Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0
|
|
- Ἰσμήνη Θεοδοσίου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Γραμμικές στάσιμες διαδικασίες Γραμμική χρονοσειρά (στοχαστική διαδικασία) ~ WN(, ) i i i E[ ] είναι στάσιμη? i () Θεωρούμε μ= i i i Χρονοσειρές Μάθημα 3 i Θεωρώντας τον τελεστή υστέρησης: ( B) ( B) ib i i Γραμμικό φίλτρο ( B) Αν για i< i Γραμμική χρονοσειρά ως i i i i i i i i ( B) ( B) κινούμενου μέσου MA( ) [moving average rocess] αυτοπαλινδρόμησης AR( ) [auoregressive rocess] είναι αντιστρέψιμη το τυχαίο στοιχείο μπορεί να εκφρασθεί ως προς την ( B) παρούσα και τις προηγούμενες ( B) παρατηρήσεις
2 Αυτοπαλινδρομούμενες διαδικασίες αυτοπαλινδρόμηση AR( ) i i i Περιορίζουμε την αυτοπαλινδρόμηση στους πιο πρόσφατους όρους ( B B B ) Συνθήκη στασιμότητας ~ WN(, ) ( B) Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() i ( B) B B B ( B) B χαρακτηριστικό πολυώνυμο Ρίζες του ( ) να είναι έξω από το μοναδιαίο κύκλο ή Ρίζες του να είναι εντός του μοναδιαίου κύκλου i i
3 Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() Διαδοχικές προς τα πίσω αντικαταστάσεις: 4 i i Var[ ] ( ) Αυτοσυσχέτιση? (υποθέτουμε στασιμότητα) i i i E[ ] E[ ] E[ ] ( ) ( ) E[ ] E[ ] E[ ] ( ) ( ) () Συνθήκη στασιμότητας: ~ WN(, ) () ().5.5 () ()
4 Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() ~ WN(, ) Συνθήκη στασιμότητας Ρίζες του ( B) B B να είναι εκτός του μοναδιαίου κύκλου ή εναλλακτικά οι ρίζες του Ρίζες: B, 4 B, να είναι εντός του μοναδιαίου κύκλου? 3 Saionariy condiion for AR() real disinc roos comlex roos real single roo δύο πραγματικές ρίζες: 4 μία διπλή πραγματική ρίζα: συζυγείς μιγαδικές ρίζες: 4 Συζυγείς μιγαδικές ρίζες σε AR() ορίζουν ψευδο-περιοδικότητα στην αυτοσυσχέτιση
5 Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() Αυτοσυσχέτιση? (υποθέτουμε στασιμότητα) E[ ] E[ ] E[ ] E[ ] () () () () E[ ] E[ ] E[ ] E[ ] () () () () Για υστέρηση τ: ( ) ( ) ( ) μπορεί να υπολογιστεί επαναληπτικά ( B B ) χαρακτηριστικό πολυώνυμο ( ) πραγματικές ρίζες: εκθετική πτώση μιγαδικές ρίζες: φθίνουσα ημιτονοειδή συνάρτηση διασπορά () ()
6 Αυτοσυσχέτιση.5 (α) λ =.8+.5i λ =.8-.5i () =.6 = (γ) λ =.8 λ =.8 () =.6 = (ε) λ =.8 λ =.95 () =.75 = (ζ) λ =-.8 λ =.95 () =.5 =.76 () () (β) λ =-.8+.5i λ =-.8-.5i (δ) λ =-.8 λ =-.8.5 () =-.6 = () =-.6 =-.64 () () () () (στ) λ =.8 λ =-.95 (η) λ =-.8 λ = () =-.5 =.76.5 () =-.75 =-.76 () ()
7 Συνθήκη στασιμότητας Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() ( B B B ) ~ WN(, ) Ρίζες του ( B) B B B να είναι εκτός του μοναδιαίου κύκλου Αυτοσυσχέτιση? (υποθέτουμε στασιμότητα) Για υστέρηση τ: E[ ] E[ ] E[ ] E[ ] E[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) B πραγματικές ρίζες: εκθετική πτώση μιγαδικές ρίζες: φθίνουσα ημιτονοειδή συνάρτηση 9 Συνθήκες στασιμότητας για τους συντελεστές φ, φ, φ 3, της διαδικασίας AR(3)
8 Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() Εξισώσεις Yule-Walker 3 Διασπορά () () ( )
9 Εξισώσεις Yule-Walker k k k 3 Μερική αυτοσυσχέτιση k k k k k 3 k k 33 3 kk Για κάθε k υπολογίζουμε τον συντελεστή k kk k k3 k k k3 k k k k3 k k k k3 μερική αυτοσυσχέτιση για υστέρηση (τάξη) k Επαναληπτικός αλγόριθμος των Durbin-Levinson οι συντελεστές του AR(),,,, υπολογίζονται επαναληπτικά, όπου για κάθε τάξη k οι συντελεστές υπολογίζονται από τους συντελεστές τάξης k-
