ΣΧΕΔΙΑΣΜΟΙ ΔΙΑΣΤΑΥΡΩΣΗΣ ΔΥΟ ΑΓΩΓΕΣ ΤΡΕΙΣ ΠΕΡΙΟΔΟΙ ΕΞΑΡΤΗΜΕΝΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ
|
|
- Λίγεια Μήτζου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Ελληνικό τατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου υνεδρίου τατιστικής (5) σελ.9-6 ΧΕΔΙΑΜΟΙ ΔΙΑΑΥΡΩΗ ΔΥΟ ΑΓΩΓΕ ΡΕΙ ΠΕΡΙΟΔΟΙ ΕΞΑΡΗΜΕΝΕ ΠΑΡΑΗΡΗΕΙ τρατής Κουνιάς και Μιλτιάδης Χαλικιάς * μήμα Μαθηματικών, Πανεπιστήμιο Αθηνών skonias@ath.oa.gr, chalikias@hotail.co ΠΕΡΙΛΗΨΗ την περίπτωση των δύο αγωγών και δύο περιόδων, με εξαρτημένες παρατηρήσεις, ο βέλτιστος σχεδιασμός είναι ο ίδιος με την περίπτωση των ανεξάρτητων παρατηρήσεων. την περίπτωση των τριών περιόδων εξετάζονται δύο μορφές εξάρτησης, της σύνθετης συμμετρίας και του αυτοπαλινδρομούμενου μοντέλου. τη σύνθετη συμμετρία, όπου ο συντελεστής συσχέτισης είναι ο ίδιος για κάθε δύο παρατηρήσεις μέσα στην ίδια ακολουθία, ο βέλτιστος σχεδιασμός είναι ο ίδιος με την περίπτωση των ανεξάρτητων παρατηρήσεων. το αυτοπαλινδρομούμενο μοντέλο δείχνεται ότι ο βέλτιστος σχεδιασμός αλλάζει με την αλλαγή του συντελεστή συσχέτισης, αλλάζει επίσης και η τιμή της εκτιμούμενης διασποράς της κύριας επίδρασης. ) ΕΙΑΓΩΓΗ ε σχεδιασμούς διασταύρωσης (Cross Over designs) κάθε πειραματική μονάδα (π.μ.) δέχεται μια ακολουθία αγωγών, μια αγωγή σε κάθε περίοδο, δηλαδή αν έχουμε αγωγές Α, Β και ΑΒΑ είναι η ακολουθία, τότε έχουμε 3 περιόδους. την αρχή κάθε περιόδου εφαρμόζονται διαδοχικά οι αγωγές Α, Β, Α. Μετρήσεις γίνονται στο τέλος κάθε περιόδου. Οι Cochran et al. (94) δημοσίευσαν την εργασία doble-change over design for dairy cattle feeding experients, οι Willias (949, 95), Peterson and Lcas (959, 96), Hedayat and fsarinejad (975, 978), Jones and Kenward (), Mathews (987), Gill and Shkla (987) και πολλοί άλλοι έχουν κάνει σημαντικές συμβολές στο θέμα αυτό. ε προηγούμενα συνέδρια του ΕΙ (Κουνιάς και Χαλικιάς 3, 5) θεωρήσαμε ότι οι διαδοχικές παρατηρήσεις είναι ανεξάρτητες. την εργασία αυτή * Η έρευνα αυτή υποστηρίχτηκε από το πρόγραμμα Ηράκλειτος Ι αρ του ΥΠΕΠΘ - 9 -
2 μελετάμε βέλτιστους σχεδιασμούς, για την εκτίμηση των κύριων επιδράσεων, στην περίπτωση που έχουμε αγωγές Α, Β, 3 περιόδους και εξαρτημένες παρατηρήσεις μέσα σε κάθε ακολουθία. Η εξάρτηση που εξετάζουμε είναι α) ύνθετης συμμετρίας (copond syetry) β) Αυτοπαλινδρομούμενου μοντέλου R(). ο πρόβλημά μας είναι να βρεθεί ο σχεδιασμός που δίνει εκτιμήτρια με ελάχιστη διασπορά. ) Ο ΜΟΝΕΛΟ ΥΝΘΕΗ ΥΜΜΕΡΙΑ ο μοντέλο είναι: y = μ + τ + π + δ + γ + ζ + e ijk j i, j i κ ijk () ο i αναφέρεται στην i-στή ακολουθία, τo j αναφέρεται στην j-στή περίοδο, το k αναφέρεται στην k -στή επανάληψη της ακολουθίας (k -στή π.μ.). τ Α, τ Β : άμεσες (κύριες) επιδράσεις των αγωγών (Α, Β) π j, : επίδραση της j-στής περιόδου δ Α, δ Β : μεταφερόμενες επιδράσεις των Α, Β γ : επίδραση της i-στής ακολουθίας ι ζ : επίδραση της π.