότερα

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ]. ΘΕΜΑ Α Διαγώνισμα 1 A 1. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () > σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο το Δ. (Μονάδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΘΕΜΑ Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x . Ασκήσεις σχολικού βιβλίου σελίδας 56 57 A µάδας. Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) () = ii) () = ln( ) iii) () = e + iv) () = ( ), i)

Διαβάστε περισσότερα