10 (,) (,) (,) (,) (,) (,) (,) (,) Μερική αυτοσυσχέτιση (α) λ =.8+.5i λ =.8-.5i (γ) λ =.8 λ =.8 (ε) λ =.8 λ =.95 (ζ) λ =-.8 λ =.95 () =.6 () =.6 () =.75 () =.5.5 = = = = (β) λ =-.8+.5i λ =-.8-.5i (δ) λ =-.8 λ =-.8 (στ) λ =.8 λ =-.95 (η) λ =-.8 λ = () =-.6 = () =-.6 = () =-.5 =.76.5 () =-.75 =
11 Διαδικασίες κινούμενου μέσου ii κινούμενου μέσου MA( ) i Περιορίζουμε του όρους του λευκού θορύβου στους q πιο πρόσφατους όρους ~ WN(, ) i i q q B B B ( B) ( q q ) Διαδικασία κινούμενου μέσου τάξης q, ΜΑ(q) ( ) B B B B χαρακτηριστικό πολυώνυμο ΜΑ(q) είναι στάσιμη? q q ΜΑ(q) είναι αντιστρέψιμη αν ( B) Συνθήκη αντιστρεψιμότητας Ρίζες του ( ) να είναι έξω από το μοναδιαίο κύκλο
12 Διαδικασία κινούμενου μέσου τάξης, MA() Συνθήκη αντιστρεψιμότητας: ~ WN(, )... ( )... () 3... ()? / Για κάποιο υπάρχουν δύο λύσεις για θ? και μόνο η μία θα πληρεί τη συνθήκη αντιστρεψιμότητας Παράδειγμα και / έχουν την ίδια αυτοσυσχέτιση Αν η ρίζα του B είναι έξω από το μοναδιαίο κύκλο η ρίζα του / B είναι μέσα στο μοναδιαίο κύκλο
13 Διαδικασία κινούμενου μέσου τάξης, MA() (,) (,) Μερική αυτοσυσχέτιση.8 () (), 4 () ,3 4 6 ( ), ( ), () () - ϕ ττ του ΜΑ() φθίνει όπως ρ τ του AR() () ρ τ του ΜΑ() φθίνει όπως ϕ ττ του AR() - αλλά για MA(), ρ τ και ϕ ττ είναι πάντα
14 Διαδικασία κινούμενου μέσου τάξης, MA() B ( ), ~ WN(, ) ( B) B B χαρακτηριστικό πολυώνυμο MA() είναι πάντα στάσιμη MA() είναι αντιστρέψιμη αν οι ρίζες του θ(β) είναι εκτός του μοναδιαίου κύκλου Διασπορά ( ) Αυτοσυσχέτιση ( ) Συνθήκες αντιστρεψιμότητας για τους συντελεστές θ, θ, καθώς και για τις αυτοσυσχετίσεις ρ, ρ, της διαδικασίας MA() Μερική αυτοσυσχέτιση, 3 ( ) 3,3 ( ),... πολύπλοκη έκφραση
15 λ =.8+.5i λ =.8-.5i Αυτοσυσχέτιση () =.6 =-.89. () (,) λ =-.8+.5i λ =-.8-.5i () =-.6 = () (,) λ =.8 λ = () (,) (,) λ =.8 λ =-.95 () =.75 = () =-.5 =.76. () Μερική αυτοσυσχέτιση () =.6 = () =-.6 = () =.75 = () =-.5 = ϕ ττ του ΜΑ() φθίνει όπως ρ τ του AR() - ρ τ του ΜΑ() φθίνει όπως ϕ ττ του AR() - αλλά για MA(), ρ τ και ϕ ττ είναι πάντα.5
16 Διαδικασία κινούμενου μέσου τάξης q, MA(q) ( B) q q ~ WN(, ) ( ) χαρακτηριστικό πολυώνυμο q B B B qb Διασπορά ( ) q Αυτοδιασπορά q ( q q),,, q Αυτοσυσχέτιση q q q,,, q q Η μερική αυτοσυσχέτιση φθίνει με μορφή που καθορίζεται από τις ρίζες του χαρακτηριστικού πολυωνύμου Οι εκφράσεις των ϕ ττ ως προς τους συντελεστές θ, θ,..., θ q είναι πολύπλοκες
Χρονοσειρές Μάθημα 3
Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΥΠΟΔΕΙΓΜΑΤΑ ΚΙΝΗΤΟΥ ΜΕΣΟΥ MA(q) ΚΑΙ ΜΙΚΤΑ ΥΠΟΔΕΙΓΜΑΤΑ ARMA (p,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου
Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή
Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Διαφορική Παλµοκωδική Διαµόρφωση (DPCM)
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Διαφορική Παλµοκωδική Διαµόρφωση (DCM) Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Προεπισκόπηση Διαφορική Παλµοκωδική Διαµόρφωση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 5ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης.
Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών
Χρονοσειρές, Μέρος Β Πρόβλεψη Χρονικών Σειρών Ο βασικός σκοπός της μελέτης των μοντέλων για χρονικές σειρές (όπως AR, MA, ARMA, ARIMA, SARIMA) είναι η πρόβλεψη (predicio, forecasig) Η πρόβλεψη των μελλοντικών
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
ΚΕΦΑΛΑΙΟ 5 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ, ΥΠΟΔΕΙΓΜΑΤΑ ARIMA ΚΑΙ SARIMA, ΜΕΘΟΔΟΛΟΓΙΑ BOX-JENKINS
ΚΕΦΑΛΑΙΟ 5 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ, ΥΠΟΔΕΙΓΜΑΤΑ ARIMA ΚΑΙ SARIMA, ΜΕΘΟΔΟΛΟΓΙΑ BOX-JENKINS 5. Η γενική μορφή στάσιμης γραμμικής στοχαστικής διαδικασίας διακριτού χρόνου 5. Υποδείγματα ARIMA
Χρονοσειρές - Μάθημα 5
Χρονοσειρές - Μάθημα 5 Εκτίμηση μοντέλου MA(q) στοχαστική διαδικασία AR(p) p p ~ WN(, ) στοχαστική διαδικασία MA(q) q q στοχαστική διαδικασία ARMA(p,q) p p q q Εκτίμηση διαδικασίας (μοντέλο) AR, MA ή ARMA?
Χρονικές σειρές 9 Ο μάθημα: Μεικτά μοντέλα ARMA
Χρονικές σειρές 9 Ο μάθημα: Μεικτά μοντέλα ARMA Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Χρονοσειρές - Μάθημα 5
Χρονοσειρές - Μάθημα 5 Εκτίμηση μοντέλου MA(q) στοχαστική διαδικασία AR() X X X X Z Z ~ WN(, Z) στοχαστική διαδικασία MA(q) X Z Z Z Z q q στοχαστική διαδικασία ARMA(,q) X X X X Z Z Z Z q q Εκτίμηση διαδικασίας
Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:
Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ.
1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA);
Ερωτήσεις: 1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Στα αυτοπαλίνδρομα υποδείγματα η τρέχουσα τιμή της y είναι συνάρτηση p υστερήσεων της
Μάθημα 2: Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας
close index close index Μάθημα : Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας Σταθεροποίηση διασποράς Απαλοιφή τάσης και περιοδικότητας / εποχικότητας Έλεγχοι μοναδιαίας ρίζας
ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα
ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια
Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Στάσιμα στοχαστικά μοντέλα μιας μεταβλητής
Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Στάσιμα στοχαστικά μοντέλα μιας μεταβλητής Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες
Χρονοσειρές Μάθημα 2. Μη-στασιμότητα. Τάση? Εποχικότητα / περιοδικότητα? Ασταθή διασπορά? Αυτοσυσχέτιση?