μ. κ (sbject effect) που είναι τυχαία επίδραση, ανεξάρτητη του κ σφάλματος. α σφάλματα e δεν θεωρούνται ανεξάρτητα μέσα σε κάθε ακολουθία, αλλά ijk σφάλματα σε διαφορετικές ακολουθίες είναι ανεξάρτητα. ο μοντέλο () σε διανυσματική μορφή είναι: b y = (X X ) + e, b όπου επίδρασης b είναι οι παράμετροι που μας ενδιαφέρουν. Η εκτίμηση της άμεσης (κύριας) τ δίνεται από τις κανονικές εξισώσεις: Α (Χ Χ Χ Ρ Χ )τˆ = X T (I P )Y () με var(τˆ ) = σ (Χ Χ Χ Ρ Χ ) = σ Q Α - -
3 όπου P = X (X T X ) X T. P και. είναι πίνακες (n)x(n), όπου n ο αριθμός των παρατηρήσεων και ο αριθμός των περιόδων. την περίπτωση σύνθετης συμμετρίας ο x πίνακας, που είναι ο πίνακας διασποράς των παρατηρήσεων μέσα σε κάθε ακολουθία αγωγών, είναι ειδικής μορφής. σ είναι ο πίνακας διασποράς των παρατηρήσεων και σ = σ = ρ ρ ρ ρ ρ ρ όπου ρ ο συντελεστής συσχέτισης δύο παρατηρήσεων μέσα στην ίδια ακολουθία.. τον πίνακα όλα τα στοιχεία, εκτός από αυτά των n διαγώνιων block πινάκων, είναι μηδέν διότι οι παρατηρήσεις σε δύο διαφορετικές ακολουθίες αγωγών είναι ανεξάρτητες. Επίσης ο P είναι block διαγώνιος με ως διαγώνιους x πίνακες. Πρόταση Αν, σε σχεδιασμούς διασταύρωσης με περιόδους και n πειραματικές μονάδες, ο πίνακας διασποράς αποτελείται από n διαγώνιους block πίνακες της μορφής = ai + bj, a >, a + b >, τότε οι σχεδιασμοί που δίνουν την ελάχιστη τιμή στη διασπορά της εκτιμήτριας, δηλαδή in var( ˆ τ Α ), είναι ίδιοι με τους βέλτιστους σχεδιασμούς του μοντέλου των ανεξάρτητων παρατηρήσεων. Η διασπορά της εκτιμήτριας τώρα είναι: var(τˆ ) = σ a (Q*) ( σ ( Q*) είναι η διασπορά των βέλτιστων σχεδιασμών στο μοντέλο των ανεξάρτητων παρατηρήσεων). Απόδειξη. Αν θέσουμε ~ / X = Χ, ~ / X = Χ, ~ / y = Υ, τότε η () γίνεται, ~ ~ ~ ~~ ~ var(ˆ τ Α ) = σ ( Χ Χ Χ ΡΧ) = σ Q. Αν R (X) είναι ο γραμμικός χώρος των στηλών του πίνακα Χ, τότε σε κάθε ακολουθία ( παρατηρήσεων) ισχύει, ~ R( X ) = R(X ), διότι R X ) και ~ / X = ( a I + bj ) X = ( a I + δj )X, a + b a δ =. ότε ~ P = P, (I P)J = και ~ ~ ~ ~~ Χ Χ Χ ΡΧ ) = a (Χ Χ Χ ΡΧ ) P ( ( τις δύο περιόδους ο x πίνακας διασποράς του μοντέλου σύνθετης συμμετρίας συμπίπτει με τον αντίστοιχο πίνακα διασποράς του αυτοπαλινδρομένου - -
4 μοντέλου πρώτης τάξης έτσι και στις δύο περιπτώσεις, σύμφωνα με την παραπάνω πρόταση, ο βέλτιστος σχεδιασμός έχει βρεθεί (Κουνιάς. και Χαλικιάς. 3). 3) ΡΕΙ ΠΕΡΙΟΔΟΙ, ΜΟΝΕΛΟ R() Υπάρχουν 8 ακολουθίες αγωγών με αγωγές και 3 περιόδους, i, i =,,,7 είναι το πλήθος των πειραματικών μονάδων της κάθε ακολουθίας. ο συνολικό πλήθος μονάδων είναι n, δηλαδή + + = n + 7. Οι ακολουθίες που προκύπτουν με την εναλλαγή των Α και Β λέγονται συζυγείς ( switch-back or reversal designs). Παρατηρούμε ότι οι συζυγείς ακολουθίες έχουν την αρίθμηση i και 7-i, i=,,, 3. το μοντέλο () για 3 περιόδους θέτουμε, για τη μοναδικότητα του μοντέλου, τους περιορισμούς, τ =, π =, γ.το μοντέλο R() ο πίνακας διασποράς Β = 3 7 των παρατηρήσεων, μέσα σε κάθε ακολουθία είναι: όπου P ρ ρ var( e ) = 3 = σ ρ ρ < ρ < ρ ρ var(ˆ = Χ (Χ Χ ) Χ τ Α ) = σ (Χ Χ Χ Ρ Χ ) = σ Q είναι 3n 3n πίνακας. ο πρόβλημά μας είναι η εύρεση του T T T T ax(x X X X(X X ) X X ) = ax Q i i Μετά από μια πολύπλοκη διαδικασία υπολογισμού του Q, η οποία παραλείπεται για οικονομία χώρου, έχουμε την σχέση: Q = ( R q (3 ρ)( ρ ) 4 M q) i (3) - -
5 όπου, T R = n + ) + ρ ( + ), q = q, q, q ), M = ( ) q q q = ( ( = n( + ρ) = ( + ρ) ( = n ( 3 ij [(3 4 ) ( 6 ) + ( 5 )]( + ρ) (3 + 4 )( ρ) 3( + 5 )( + ρ), ) ( ) + + ( )( + ) 4 ( ρ) 5 ( ρ) 6 ρ ) = ( + ρ)n ( + ρ) = [ 3( 6 ) 3( 5 ) ( 7 ) + (3 4 )] = ( ) ( ) + (( ) ( )) ρ 5 Η σχέση (3) είναι μια τετραγωνική μορφή. Επομένως μένει να μεγιστοποιήσουμε τη συνάρτηση Q ως προς τα, και για διάφορες τιμές του ρ, -<ρ<, δηλαδή,, 7 * Q = ax Q = ax ( R q T M q),, 7 (3 ρ)( ρ ),, 7 4 Μια πρώτη παρατήρηση είναι ότι στη μεγιστοποίηση έχουμε = 7 = διότι T στις λύσεις που δίνονται ισχύει M q q < 4. Υπολογίστηκαν οι βέλτιστοι σχεδιασμοί για τις τιμές n=,,,3 και τα αποτελέσματα δίνονται στα επόμενα διαγράμματα. τον κατακόρυφο άξονα δίνεται η τιμή του Q*, στον οριζόντιο άξονα δίνεται η τιμή του ρ,.98 ρ. 98, (στο γράφημα γράφεται r αντί για ρ) και στην τρίτη στήλη δίνεται ο βέλτιστος σχεδιασμός με τις τιμές των,,,,, ε κάθε γράφημα το ίδιο χρώμα σημαίνει ότι, για όλες τις τιμές του ρ στο διάστημα αυτό, ο βέλτιστος σχεδιασμός παραμένει ο ίδιος. Παρατηρούμε ότι, για n=, στο διάστημα.3<ρ<.45 βέλτιστος σχεδιασμός είναι ίδιος με αυτόν των ανεξάρτητων παρατηρήσεων (ρ=)
6 Βέλτιστοι σχεδιασμοί για n= Vales of Q n= Vales of r Βέλτιστοι σχεδιασμοί για n= Vales of Q Vales of r n=
7 Βέλτιστοι σχεδιασμοί για n= Vales of Q Vales of r n= Βέλτιστοι σχεδιασμοί για n= n=3 Vales of Q Vales of r Παρατηρήσεις: Για μεγάλες τιμές του n το υπολογιστικό πρόβλημα απαιτεί πολύ χρόνο, ακόμη και με τους σύγχρονους υπολογιστές
8 Υπάρχουν όμως σχέσεις που απλοποιούν τους υπολογισμούς, τις σχέσεις αυτές παραλείπουμε από έλλειψη χώρου. Αν ένας σχεδιασμός είναι βέλτιστος, τότε και ο συζυγής του είναι βέλτιστος. την περίπτωση που ο πίνακας M είναι ιδιάζων (singlar), τότε χρησιμοποιούμε ένα γενικευμένο αντίστροφο M του M. STRCT In this paper optial Cross-Over treatent designs are constrcted, for estiating direct effects. The case of independent experiental errors is exained. The odel is presented and the design that iniizes the variance of the estiated difference of the two treatents is presented. The optial designs with dependent observations in a copond syetry odel are the sae as in the independent case. Optial designs for dependent observations following an atoregressive odel of order one are also stdied. ΑΝΑΦΟΡΕ Cochran, W.G., tray, K.M. and Cannon, C.Y.