AE index General Index of Comsumer Prices Χρονοσειρές Μάθημα General Index of Comsumer Prices, period Jan - Aug 5 5 Μη-στασιμότητα 5 Τάση? Εποχικότητα / περιοδικότητα? 5 4 5 6 4 Auroral Elecroje Index
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑΤΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΑΝΑΛΥΣΗ ΜΟΝΤΕΛΩΝ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑΤΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΘΕΜΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΑΝΑΛΥΣΗ ΜΟΝΤΕΛΩΝ
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
Χρονοσειρές - Μάθημα 4
Χρονοσειρές - Μάθημα 4 Sysem is a se of ieracig or ierdeede comoes formig a iegraed whole. Fields ha sudy he geeral roeries of sysems iclude sysems heory, cybereics, dyamical sysems, hermodyamics ad comlex
Χρονοσειρές Μάθημα 1
Χρονοσειρές Μάθημα Περιεχόμενα - Στασιμότητα, αυτοσυσχέτιση, μερική αυτοσυσχέτιση, απομάκρυνση στοιχείων μη-στατικότητας, έλεγχος ανεξαρτησίας για χρονικές σειρές - Γραμμικές στοχαστικές διαδικασίες: αυτοπαλινδρομούμενη
Μάθημα 1: Εισαγωγή στην ανα λυση χρονοσειρω ν, στασιμο τητα και αυτοσυσχε τιση
«Ποσοτικε ς Με θοδοι στα Οικονομικα : Ανα λυση οικονομικω ν χρονοσειρω ν με γραμμικε ς μεθο δους» - Με ρος Α, Διδάσκων: Κουγιουμτζής Δημήτρης Quaiaive Topics i Ecoomics: Time Series Aalysis wih Liear Mehods
2 Ανάλυση Χρονοσειρών στο Πεδίο των Συχνοτήτων
Ανάλυση Χρονοσειρών στο Πεδίο των Συχνοτήτων Η ανάλυση χρονοσειρών στο πεδίο των συχνοτήτων είναι συμπληρωματική της ανάλυσης στο πεδίο του χρόνου, αλλά μπορεί να διερευνήσει χαρακτηριστικά που δεν εντοπίζονται
Μάθημα 4: Πρόβλεψη χρονοσειρών Απλές τεχνικές πρόβλεψης Πρόβλεψη στάσιμων χρονοσειρών με γραμμικά μοντέλα Πρόβλεψη μη-στάσιμων χρονοσειρών Ασκήσεις
Μάθημα 4: Πρόβλεψη χρονοσειρών Απλές τεχνικές πρόβλεψης Πρόβλεψη στάσιμων χρονοσειρών με γραμμικά μοντέλα Πρόβλεψη μη-στάσιμων χρονοσειρών Ασκήσεις Πρόβλεψη Χρονοσειρών Μοντέλα για χρονικές σειρές AR,
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών
Χρονοσειρές, Μέρος Β Πρόβλεψη Χρονικών Σειρών Ο βασικός σκοπός της μελέτης των μοντέλων για χρονικές σειρές (όπως AR, MA, ARMA, ARIMA, SARIMA) είναι η πρόβλεψη (redco, forecasg) Η πρόβλεψη των μελλοντικών
Χρονοσειρές - Μάθημα 8. Μη-γραμμική ανάλυση χρονοσειρών
Χρονοσειρές - Μάθημα 8 Μη-γραμμική ανάλυση χρονοσειρών Γραμμική ανάλυση / Γραμμικά μοντέλα αυτοσυσχέτιση AR μοντέλο ARMA(,q) μοντέλο x x x z z z q q Πλεονεκτήματα:. Απλά. Κανονική διαδικασία, ανεπτυγμένη
Χρονοσειρές Μάθημα 6
Χρονοσειρές Μάθημα 6 Πρόβλεψη Χρονικών Σειρών Μοντέλα για χρονικές σειρές AR, MA, ARMA, ARIMA, SARIMA πρόβλεψη Πολλές εφαρμογές Δείκτης και όγκος συναλλαγών Χρηματιστηρίου Αξιών Αθηνών ΧΑΑ Θα μπορούσαμε
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τίτλος Εργασίας: Ανάλυση και εφαρμογές της μεθοδολογίας BOX JENKINS Πτυχιακή Εργασία των Φωστηρόπουλος
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΗΣ ΕΙΔΙΚΕΥΣΗΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ ΘΕΜΑ: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ ΚΑΙ
Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών Φοιτητής: Μαρκόπουλος
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις)
ΜΑΘΗΜΑ 6ο Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) Είδαμε στους παραπάνω ελέγχους (DF και ADF) που κάναμε προηγουμένως ότι εξετάζουμε στη μηδενικήυπόθεσημόνοτοσυντελεστήδ 2. Δεν αναφερόμαστε
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου
min Προσαρμογή AR μοντέλου τάξη p, εκτίμηση παραμέτρων Προσδιορισμός τάξης AR μοντέλου συσχέτιση των χωρίς τη συσχέτιση με
= φ + φ + + φ + Προσδιορισμός τάξης AR μοντέλου Προσαρμογή AR μοντέλου - μερική αυτοσυσχέτιση για υστέρηση τ: = φ + w, = φ + φ + w,, = φ + φ + φ + w,3,3 3,3 3 ˆ φ, kk, τάξη, εκτίμηση παραμέτρων συσχέτιση
Χρονικές σειρές 3 Ο μάθημα: Βασικές στοχαστικές διαδικασίες Μη στάσιμες χρονοσειρές Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 3 Ο μάθημα: Βασικές στοχαστικές διαδικασίες Μη στάσιμες χρονοσειρές Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 4ο ΧΡΟΝΙΚΟΙ ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ 4.1 ΕΙΣΑΓΩΓΗ 4. ΔΙΑΔΙΚΑΣΙΕΣ ΛΕΥΚΟΥ ΘΟΡΥΒΟΥ 4.3 ΥΠΟΔΕΙΓΜΑΤΑ ΤΥΧΑΙΟΥ ΠΕΡΙΠΑΤΟΥ 4.4 Η ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ 4.5 ΜΕΡΙΚΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗ
ΥΔΡΟΛΟΓΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΙ ΠΡΟΓΝΩΣΗ Ενότητα 3: Υδρολογική πρόγνωση 3.2. Μοντέλα Χρονοσειρών
Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΙ ΠΡΟΓΝΩΣΗ Ενότητα 3: Υδρολογική πρόγνωση 3.2. Μοντέλα Χρονοσειρών Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών
ΟΝΟΜΑΤΕΠΩΝΥΜΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ, Υ ΡΑΥΛΙΚΩΝ ΚΑΙ ΘΑΛΑΣΣΙΩΝ ΕΡΓΩΝ ΜΑΘΗΜΑ: ΣΤΟΧΑΣΤΙΚΗ Υ ΡΟΛΟΓΙΑ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2001 ΟΝΟΜΑΤΕΠΩΝΥΜΟ -----------------------------------------------------------------------------------
Χρονικές σειρές 4 Ο μάθημα: Μη στάσιμες χρονοσειρές Μετασχηματισμός σε στάσιμες Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 4 Ο μάθημα: Μη στάσιμες χρονοσειρές Μετασχηματισμός σε στάσιμες Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
Κεφάλαιο 7 ΑΝΑΛΥΣΗ ΒΙΟΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ ΣΤΟ ΠΕ ΙΟ ΤΟΥ ΧΡΟΝΟΥ
Κεφάλαιο 7 ΑΝΑΛΥΣΗ ΒΙΟΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ ΣΤΟ ΠΕ ΙΟ ΤΟΥ ΧΡΟΝΟΥ 7.. Εισαγωγή Όλοι οι ζώντες οργανισµοί, από τα κύτταρα µέχρι τα διάφορα όργανα, παράγουν σήµατα βιολογικής προέλευσης. Τέτοια σήµατα µπορεί να
Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες
Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα
Χρονοσειρές Μάθημα 1
Χρονοσειρές Μάθημα Μάθημα του προπτυχιακού προγράμματος σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ (ΤΗΜΜΥ) ΑΠΘ Κουγιουμτζής Δημήτρης Αν. Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Χρονοσειρές - Μάθημα 7. Μη-γραμμική ανάλυση χρονοσειρών
Χρονοσειρές - Μάθημα 7 Μη-γραμμική ανάλυση χρονοσειρών Γραμμική ανάλυση / Γραμμικά μοντέλα αυτοσυσχέτιση AR μοντέλο ARMA(p,q) μοντέλο x x px p z z z q q Πλεονεκτήματα:. Απλά 2. Κανονική διαδικασία, ανεπτυγμένη
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ολοκληρωμένα Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. κ Μηx. Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Μονάδα Προβλέψεων & Στρατηγικής Ολοκληρωμένα Αυτοπαλινδρομικά Μοντέλα
ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ
ΚΕΦΑΛΑΙΟ ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ Στο κεφάλαιο αυτό θα μελετήσουμε κάποια βασικά χαρακτηριστικά των χρονοσειρών μέσα από πραγματικά παραδείγματα. Συγκεκριμένα θα μελετήσουμε στοιχεία μη-στασιμότητας,
Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. κ Μηx. Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Μονάδα Προβλέψεων & Στρατηγικής Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION)
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION) Μέθοδοςεκθετικήςεξομάλυνσης Μια άλλη τεχνική για δεδομένα με
Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές
Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές Αιτιότητα κατά Granger Ασκήσεις Ανάλυση μονομεταβλητής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΝΑΛΥΣΗ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ: ΠΡΟΒΛΕΠΟΝΤΑΣ ΤΟ ΜΕΛΛΟΝ, ΚΑΤΑΝΟΩΝΤΑΣ ΤΟ
ΜΑΘΗΜΑ 3ο. Βασικές έννοιες
ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής
Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)
ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual
ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουλίου Θέμα ( μονάδες) 4 Θεωρούμε τον Ευκλείδειο χώρο και τον υποχώρο του V που παράγεται
Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα
Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο
.Π.Μ.Σ.: ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ.Π.Μ.Σ.: ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ Ανάλυση Χρονοσειρών και Έλεγχοι
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ SARIMA (sp,sd,qs) ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών
Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση
Έλεγχος των Phillips Perron
ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.
Οικονομικές εφαρμογές υπολογιστικών πακέτων. Στοχαστικά υποδείγματα
Οικονομικές εφαρμοές υπολοιστικών πακέτων Στοχαστικά υποδείματα Στοχαστική διαδικασία Στοχαστικά υποδείματα: κάθε χρονολοική σειρά δημιουρείται μέσα από ένα μηχανισμό παραωής δεδομένων που αποτελεί μια
Στοχαστικά Σήµατα και Εφαρµογές. ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής
Στοχαστικά Σήµατα & Εφαρµογές Βέλτιστα Φίλτρα Wiener ιδάσκων: Ν. Παπανδρέου (Π.. 7/8) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής CEID 7-8 Εισαγωγή ιατύπωση του προβλήµατος: οθέντος των από
ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ Κουγιουμτζής Δημήτρης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ Μάθημα του μεταπτυχιακού προγράμματος ειδίκευσης Στατιστική και Μοντελοποίηση του Τμήματος Μαθηματικών ΑΠΘ Κουγιουμτζής Δημήτρης Αν. Καθηγητής
ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΘΕΩΡΙΑ & ΕΡΓΑΣΤΗΡΙΟ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΑΤΡΑΣ ΤΜΗΜΑ: ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ &ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ TECHNOLOGICAL EDUCATION INST ITUTE OF PATRAS DEPARTMENT: BUSINESS PLANNING & INFORMATION SYSTEMS ΣΗΜΕΙΩΣΕΙΣ
Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις
Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Ανάλυση Χρονοσειρών. Κεφάλαιο Ανάλυση Χρονοσειρών
Κεφάλαιο 22 Ανάλυση Χρονοσειρών 22.1 Ανάλυση Χρονοσειρών Με τον όρο Χρονοσειρά εννοούµε µια σειρά από παρατηρήσεις που παίρνονται σε ορισµένες χρονικές στιγµές ή περιόδους που ισαπέχουν µεταξύ τους. Υπάρχουν
ΘΕΜΑ: Ανδρέας Λαγγούσης. Αθήνα, Ιούλιος 2003 Επιβλέπων:. Κουτσογιάννης, Αναπληρωτής Καθηγητής
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ, Υ ΡΑΥΛΙΚΩΝ & ΘΑΛΑΣΣΙΩΝ ΕΡΓΩΝ ΘΕΜΑ: ΑΝΑΠΤΥΞΗ ΚΥΚΛΟΣΤΑΣΙΜΩΝ ΣΤΟΧΑΣΤΙΚΩΝ Υ ΡΟΛΟΓΙΚΩΝ ΜΟΝΤΕΛΩΝ ΜΕ ΙΑΤΗΡΗΣΗ ΤΗΣ ΒΡΑΧΥΠΡΟΘΕΣΜΗΣ ΜΝΗΜΗΣ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 5.1 Αυτοσυσχέτιση: Εισαγωγή Συχνά, η υπόθεση της μη αυτοσυσχέτισης ή σειριακής συσχέτισης
Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα
Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο στο Μέλλον Η ορθολογική
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 4 Πάτρα 2008 Ντετερμινιστικά Moving Average Μοντέλα Ισχύει:
Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων
Άσκηση η α) Πώς θα µετρήσετε πρακτικά πόσο κοντά είναι ένα σήµα σε λευκό θόρυβο; Αναφέρατε 3 διαφορετικές µεθόδους (κριτήρια) για την απόφαση: "Ναι, πρόκειται για σήµα που είναι πολύ κοντά σε λευκό θόρυβο"
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής Διαγνωστικοί Έλεγχοι Διαπίστωσης της Αυτοσυσχέτισης Οι περισσότεροι από τους διαγνωστικούς ελέγχους της αυτοσυσχέτισης αναφέρονται σε αυτοσυσχέτιση
Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 6: ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Ακαδηµαϊκό Έτος 26 27, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το
1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Γραμμικά Μοντέλα Χρονοσειρών και Αυτοσυσχέτισης ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σταυρούλα Γαζή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ.Π.Μ.Σ. : «ΜΑΘΗΜΑΤΙΚΑ των ΥΠΟΛΟΓΙΣΤΩΝ και των ΑΠΟΦΑΣΕΩΝ» Κατεύθυνση : ΣΤΑΤΙΣΤΙΚΗ και ΕΠΙΧΕΙΡΙΣΙΑΚΗ ΕΡΕΥΝΑ Γραμμικά Μοντέλα Χρονοσειρών και
Στοχαστικά Σήµατα και Εφαρµογές
Στοχαστικά Σήµατα & Εφαρµογές Εκτίµηση Φάσµατος ιδάσκων: Ν. Παπανδρέου (Π.. 47/8) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής CEID 7-8 Μη παραµετρικές µέθοδοι: Περιοδόγραµµα Φάσµα ισχύοςµιας
Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)
ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων RLS Rcrsiv Last Sqars 27 iclas sapatslis
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p))
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) O όρος αυτοπαλίνδρομο
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ 6. Εισαγωγή 6. Μονομεταβλητές προβλέψεις Βέλτιστη πρόβλεψη και Θεώρημα βέλτιστης πρόβλεψης Διαστήματα εμπιστοσύνης 6.3 Εφαρμογές A. MILIONIS KEF. 6 08 BEA
Επαυξημένος έλεγχος Dickey - Fuller (ADF)
ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΑ ΠΡΟΒΛΕΨΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΟΖΟΝΤΟΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ουράνη Μαρία Επιβλέπων : Νικόλαος
Ογενικός(πλήρης) έλεγχος των Dickey Fuller
ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013 Απαντήσεις Θεμάτων Θεμα Α Α1. Θεωρία σχολικού βιβλίου σελ. 334-335
Μαθηµατικό Παράρτηµα 5 Επίλυση Υποδειγµάτων µε Ορθολογικές Προσδοκίες
Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Μαθηµατικό Παράρτηµα 5 Επίλυση Υποδειγµάτων µε Ορθολογικές Προσδοκίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τις µεθόδους επίλυσης υποδειγµάτων
Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος
ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή
Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών
Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις
Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν
ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ Η ΕΠΟΧΙΚΟΤΗΤΑ ΣΤΙΣ ΤΙΜΕΣ ΤΟΥ ΑΝΘΡΑΚΑ, ΤΟΥ ΠΕΤΡΕΛΑΙΟΥ, ΤΟΥ ΧΑΛΥΒΑ ΚΑΙ ΤΟΥ ΧΡΥΣΟΥ Δαμιανού Χριστίνα Διπλωματική
Ο μετασχηματισμός Fourier
Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας
10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
SECTION 0 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. Ορισµοί Συνήθης διαφορική εξίσωση (Σ Ε) καλείται µια εξίσωση της µορφής f [y (n), y (n ),..., y'', y', y, x] 0 όπου y', y'',..., y (n ), y (n) είναι οι παράγωγοι
Χρονοσειρές - Μάθημα 9 Aνάλυση χρονοσειρών και δυναμικά συστήματα
Χρονοσειρές - Μάθημα 9 Aνάλυση χρονοσειρών και δυναμικά συστήματα - Ανακατασκευή του χώρου καταστάσεων παρατήρηση της πολυπλοκότητας / στοχαστικότητας / δομής του συστήματος - Εκτίμηση χαρακτηριστικών