(94). doble change-over design for dairy cattle feeding experients. J. Dairy Sci. 4: Gill, P.S. and Shkla, G. K. (987). Optial change-over designs for correlated observations. Conications in Statistics-Theory and Methods, 6:43-6. Hedayat, and fsarinejad, K. (975). Repeated easreents designs I. srvey of Statistical Designs and Linear Models, Srivastava, J.N. (ed.), pp North Holland, sterda and (978) II, nnals of Statistics 6: Jones,. and Kenward, M.G. (). Design and nalysis of coss-over trials. Chapan and Hall, London, New York. Κουνιάς,. και Χαλικιάς, Μ. (3). Ένας αλγόριθμος για την εκτίμηση παραμέτρων σε σχεδιασμούς επαναλαμβανόμενων μετρήσεων». Πρακτικά 5 ου συνεδρίου του ΕΙ, σελ Κουνιάς,. και Χαλικιάς, Μ. (4) Βέλτιστοι cross-over χεδιασμοί». Πρακτικά 6 ου συνεδρίου του ΕΙ, σελ Κουνιάς,. και Χαλικιάς, Μ. (5 ) «Cross-over χεδιασμοί, μεταφερόμενες επιδράσεις, εξαρτημένες παρατηρήσεις». Πρακτικά 7 ου υνέδριου ΕΙ. Mathews, J.N.S. (978): Optial cross-over designs for the coparison of two treatents in the presence of carry-over effects and atocorrelated errors. ioetrika 74: 3-3. Paterson, H.D. and Lcas, H.L. (959). Extra-period change-over designs. ioetrics 5: 6-3. Paterson, H.D. and Lcas, H.L. (96): Change-over designs. North Carolina gricltral Experiental Station. ll. No. 47. Willias, E.J. (949): Experiental designs balanced for the estiation of residal effect of treatents. stralian Jornal of Scientific Research,, : Willias, E.J. (95): Experiental designs balanced for pairs of residal effects. stralian Jornal of Scientific Research,, 3:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Y Y ... y nx1. nx1
6 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΠΙΚΑΚΩΝ Η χρησιμοποίηση και ο συμβολισμός πινάκων απλοποιεί σημαντικά τα αποτελέσματα της γραμμικής παλινδρόμησης, ιδίως στην περίπτωση της πολλαπλής παλινδρόμησης Γενικά,
Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:
Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα
Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 19 εκεµβρίου 2018 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί
Απλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ
Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΤΡΟΦΙΜΩΝ Οδηγός Συγγραφής Εργαστηριακών Αναφορών
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΤΡΟΦΙΜΩΝ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Βασιλεία Ι. Σινάνογλου Ειρήνη Φ. Στρατή Παναγιώτης Ζουμπουλάκης Σωτήρης Μπρατάκος Εξώφυλλο Εργαστηριακό Τμήμα (ημέρα ώρα)
ΕΞΕΤΑΣΗ ΤΗΣ ΣΧΕΣΗΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ
ΕΞΕΤΑΣΗ ΤΗΣ ΣΧΕΣΗΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΔΥΟ ΠΟΙΟΤΙΚΕΣ ΠΙΝΑΚΕΣ ΣΥΝΑΦΕΙΑΣ ΕΞΕΤΑΣΗ ΤΗΣ ΥΠΑΡΞΗΣ Ή ΟΧΙ ΣΧΕΣΗΣ ΕΝΤΑΣΗ ΚΑΙ ΦΥΣΗ ΤΗΣ ΣΧΕΣΗΣ ΔΥΟ ΠΟΙΟΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΑ CROSSTABS ΠΙΝΑΚΑΣ ΣΥΝΑΦΕΙΑΣ Ο πίνακας συνάφειας είναι
ΒΕΛΤΙΣΤΟΙ ΣΧΕΔΙΑΣΜΟΙ ΣΕ ΑΝΟΜΟΙΟΓΕΝΕΙΣ ΠΛΗΘΥΣΜΟΥΣ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 0 ου Πανελληνίου Συνεδρίου Στατιστικής (007), σελ 09-6 ΒΕΛΤΙΣΤΟΙ ΣΧΕΔΙΑΣΜΟΙ ΣΕ ΑΝΟΜΟΙΟΓΕΝΕΙΣ ΠΛΗΘΥΣΜΟΥΣ Στρατής Κουνιάς Ομότιμος Καθηγητής, Πανεπιστήμιο Αθηνών sounas@math.uoa.gr
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
Σειρά: Επεξεργασία Δεδομένων Εκδοση/Ημ.νία: #3.1/ Συγγραφέας: Μίχος Θεόδωρος, Φυσικός
Σειρά: Επεξεργασία Δεδομένων Εκδοση/Ημ.νία: #3.1/018-0-15 Συγγραφέας: Μίχος Θεόδωρος, Φυσικός 1. Μέθοδος Ελαχίστων Τετραγώνων Μια από τις πρώτες δουλειές που μαθαίνει ένας φοιτητής θετικών επιστημών μόλις
ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.247-256 ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ ΣΥΜΠΤΩΣΕΩΝ
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Διάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
(p 1) (p m) (m 1) (p 1)
ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ Σκοπός της παραγοντικής ανάλυσης είναι να περιγράψει την συνδιασπορά μεταξύ των μεταβλητών με την βοήθεια τυχαίων άγνωστων ποσοτήτων που ονομάζονται παράγοντες. Το μοντέλο είναι το
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ
ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,
Τµήµα Πληροφορικής και Τηλεπικοινωνιών
Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών 2 Σεπτεµβρίου 2015 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 1 / 35 Περιεχόµενα
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 6: Συσχέτιση και παλινδρόμηση εμπειρική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης
a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8
Διακριτά Μαθηματικά Σχέσεις Αναδρομής Ι 1 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 2 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 1ος τρόπος: Εχουμε τη
Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη
Διανύσµατα στο επίπεδο
Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών
7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων
7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες
9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
ΕΞΕΤΑΣΗ ΙΑΝΟΥΑΡΙΟΥ (28/1/2011)
Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων
Σχολή Χημικών Μηχανικών ΕΜΠ Εισαγωγή στην Χημική Μηχανική, ο εξάμηνο Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Εισαγωγή Με βάση κάποιο δείγμα (Χ,Υ) ζητούμε να εξάγουμε συμπεράσματα για
Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη
Σημειακή εκτίμηση και εκτίμηση με διάστημα 11 η Διάλεξη Εκτιμήτρια Κάθε στατιστική συνάρτηση που χρησιμοποιείται για την εκτίμηση μιας παραμέτρου ενός πληθυσμού (π.χ. ο δειγματικός μέσος) Σημειακή εκτίμηση
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις
Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC
Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Τομέας Μαθηματικών, Τηλέφωνο: (210) 772-1702, Φαξ: (210) 772-1775.
ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ
ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ Η συγγραμμικότητα (collinearity) ή πολυσυγγραμμικότητα (multicollinearity) είναι εκείνη η ανεπιθύμητη κατάσταση (εμφανίζεται στην πολυμεταβλητή παλινδρόμηση) όπου μία ανεξάρτητη
Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος. Υπολογίστε τις ακόλουθες ορίζουσες a) 4 b) c) a b + a) 4 4 Παρατήρηση: Προσέξτε ότι ο συμβολισμός της ορίζουσας
2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4
Παράδειγμα 2x 1 +2x 2 +0x 3 +6x 4 = 8 2x 1 + x 2 x 3 + x 4 = 1 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4 Επαυξημένος πίνακας: 2 2 0 6 8 2 1 1 1 1 Ã = 3 1 1 2 3 1 2 6 1 4 Γενικό σύστημα a 11 x 1 +a
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Σειρά Β Εξέταση Φεβρουαρίου (0/) στο Μάθηµα: Γεωργικός Πειραµατισµός Θεσσαλονίκη: 4/0/0 Επώνυµο Όνοµα Αρ. Μητρώου Κατεύθυνση Ζήτηµα ο ( µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων
Σχολή Χημικών Μηχανικών ΕΜΠ Ανάλυση Συστημάτων Χημικής Μηχανικής, ο εξάμηνο Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Διδάσκοντες: Χ. Κυρανούδης, Γ. Μαυρωτάς Εισαγωγή Με βάση κάποιο δείγμα
The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling
5 7 008 7 Statistical Research Vol. 5, No7 Jul. 008 :,,, : ; ; ; :O :A :00 4565 (008) 07 0070 04 The Research on Sapling Estiation of Seasonal Index Based on Stratified Rando Sapling Deng Ming Abstract
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής
Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους II-Μάθημα 3 ΕΝΝΟΙΑ ΤΗΣ ΟΡΙΖΟΥΣΑΣ
ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ2014-2015 Μαθηματικά για Οικονομολόγους II-Μάθημα 3 ΕΝΝΟΙΑ ΤΗΣ ΟΡΙΖΟΥΣΑΣ ΣτόχοιτουΜαθήματος Μελέτη της Θεωρίας και κατανόηση της έννοιας της ορίζουσας.
1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0
Β4. ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ-ΚΥΡΤΟΤΗΤΑ 1.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Συνθήκες για ακρότατα 5.Κυρτές/κοίλες συναρτήσεις 6.Ολικά ακρότατα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,
CROSS-OVER ΣΧΕ ΙΑΣΜΟΙ, ΜΕΤΑΦΕΡΟΜΕΝΕΣ ΕΠΙ ΡΑΣΕΙΣ ΕΞΑΡΤΗΜΕΝΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ
Εηνικό τατιστικό Ινστιτούτο Πρακτικά 7 ου Πεηνίου υνεδρίου τατιστικής 00 σε 5-5 CROSS-OVER Ε ΙΜΟΙ ΜΕΤΦΕΡΟΜΕΝΕ ΕΠΙ ΡΕΙ ΕΞΡΤΗΜΕΝΕ ΠΡΤΗΡΗΕΙ τρατής Κουνιάς * και Μιτιάδης αικιάς* Τµήµα Μαθηµατικών Πεπιστήµιο
Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν.
Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες
Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις
Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου
Χρονοσειρές Μάθημα 3
Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker
Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.
Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από
Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0
Γραμμικές στάσιμες διαδικασίες Γραμμική χρονοσειρά (στοχαστική διαδικασία) ~ WN(, ) i i i E[ ] είναι στάσιμη? i () Θεωρούμε μ= i i i Χρονοσειρές Μάθημα 3 i Θεωρώντας τον τελεστή υστέρησης: ( B) ( B) ib
Κεφάλαιο 2 Πίνακες - Ορίζουσες
Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 4 Πάτρα 2008 Ντετερμινιστικά Moving Average Μοντέλα Ισχύει:
ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΙΔΡΑΣΕΩΣ ΜΕΘΟΔΩΝ ΕΡΓΑΣΙΑΣ ΣΤΗΝ ΠΑΡΑΓΩΓΙΚΟΤΗΤΑ ΕΛΛΗΝΙΚΗΣ ΒΙΟΤΕΧΝΙΑΣ ΠΑΡΑΓΩΓΗΣ ΠΑΙΔΙΚΩΝ ΕΝΔΥΜΑΤΩΝ
ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΙΔΡΑΣΕΩΣ ΜΕΘΟΔΩΝ ΕΡΓΑΣΙΑΣ ΣΤΗΝ ΠΑΡΑΓΩΓΙΚΟΤΗΤΑ ΕΛΛΗΝΙΚΗΣ ΒΙΟΤΕΧΝΙΑΣ ΠΑΡΑΓΩΓΗΣ ΠΑΙΔΙΚΩΝ ΕΝΔΥΜΑΤΩΝ Του ΒΑΣΙΛΕΙΟΥ Κ. ΜΠΕΝΟΥ Ανωτάτη Βιομηχανική Σχολή Πειραιώς ΓΕΝΙΚΑ Πολλά πειράματα που λαμβάνουν
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα
x y max(x))
ΚΕΦΑΛΑΙΟ 0 Απλή Γραµµική Παλινδρόµηση Μωυσιάδης Χρόνης 6 o Εξάµηνο Μαθηµατικών Ένα Πρόβληµα εδοµένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 y 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Έχει σχέση το yµε το ; Ειδικότερα
Φίλτρα Kalman. Αναλυτικές μέθοδοι στη Γεωπληροφορική. ιατύπωση του βασικού προβλήματος. προβλήματος. μοντέλο. Πρωτεύων μοντέλο
Φίλτρα Kalman Εξαγωγή των εξισώσεων τους με βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραμμα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)
Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εστω τ.δ. X={x, x,, x } με κατανομή με σ.π.π. f(x;θ). Η από-κοινού σ.π.π. των δειγμάτων είναι η συνάρτηση L f x, x,, x; f x i ; και
Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε
Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος =, όπου ~ N ( 0, και όλα τα μεταξύ τους ανεξάρτητα Τότε = (,, = ( 0, ( 0, f x f
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Μοντέρνα Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Υπολογισμός του εκθετικού πίνακα Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών
ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΛΙΣΗΣ ΑΠΟ ΤΗΝ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΜΠΥΛΗ ΒΡΟΧΟΠΤΩΣΗΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΩΣ ΔΕΙΚΤΗ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ
ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΛΙΣΗΣ ΑΠΟ ΤΗΝ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΜΠΥΛΗ ΒΡΟΧΟΠΤΩΣΗΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΩΣ ΔΕΙΚΤΗ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ Καλύβας Θ., Ζέρβας Ε.¹ ¹ Σχολή Θετικών Επιστημών και Τεχνολογίας, Ελληνικό Ανοικτό Πανεπιστήμιο,
Εκτιμήτριες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Εκτιμήτριες. μέθοδος ροπών και μέγιστης πιθανοφάνειας
Εκτιμήτριες Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Εκτιμήτριες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α μέθοδος ροπών και μέγιστης πιθανοφάνειας κριτήρια αμεροληψίας και συνέπειας 9 άλυτες ασκήσεις 6 9 7.
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 7 εκεµβρίου 2018 Ασκηση
ONE WAY ANOVA. .Π.Μ.Σ. Μαθηµατικά των Υπολογιστών & των αποφάσεων. Πάτρα, 11 Ιανουαρίου 2011
Πάτρα, 11 Ιανουαρίου 2011 Πίνακας Περιεχοµένων 1 completely random design with fixed effects 2 3 Πίνακας Περιεχοµένων 1 completely random design with fixed effects 2 3 Γενικά completely random design with
Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ-ΦΕΒΡΟΥΑΡΙΟΣ 2004 Θέμα 1 ο. 4
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ-ΦΕΒΡΟΥΑΡΙΟΣ 00 Θέμα 1 ο Έστω U ο υπόχωρος του που παράγεται από τα στοιχεία (1-11α) (10β) (5-γ) και (-δ) (I) Να προσδιορίσετε τις αναγκαίες
Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε
Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος X X X ), όπου X ~ N (,) και όλα τα X μεταξύ τους ανεξάρτητα Τότε ( ) (,, ) (, )
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ (ΝΠΣ) & ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ (ΠΠΣ) (6o Εξάμηνο Μαθηματικών) Ιανουάριος 2008
ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ (ΝΠΣ) & ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ (ΠΠΣ) (6o Εξάμηνο Μαθηματικών) Ιανουάριος 008 Επώνυμο... Όνομα... A.E.M.... Εξάμηνο... Θέμα Θέμα Θέμα 3 Θέμα 4 Βαθμός ΝΠΣ
8.1 Διαγωνοποίηση πίνακα
Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο
Μεθοδολογία Παραβολής
Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.
ΤΗΛΕΠΙΣΚΟΠΗΣΗ. Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement)
Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement) Συµπίεση εικόνας (image compression) Αποκατάσταση εικόνας (Image restoration) ηµήτριος. ιαµαντίδης
ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΩΝ ΦΟΙΤΗΤΩΝ ΥΟ ΑΚΑ ΗΜΑΪΚΩΝ ΤΜΗΜΑΤΩΝ ΕΝΟΣ ΑΕΙ ΩΣ ΠΡΟΣ ΤΟ ΣΥΣΤΗΜΑ ΕΙΣΑΓΩΓΗΣ ΤΟΥΣ ΣΤΗ ΤΡΙΤΟΒΑΘΜΙΑ ΕΚΠΑΙ ΕΥΣΗ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 17 ου Πανελληνίου Συνεδρίου Στατιστικής (2), σελ. 11-1 ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΩΝ ΦΟΙΤΗΤΩΝ ΥΟ ΑΚΑ ΗΜΑΪΚΩΝ ΤΜΗΜΑΤΩΝ ΕΝΟΣ ΑΕΙ ΩΣ ΠΡΟΣ ΤΟ ΣΥΣΤΗΜΑ ΕΙΣΑΓΩΓΗΣ
ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Α Λυκείου Σελ. 1 από 8 ΟΔΗΓΙΕΣ: ΕΚΦΩΝΗΣΕΙΣ: ΘΕΜΑ 1 Ο
ΟΔΗΓΙΕΣ: 1. Οι απαντήσεις σε όλα τα ερωτήματα θα πρέπει να αναγραφούν στο Φύλλο Απαντήσεων που θα σας δοθεί χωριστά από τις εκφωνήσεις. 2. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε φύλλα Α4 ή σε τετράδιο
ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,
ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από
Στατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #3: Εκτιμητική Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό
Πολλαπλασιασμός αριθμού με διάνυσμα
Μαθηματικά Προσανατολισμού Β Λυκείου Επανάληψη Χριστουγέννων Αφού κάνετε μια επανάληψη στο πρώτο κεφάλαιο και θυμηθείτε όλους τους τύπους και τις μεθοδολογίες, να λύσετε τις παρακάτω ασκήσεις από την τράπεζα
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010-2011 ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΙΝΑΚΑΣ Ένας πίνακας Α με στοιχεία από το σύνολο F (συνήθως θεωρούμε τα σύνολα
Συστήματα Αναμονής (Queuing Systems)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΕΜΠ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής