div( u p 2 u) = λa(x)u q 2 u+ 1 F(u,v) u
|
|
- Ἄρης Μιχαλολιάκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 , À ADVANCES IN MATHEMATICSCHINA) doi: /sxjz b R N ÙÁÍÈÖ Ñ Þ ÚÓÇ ¼ «ß ß, «, ¾, ) Ò : µ R N Sobolev -Lalacian ± º Ð., ß, Nehari ²Æ³ «, ¾ Đ λ,µ) R 2 Å, л 2 ½«. Å : ± º Ð ; Nehari ²; Sobolev ; Ekeland ß ¹ MR2010) Û Ê: 35A15 / Ø ÊÂ: O175.2 Ï: A 1 ÄÜ ÆÎ Ö» Î ¾Æ ØÆ ºØ: div u 2 u) = λax)u q 2 u+ 1 Fu,v), x R N, u div v 2 v) = µbx)v q 2 v + 1 Fu,v), x R N, v ux),vx) > 0, x R N, P) 2 q < < N, λ > 0, µ > 0, ³Â ax),bx),fs,t) «: a) ax),bx) L R N ), ³ Ω R N 0 Ω, Ω > 0), Ω ax),bx) > 0, = N N Sobolev ± ; b) F C 1 R + R +,R + ) Â, Í Fνs,νt) = ν Fs,t) ν > 0). Î Ç ß Ö Ä Ö Å ² È Å [4, 23]» Ú½ Å [20] Ä ¹µ ½. ² È Å, µ Å. > 2, 1,2) ÂØ È, = 2 ² È. [6] ± Ì ØÐ ØÎ ¾Æ { u = λu+ u 2 2 u, x Ω, 1.1) ux) = 0, x Ω ÐÐ, Ω R N. [6] N 4, 0 < λ < λ 1, ¾Æ 1.1) ³ 1, λ 1 à Å. ± ØÎ ¾Æ Ç, º º : Ú º : Ê Ñ : ¾ Ô Î ÑÕ Ñ No ) Å«ß Ñ No ). ywl6133@126.com
2 2 ß «[24], Í N 5, λ Ó, ¾Æ 1.1) ³ cat Ω Ω)., [29] ÐÐ Þ Ì ØÐÄ Ã ØÎ ¾Æ Ç, ¾ Æ ØÄ ºØ. [18] Í [29] ºØ -Lalacian ØÎ ¾Æ. [2, 8 9, 12 13, 15, 22, 28]. Ü, Ô Ì ØÐ Î ¾Æ ØÄ ºØ Ç Ü ÐÐ, [1, 3, 5, 7, 14, 17, 21]. Å, [30] Ö» ØÎ ¾Æ : u = λfx) u q 2 u+ α α+β hx) u α 2 u v β, x Ω, v = µgx) v q 2 v + β α+β hx) u α v β 2 v, x Ω, ux) = vx) = 0, x Ω, 1 < q < 2, α > 1, β > 1 «2 < α+β < 2, ³  f,g,h «Õ Ê. λ,µ) R 2 Ì, Nehari Ö, ¾Æ 1.2) ³ 2., [19] ÐÐ ¾Æ 1.2) f = g = h 1 ºØ, ³ [17] Í. [17], Hsu Nehari ÖÐл ØÎ ¾Æ : u = λ u q 2 u+ 2α α+β u α 2 u v β, x Ω, v = µ v q 2 v + 2β α+β u α v β 2 v, x Ω, ux) = vx) = 0, x Ω, 1 < q < < N, λ,µ > 0, ³ α > 1, β > 1 «α+β =. Λ > 0, λ,µ «0 < λ +µ < Λ, Ç 1.3) ³ 2., [25] Í Å ØÐÀ Â. [10], Chu Ä Tang» ØÎ ¾Æ u = εgx)+f u u,v), x Ω, v = εhx)+f v u,v), x Ω, 1.4) ux),vx) > 0, x Ω, ux) = vx) = 0, x Ω ØÄ ºØ, g,h C 1 Ω)\{0}, F µ µ 2,2 ]) Â. ¾ ¹Ä ¾¹, ε ÇÓ, ¾Æ 1.4) ³ 2., Ò Ä, Ç P) R N Ì ØÐÄ ± Ø ±É. [10, 17, 19, 25, 30 32], ± Nehari Ö ÜÐÐ Ç, ¹¾ ¹Æ Pohozaev [16] Æ ¾¹ÞÁ. ³ [17, 25, 30] ÅÍ R N. β = 2M F K ) )K q ), 1.2) 1.3)
3 Ð: R N Á ² ÙÏ µ» 3» ¾Đ Å: Ë 1.1 Ê a), b) Đ,» λ,µ «Ê : < β, Æ Ç P) ³ 1. Ë 1.2 Ê a), b) Đ, Æ Å C > 0, λ,µ «Ê : < C, Ç P) ³ 2. 2 ÐÀ Ì ¼, Å u É R N ux)dx. Ù X = {u,v) D 1, R N ) D 1, R N )}. u,v) = u 1, + v 1,, u 1, = u ) 1, v 1, = v ) 1. D 1, R N ) = {u L R N ) : u L R N )}» Banach Ù. ³ Å K > 0, ± u D 1, R N ), u K u 1,. 2.1) ¼Ä½, Ç P) º ± C 2 ½Â I : X R, Í Iu,v) = 1 u,v) 1 q λax) u q +µbx) v q 1 Fu,v) º. 2.1 [11] F C 1 R + R +,R + ) Â, Æ 1) Å M F > 0, ± s,t) R R, Fs,t) M F s + t ); 2) sf s s,t)+tf t s,t) = Fs,t); 3) F s,f t CR R,R) 1 Â. «½Â I X, Ä Ö» Nehari Ö: N = {u,v) X \{0,0)} : I u,v)),u,v) = 0}., ½Â I º À N. Ë 2.1 ½Â I Nehari Ö N ² ³. Ô ± u,v) N, Iu,v) = 1 1 ) u,v) ) u,v) q 1 ) λax) u q +µbx) v q q 1 ) ) K q u,v) q.
4 4 ß φu,v) = I u,v),u,v), Ʊ u,v) N, φ u,v),u,v) = u,v) λax) u q +µbx) v q Fu,v) = ) u,v) q ) λax) u q +µbx) v q = ) u,v) ) Fu,v). [27] Nehari Ö ¾¹ N ¼, Í N = N + N 0 N, N + = {u,v) N : φ u,v),u,v) > 0}, N 0 = {u,v) N : φ u,v),u,v) = 0}, N = {u,v) N : φ u,v),u,v) < 0}. N 0,N +,N ÕØµ. Ë 2.2» u,v) I N, ³ u,v) / N 0, Æ u,v) I. Ô u,v) I N, Ä ÓÛ Ý¹ ¹, Å ω, ³ u,v) / N 0, Í Ä I u,v) = ωφ u,v). 0 = I u,v),u,v) = ω φ u,v),u,v). φ u,v),u,v) 0, ω = 0. I u,v) = 0. Ë 2.3» λ,µ «Ê λ a +µ b < β, Æ N 0 =. Ô N 0. Ʊ u,v) N, ص 2.1 Fu,v) M F u + v ) 2M F K P u,v). 2.2) u,v) N 0, 0 = φ u,v),u,v) = ) u,v) ) Fu,v), Ä u,v) 2M F K ) ) 1.
5 «Ð: R N Á ² ÙÏ µ» 5 ) u,v) = ) λax) u q +µbx) v q Í ) )K q u,v) q, )K q ) 1 ) 1 u,v) λ a + µ b. Æ Ê ³. Ä Å Đ. α > d. 2M F K ) Ý «2.3,» λ,µ «λ a +µ b )K q ). < β, Æ N = N + N. α = inf u,v) N α+ = inf Iu,v), α = inf Iu,v). u,v) N + u,v) N Ë 2.4 1)» λ,µ «Ê λ a +µ b < β, Æ α α + < 0. 2)» λ,µ «Ê λ a +µ b Ô 1) u,v) N +, Iu,v) = u,v) > 1 ) u,v) + q q 1 ) Ä «α,α + Í α α + < 0. 2) u,v) N, Æ 2.2) u,v) < u,v) > Iu,v) > 2M F K ) q 1 < q Fu,v), β, Æ Å d > 0, Fu,v) < qn u,v) < 0. Fu,v), 2M F K ) ) q 1 1 ) ) 1. 2M F K ) ) ) K q. )
6 6 ß Ä Å d > 0, α > d. Ý» λ,µ «Ê λ a +µ b < q β, u,v) X\{0,0)}, ³«Fu,v) > 0, Æ 0 < t + < t, t + u,t + v) N +,t u,t v) N, ³ It + u,t + v) = inf 0 t t Itu,tv), It u,t v) = su t 0 Itu,tv). 3 Ü ÆÎ Õ 1.1 Ä 1.2, ÛĐ. Ë 3.1» {u n,v n )} I N ÓÝ Í {u n,v n )} N, Iu n,v n ) α), ³ λ,µ «λ a +µ b < β, Æ r > 0, φ u n,v n ),u n,v n ) r. Ô {u n,v n )} N, φ u n,v n ),u n,v n ) 0, Æ ) u n,v n ) = q ) λax) u n q +µbx) v n q +o n 1), ) u n,v n ) = ) Fu n,v n )+o n 1). «2.1) ) u n,v n ) = ) Fu n,v n )+o n 1) 2M F K P ) u n,v n ) +o n 1), ) 1 o n 1) 2M F K P ) ) u n,v n ) u n,v n ). n, L > 0, 1 u n,v n) L. u n,v n ) 0 n ), Æ Iu n,v n ) 0. Ä α = 0. Æ α < 0 ³. «) ) u n,v n ) )K q un,v n ) q +o n 1), u n,v n ) 1 ) ) )K q o n 1) λ a + µ b + u n,v n ) q. Ä n, Í 2M F K ) )K q ). Æ Ê ³. Ë 3.2 1)» λ,µ «Ê λ a +µ b < β, I X s) α + Ý {u n,v n )} N +. 2)» λ,µ «Ê λ a +µ b < q β, I X s) α Ý {u n,v n )} N.
7 Ð: R N Á ² ÙÏ µ» 7 Ô 1) «2.1 I N. Ä Ekeland, Ý {u n,v n )} N «Iu n,v n ) α, I Nu n,v n ) ) ÓÛ Ý¹ ¹, λ n R I u n,v n ) = I Nu n,v n ) λ n φ u n,v n ). 3.2) I u n,v n ),u n,v n ) = I N u n,v n ),u n,v n ) λ n φ u n,v n ),u n,v n ). Ó {u n,v n )} N, 3.1) Ä 3.1 ØÍ λ n 0 n ). Ó 2.1 {u n,v n )} N, φ u n,v n ). Ä «3.2) Í I u n,v n ) 0. 2) Ë Ø. Ë 3.1» λ,µ «Ê λ a +µ b < β, Æ u,v) N +, 1) Iu,v) = α = α + ; 2) u,v) Ç P). Ô Ó 3.2, Ý {u n,v n )} N +, Iu n,v n ) α, I u n,v n ) 0. Ó 2.1 {u n,v n )}. X»Ù, Ä {u n,v n )}, X u n,v n ) u,v)., u,v) N {0,0)}. Ó [26] ax) u n q ax) u q, Iu n,v n ) q 1 ) n, Ó 2.4 Ä 3.3) λ u q +µ v q > 0. λ,µ > 0, Ä u,v) N. bx) v n q bx) v q. 3.3) λax) u n q +µbx) v n q. ¾, Fatou α Iu,v) = 1 ) u,v) q 1 ) λax) u q +µbx) v q liminf n 1 ) u n,v n ) q 1 ) ) λax) u n q +µbx) v n q = liminf n Iu n,v n ) = α.
8 8 ß Í Iu,v) = α, lim u n,v n ) = u,v). 3.4) n u,v) N +., {u n,v n )} N +, Ä Ó 3.1 Ø φ u n,v n ),u n,v n ) = ) u n,v n ) q ) λax) u n q +µbx) v n q r > 0. n, Ó 3.3) Ä 3.4) φ u,v),u,v) = ) u,v) q ) λax) u q +µbx) v q r > 0. Ä u,v) N +. ÓË u,v) Ç P). { u,v) S F = inf u,v) N : Fu,v) γ = 1 N S N F )K q q } Fu,v) > 0, 3.5) ).. Ë 3.3 ½Â I N «s) c Ê, c,γ). Ô {u n,v n )} N, Iu n,v n ) c, I u n,v n ) 0. Ó 2.1 {u n,v n )}, Ä {u n,v n )}, u n,v n ) u,v). u n ) = u n u,v n v), Ó Brézis-Lieb u n ) = u n,v n ) u,v) +o n 1), F u n ) = Fu n,v n ) Fu,v)+o n 1). 1 u n, v n ) 1 u n ) F u n ) = c Iu,v)+o n 1), 3.6) F u n ) = o n 1). u n ) l, F u n ) l. 3.7)» l = 0, Æ Å Đ.» l > 0, «3.5) Ä 3.7) l S N F. «3.6) c γ. Æ ³. Ä l = 0, Å Đ.
9 Ë 3.4 N Ò Ð: R N Á ² ÙÏ µ» 9 u,v) ÄÅ m > 0, λ,µ «Ê λ a + µ b < m, su t 0 Itu,tv) < γ. Å, λ,µ «Ê λ a µ b < m, α < γ. + Ô Å ρ > 0, B 2ρ 0) Ω. ηx) C R N,[0,1]), x B ρ 0), ηx) = 1, x R N \B 2ρ 0), ηx) = 0. ± ε > 0, u ε x) = ε+ x ηx) N 1 ). Ø Þ λ,µ γ = 1 N S N F )K q q > 0. Ó Itu ε,tu ε ) t u ε,u ε ) Ø t 0 > 0, su Itu ε,tv ε ) < γ. 0 t t 0 È [29] Ï, Ø Þ λ,µ suitu ε,tu ε ) 1 t t 0 N S N F +O ) ε N t q 0 λax) u ε q +µbx) v ε q < γ. q B 2ρ0) m > 0, λ,µ «Ê λ a +µ b < m, su t 0 Itu,tv) < γ. Ë 3.2» λ,µ «Ê λ a +µ b < C, C = min{ q β, m}, Æ u,v) N, 1) Iu,v) = α ; 2) u,v) Ç P). Ô Ó 3.2, Ý {u n,v n )} N, Iu n,v n ) α, I u n,v n ) 0. Ó 2.1 {u n,v n )}. X»Ù, Ä {u n,v n )}, X u n,v n ) u,v)., u,v) N {0,0)}. Ó Ä 3.3) Ø Iu,v) = α > 0, Ä u,v) N. 3.1 Ø u,v) N. ÓË u,v) Ç P). Ë 1.1 Ã 1.2 Ô Ó 3.1 ØÍ 1.1 Đ. Ó N + N =, ØÍ 1.2 Đ.
10 10 ß É [1] Adriouch, K. and El Hamidi, A., The Nehari manifold for systems of nonlinear ellitic equations, Nonlinear Anal., 2006, 6410): [2] Alves, C.O. and Ding, Y.H., Multilicity of ositive solutions to a -Lalacian equation involving critical nonlinearity, J. Math. Anal. Al., 2003, 2792): [3] Alves, C.O. and El Hamidi, A., Nehari manifold and existence of ositive solutions to a class of quasilinear roblems, Nonlinear Anal.: TMA, 2005, 604): [4] Astrita, G. and Marrucci, G., Princiles of Non-Newtonian Fluid Mechanics, New York: McGraw-Hill, [5] Benmouloud, S., Echarghaoui, R., and Sbaï, S.M., Multilicity of ositive solutions for a critical quasilinear ellitic system with concave and convex nonlinearities, J. Math. Anal. Al., 2012, 3961): [6] Brezis, H. and Nirenberg, L., Positive solutions of nonlinear ellitic equations involving critical Sobolev exonents, Comm. Pure. Al. Math., 1983, 364): [7] Brown, K.J. and Wu, T.F., A semilinear ellitic system involving nonlinear boundary condition and signchanging weight function, J. Math. Anal. Al., 2008, 3372): [8] Cao, D.M., Peng, S.J. and Yan, S.S., Infinitely many solutions for -Lalacian equation involving critical Sobolev growth, J. Funct. Anal., 2012, 2626): [9] Chen, J.Q., Multile ositive solutions for a class of nonlinear ellitic equations, J. Math. Anal. Al., 2004, 2952): [10] Chu, C.M. and Tang, C.L., Existence and multilicity of ositive solutions for semilinear ellitic systems with Sobolev critical exonents, Nonlinear Anal.: TMA, 2009, 7111): [11] de Morais Filho, D.C. and Souto, M.A.S., Systems of -Lalacean equations involving homogeneous nonlinearities with critical Sobolev exonent degrees, Comm. Partial Diff. Eqs., 1999, 247/8): [12] Degiovanni, M. and Lancelotti, S., Linking solutions for -Lalace equations with nonlinearity at critical growth, J. Funct. Anal., 2009, 25611): [13] Deng, Y.B. and Wang, J.X., Critical exonents and critical dimensions for quasilinear ellitic roblems, Nonlinear Anal.: TMA, 2011, 7411): [14] Ding, L. and Xiao, S.W., Multile ositive solutions for a critical quasilinear ellitic system, Nonlinear Anal.: TMA, 2010, 725): [15] Ding, L. and Tang, C.L., Positive solutions for critical quasilinear ellitic equations with mixed Dirichlet- Neumann boundary conditions, Acta Math. Sci., 2013, 33B2): [16] Drábek, P. and Pohozaev, S.I., Positive solutions for the -Lalacian: alication of the fibrering method, Proc. Roy. Soc. Edinburgh, Sect. A, 1997, 1274): [17] Hsu, T.S., Multile ositive solutions for a critical quasilinear ellitic system with concave convex-nonlinearities, Nonlinear Anal.: TMA, 2009, 717/8): [18] Hsu, T.S., Multilicity results for -Lalacian with critical nonlinearity of concave-convex tye and signchanging weight functions, Abstr. Al. Anal., 2009, 2009: Article ID , 24 ages. [19] Hsu, T.S. and Lin, H.L., Multile ositive solutions for a critical ellitic system with concave-convex nonlinearities, Proc. Roy. Soc. Edinburgh, Sect. A, 2009, 1396): [20] Ladde, G.S., Lakshmikantham, V. and Vatsala, A.S., Existence of couled quasi-solutions of systems of nonlinear reaction-diffusion equations, J. Math. Anal. Al., 1985, 1081): [21] Lin, H.L., Multile ositive solutions for semilinear ellitic systems, J. Math. Anal. Al., 2012, 3911): [22] Lin, M.L., Some further results for a class of weighted nonlinear ellitic equations, J. Math. Anal. Al., 2008, 3371):
11 Ð: R N Á ² ÙÏ µ» 11 [23] Martinson, L.K. and Pavlov, K.B., Unsteady shear flows of a conducting fluid with a rheological ower law, Magnitnaya Gidrodinamika, 1971, 72): in Russian). [24] Rey, O., A multilicity results for a variational roblem with lack of comactness, Nonlinear Anal.: TMA, 1989, 1310): [25] Shen, Y. and Zhang, J.H., Multilicity of ositive solutions for a semilinear -Lalacian system with Sobolev critical exonent, Nonlinear Anal.: TMA, 2011, 744): [26] Stavrakakis, N.M. and Zograhooulos, N.B., Existence results for quasilinear ellitic systems in R N, Electron. J. Diff. Eqs., 1999, ): [27] Tarantello, G., On nonhomogeneous ellitic equations involving critical Sobolev exonent, Ann. Inst. H. Poincaré C), Anal. Non Linéaire, 1992, 93): [28] Wu, T.F., On semilinear ellitic equations involving concave-convex nonlinearities and sign-changing weight function, J. Math. Anal. Al., 2006, 3181): [29] Wu, T.F., On semilinear ellitic equations involving critical Sobolev exonents and sign-changing weight function, Comm. Pure. Al. Anal., 2008, 72): [30] Wu, T.F., The Nehari manifold for a semilinear ellitic system involving sign-changing weight functions, Nonlinear Anal.: TMA, 2008, 686): [31] Zhang, W.L., The existence of ositive ground state solutions for a,q)-lalacian system in R N, Math. Practice Theory, 2012, 424): in Chinese). [32] Zhang, W.L., and Zhong, L.N., Existence and multilicity of nonnegative solutions for a quasilinear system in R N, Acta Math. Sci., 2013, 33A1): in Chinese). Multilicity of Positive Solutions for a Quasilinear Ellitic Systems Involving Sobolev Critical Exonent in R N ZHANG Wenli Deartment of Mathematics, Changzhi University, Changzhi, Shanxi, , P. R. China) Abstract: In this aer, we study the -Lalacian quasilinear system involving Sobolev critical exonent in R N. With the hel of the roerties of the weight function, by using variational method, and by using decomosition for Nehari manifold, we rove that the system exists at least two ositive solutions when the air of arameters λ,µ) belongs to a certain subset in R 2. Keywords: quasilinear ellitic system; Nehari manifold; Sobolev critical exonent; Ekeland variational rincile
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u
. (1) Nehari c (c, 2c) 2c Bahri- Coron Bahri-Lions (2) Hénon u = x α u p α (3) u(x) u(x) + u(x) p = 0... (1) 1 Ω R N f : R R Neumann d 2 u + u = f(u) d > 0 Ω f Dirichlet 2 Ω R N ( ) Dirichlet Bahri-Coron
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R
2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10
À 34 À 3 Ù Ú ß Vol. 34 No. 3 2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, 2011 Á É ÔÅ Ky Fan Ë ÍÒ ÇÙÚ ( ¾±» À ¾ 100044) (Ø À Ø 550025) (Email: dingtaopeng@126.com) Ü Ö Ë»«Æ Đ ĐÄ Ï Þ Å Ky Fan Â Ï Ò¹Ë
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库
ß¼ 0384 9200852727 UDC Î ± À» An Integral Equation Problem With Shift of Several Complex Variables Û Ò ÖÞ Ô ²» Ý Õ Ø ³ÇÀ ¼ 2 0 º 4 Ñ ³ÇÙÐ 2 0 º Ñ Ä ¼ 2 0 º Ñ ÄÞ Ê Ã Ö 20 5  Š¾ º ½ É É Ç ¹ ¹Ý É ½ ÚÓÉ
EXISTENCE RESULTS FOR KIRCHHOFF TYPE SYSTEMS WITH SINGULAR NONLINEARITY. A. Firouzjai, G.A. Afrouzi, and S. Talebi
Ouscula Math. 38 no. 2 2018 187 199 htts://doi.org/10.7494/omath.2018.38.2.187 Ouscula Mathematica EXISTENCE RESULTS FOR KIRCHHOFF TYPE SYSTEMS WITH SINGULAR NONLINEARITY A. Firoujai G.A. Afroui and S.
On Critical p-laplacian Systems
Adv. Nonlinear Stud. 07; ao esearch Article Zhenyu Guo Kanishka Perera* and Wenming Zou On Critical -Lalacian Systems DOI: 0.55/ans-07-609 eceived February 3 06; revised July 3 07; acceted July 3 07 Abstract:
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Blowup of regular solutions for radial relativistic Euler equations with damping
8 9 Ö 3 3 Sept. 8 Communication on Applied Mathematics and Computation Vol.3 No.3 DOI.3969/j.issn.6-633.8.3.7 Õ Îµ Ï̺ Eule»²Ö µ ÝÙÚ ÛÞ ØßÜ ( Ñ É ÉÕ Ñ 444 Î ÇÄ Eule ± ÆÃ ¼ Û Â Þ Û ¾ ³ ÇÄ Eule ± Å Å Þ Å
with N 4. We are concerned
Houston Journal of Mathematics c 6 University of Houston Volume 3, No. 4, 6 THE EFFECT OF THE OMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF AN ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS
H Witten- ¾. 1956, Payne-póyla Weinberger [15] Ó ĐË È : (1) λ k+1 λ r 4. λ r. (2) n k. λ k , Yang [19] ÅĐ «Yang ¾. (λ k+1 λ r )λ r 1+ 4 ) 1
44Ñ Vol.44, No. 015 3Ù ADVANCES IN MATHEMATICSCHINA Mar., 015 H Witten- ¾ É ÁÅ ³ Ý 1,, Õ doi: 10.11845/sxjz.014186b 0 1. Æ Þ ÆÔÅ Ø, Æ,, 5300;. Þ Ê, Æ,, 310018 : Ë Ñ H- ÔÖ Witten- ÐÒÐÛÜÅ G+ G, Gϕ Þ Đß.
DtN ² *1) May, 2016 MATHEMATICA NUMERICA SINICA Vol.38, No.2. ˱ Helmholtz µå ű Dirichlet-to-Neumann. u = g, Γ, (1.1) r iku = o(r 1 2 ), r,
16 Ý 5 38 Ð May, 16 MATHEMATICA NUMERICA SINICA Vol.38, No. Helmholtz ± µ³ DtN ² *1) ( Ò Ì ¼, 1144) ˱ Helmholtz µå ű Dirichlet-to-Neumann (MDtN) ¹, 鱃 ¾, MDtN ÎÂÐ MDtN Å ÉÔ H 1 Ö Ð L Ö. Ü ¼Ú Ù. ÖÚ :
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).
Vol. 34 ( 2014 ) No. 4 J. of Math. (PRC) (, 710123) :. -,,, [8].,,. : ; - ; ; MR(2010) : 91A30; 91B30 : O225 : A : 0255-7797(2014)04-0779-08 1,. [1],. [2],.,,,. [3],.,,,.,,,,.., [4].,.. [5] -,. [6] Markov.
Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή
ÔØ Ö ΕΙΣΟΔΟΣ ΔΕΔΟΜΕΝΩΝ º½ ÉÄ Ò Ø Ηβασ ικήκατηγορίατης ÉØγιαείσ οδοδεδομένωνείναιηéä Ò Øμετηνοποία οχρήσ τηςμπορείναεισ άγεισ εμιαγραμμήένααλφαριθμητικόºστοναλγόριθμο º½παρουσ ιάζεταιηδήλωσ ηγιαένακεντρικόπαράθυρομετοοποίοοχρήσ
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING
Ö 7 Ö Vol.7 No. 11 Ö Ö È ACTA METALLURGICA SINICA Jun. 11 pp. ÐÅÔ ÎÔ Ê Đ 1,) 1) 1) 1) ß ÍÊ ½ Ñ٠ؽÁ, ÔÒ 51 ) ß Í Ñ ß, ÔÒ 511 µ² Ç Æ Đ, ÅËÀ Ð Ï (PAW). Â, mm É PAW» ½ËÁ ÕË, Ë Ð¹ ²Á»¼Á Î. µ²» Ǽ, PAW È À
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Διατακτικοί αριθμοί Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ
ÔØ Ö ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Στοκεφάλαιοαυτόθαπαρουσ ιασ τούνμερικέςαπότιςδυνατότητεςπουπαρέχειη βιβλιοθήκη ÉÌσ εαρχείακαθώςκαιτρόποισ ύνδεσ ηςκαιεκτέλεσ ηςερωτημάτων σ εβάσ ειςδεδομένωνº º½ Ηκατηγορία
AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),
½ ³ J. Sys. Sci. & Math. Scis. 34(12) (2014, 12), 1438 1450 µ Ñ RFID Ô À (»Ì ÖÚ, Å À ºÓ Ê Â, Å 300071; Ä Õ Ì, Å 300300) Á (Ä Õ Ì, Å 300300) ÚÍ FNN RFID Ò ĐÓ IPS, ÒÇ Ú Í RFID Đ Ó Ù, Ù ½ ² Ë «, Á Å ÈÀ ß
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Αναλυτική Γεωμετρία Αθανάσιος Μπράτσος Τμήμα Πολιτικών Μηχ.ΤΕ και Μηχ. Τοπογραφίας & Γεωπληροφορικής
Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *
6-2008-5 Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ * ˆ ˆ ˆˆ U(VI) ˆ ˆ ˆ ˆ Š ˆ ² μ Ê ² μì ³ Ö *, μ -, μ² Ö ² μ Œ... 6-2008-5 ˆ ² μ μ Í U(VI) μî μ μ Ì ² Ð μ ±É ÒÌ μéìμ μ ˆ ² μ μ Í Ö U(VI) μî
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ
Ó³ Ÿ. 218.. 15, º 2(214).. 171Ä176 Š Œ œ ƒˆˆ ˆ ˆŠ ˆ ˆ ˆ Š Š Œ Œ Ÿ ˆ Š ˆ Š ˆ ˆŠ Œ œ ˆ.. Š Ö,, 1,.. ˆ μ,,.. μ³ μ,.. ÉÓÖ μ,,.š. ʳÖ,, Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ± Ê É
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <
K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1
Å Ü Ò ÙÐØ Ø ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Ã Ø Ö Þ Ñ Ò Ù ÐÙ Ð Ò Ö Ëº Ó Ì Ä ÈÊÇÊ ÉÍÆ Æ ÃÁÀ ËÌÊÍ ËÌÁ ÁÎÇ ÄÍÁ Á ÆÌÊÇÈËÃ Ê Ä Á κ = 1.4µ ½ ½ ÁÞ ÒØÖÓÔ Ö Ð ÃÓÖ Ø Ò ÑÓ Þ Þ ÒØÖÓÔ Ó ØÖÙ ½ Ú ÔÓÑÓ Ù Ò ÜÙ ØÓØ ÐÒ Ú Ð Õ Ò Ø Ø
Reverse Ball-Barthe inequality
207 Ä 9 3 3 Ì Sept 207 Commuicatio o Applied Mathematics ad Computatio Vol3 No3 DOI 03969/iss006-633020703006 ³ Ball-Barthe ƺ ÌÍË (¹ 200444 Á ËÒÉØË²¾ÝÀÖÜ Ball-Barthe ØÀÉ ¹¾Â¼ Ball-Barthe Ø ÔË²Î¹Æ Â¼ Ball-Barthe
tan(2α) = 2tanα 1 tan 2 α
½º ÙÒ Ð ØØ ½º Ò Ò Å Ò Ò M 1 = {1,4,9,16,25,36,49,64,...}, M 2 = {4,6,8,9,10,12,14,15,...}. µ Ö Ò Ë M 1 ÙÒ M 2 ÙÖ Ò Ò Ö Ò Ø ÓÖÑ Ð Ù º µ Ò Ë M 1 M 2 Òº µ Ò Ë M 1 \M 2 ÙÒ M 2 \M 1 Òº µ Ï Ú Ð ÚÓÒ Ò Ò Ö Ú Ö
Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº
ÔØ Ö ΓΡΑΦΙΚΑ ΚΑΙ ΠΟΛΥΜΕΣΑ Ηβιβλιοθήκη ÉÌμπορείναχρησ ιμοποιηθείκαιγιατηνδημιουργίαπρογραμμάτων μεαπλάγραφικά γραμμές κείμενο κύκλουςκτλµόπωςεπίσ ηςγιατηνδημιουργία γραφημάτων από δεδομέναº º½ Àκατηγορία
ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ
Ó³ Ÿ. 2018.. 15, º 6218).. 467Ä475 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ.. Ê 1 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± μ± μ, ÎÉμ ³μ Ë ± Í Ö ³³ É Î ±μ, μ ² μ μ ƒ ²Ó ÉÊ μ² μ ²μÉ μ É É μ Ô -
P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.
P13-2011-120. ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ ² μ Ê ² μ Ò É Ì ± Ô± ³ É E-mail: sobolev@nrmail.jinr.ru μ μ². ƒ., ˆ μ Œ.., μ ± Î.. P13-2011-120 É μ ± ²Ö ³ Ö μ² ÒÌ Î Ö ÒÌ ±Í Ò É Ö Ô± ³ É ²Ó Ö
P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö
P11-2015-60. É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œ Œ ˆ Š Œ ˆ ˆ Œˆ ˆŸ ƒ Š ˆŒ Š ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 Œμ μ²ó ± μ Ê É Ò
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Επιλογής επόμενα Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
2 SFI
ų 2009 2 Û 9  ¼ Ü «Ë ÐÁ Û ¼ÞÝÁ «Ð¼Â ß Ú Ì ÑÓ ±¼ ¼µÕ Û (Santa Fe) «Đ Þ ¼± «ÐÐÇ ¾ ¼Ï ««¼ Ã«Ø Ú Ó Ý¼ºÏ «Å Å ¾»«¼ É ½ ÒØ ÒÚ Ç 1944 ²Ì ¼ ÉÌ (Patrick J. Hurley, 1883 1963) ¼È Ë 1984 ÞÎ ¼ Ë ÉÜ Ò «Þ Þ ÅÌÞ Ù
THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS
Ý 4 Ý «Vol.4 No. Ü Ò Ý 97 972 ACTA METALLURGICA SINICA Aug. pp.97 972 Ð Ü Î Ý 2 Fe Å ÑÏÆË ß Ø Å «( Àº¾ºÎ Ç Õ Þ ß¼, 430070) Ì 2 Õ Å Å Å ² Fe ÕØÐ» ± ÅØ εØ., Fe, ÅÕ Å, Å Å Fe Õ± Å «, ² h ØÐ»ºØÔÑ Fe ; ØÐ»ºĐ
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D
Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D Shijin Ding Changyou Wang Huanyao Wen Abstract We consider the equation modeling the compressible hydrodynamic flow of liquid crystals
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55
37 5 Ó Ä Ä Vol. 37 No. 5 014 9 ACTA MATHEMATICAE APPLICATAE SINICA Sep., 014 É Ì - Î Dirichle ÓÆ ÞÝÜ ÎÞÈÅÔÅ ÅÅ 100048 E-mail: wyin@mail.cnu.edu.cn Ñ - ƱРÑĐ» ³Æ Ð Û Ò ÌĐ Ø ÕÃ Ý Caran-Harogs ÚÆ - ƱРDirichle
Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±
Single-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
Εφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 6: Συναρτήσεις πολλών Μεταβλητών Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το περιεχόμενο
STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM
Ó 49 µ Ó 11 Vol.49 No.11 2013 11 Æ Ó 1369 1373 ACTA METALLURGICA SINICA Nov. 2013 pp.1369 1373 Ý Er Ù Nb TiAl Đß Æ ¹ ¾º ½ ( Ź Å Å, 100124) ± ½Þ Cu ÛÀ ÊÚ Ti 46Al 8Nb È Ti 46Al 8Nb 0.1Er Ì. ¼² ÚÆÆ, «Ì XRD,
Strong global attractors for non-damping weak dissipative abstract evolution equations
17 3 Journal of East China Normal University Natural Science No. Mar. 17 : 1-564117-8-1,, 737 :,, V θ V θ L µr + ; V θ. : ; ; : O175.9 : A DOI: 1.3969/j.issn.1-5641.17.. Strong global attractors for non-amping
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ À ÛÑ ØÖ ØÛÒ ÇÖ Ó ÛÒÛÒ º½ ÇÖ ÑÓ ØÓÙ ÐÓÙ ³ ÌÓ ÐÓ ³ Ò ÒØÓÑÓ ÓÑÓ Ò Ñ Ñ ÒÓ ½ ÔÖÓØ Ó ÓÖ ¹ ÑÓ Ø Ò ÖÕ º ËØÓ Ñ Ð Ø ÖÓ Ñ ÖÓ ØÓÙ ÔÖ Ø ÔÓØ Ð Ñ Ø ÔÓÙ ÓÖÓ Ò ÓÖÓÙ ÙÒ Ù ÑÓ ÓÖ Ó ÛÒÛÒ Ø ØÖ ôòûò ÓÙ Ô
RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY
49 11 Vol.49 No.11 2013 È 11 Ç 1457 1461 ² ACTA METALLURGICA SINICA Nov. 2013 pp.1457 1461 Ti 45Al 8Nb ± PST ² ¾ Á ¼ Í Æ Ç È Ì Ï Ç É (À Å ³ Í Å ÑĐ, À 210094)  ± ³ÛØ ÉØ Ø À Ò Ti 45Al 8Nb (À µ, %) ºÔ٠ݺ½
ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ
Ó³ Ÿ. 2007.. 4, º 5(141).. 719Ä730 ˆ ˆ ƒˆÿ, Š ƒˆÿ ˆ Ÿ Ÿ Œ ˆ ˆ ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ Š Œ Œ ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ÖÉ Ö Ê²ÓÉ ÉÒ μéò μ ³ Õ ±μ Í É Í CO 2 O 2 ϲ μì
On a p(x)-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term
On a p(x-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term Francisco Julio S.A. Corrêa Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY
48 8 Vol.48 No.8 2012 8 1011 1017 ACTA METALLURGICA SINICA Aug. 2012 pp.1011 1017 Hf Ä Ì ÀÚÈÏ γ ß Ó Ð 1,2) 1) 3) 1) ˲ Å ², 100083 2) ± ² Â, 100081 3) ˲² ² ², 100083 ¹ Hf ÍÆ Ð Ø ¾ γ Æ ¾Ä. Ý : Ð Ø ¾ γ
Προσομοίωση Δημιουργία τυχαίων αριθμών
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Προσομοίωση Δημιουργία τυχαίων αριθμών Άδεια Χρήσης Το παρόν εκπαιδευτικό
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ ËÓÑÑ Ö Ò Ò ÖÞ Ù Ø Ñ Ø Ñ ÈÖÓ Ö ÑÑ Ë ØØ Ò ÔÙÖ µ ½ ÒÐ
p din,j = p tot,j p stat = ρ 2 v2 j,
ÁÑ ÔÖ Þ Ñ Öº Ò ÍÔÙØ ØÚÓ Þ Ð ÓÖ ØÓÖ Ú ¹ Å Ò ÐÙ Í Å Ò ÐÙ Ø ÓÖ ÔÖÓÙÕ Ú Ù ÒÓ Ñ ÒÞ ØÖÙ Ò Ø Ü ÚÓ ÐÙ º Ç ÒÓÚÙ Ø ÞÒ Õ Ò ÖÒÙÐ Ú Ò Õ Ò Ò Õ Ò ÓÒØ ÒÙ Ø Ø ÔÖÓ¹ Ö ÕÙÒ ØÖÙ Ò ÓØÔÓÖ º ÅÒÓ Ó Ø ÓÖ ÞÒ ÒÓ Ñ ÒÞ ØÖÙ ÑÓ Ù ÔÖÓÚ
ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ
ÔØ Ö ¾ ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ ¾º½ Δημιουργία απλού παραθύρου Γιατηνδημιουργίαπαραθύρουθαχρειασ τείοχρήσ τηςνατοποθετήσ ειμέσ ασ ε μιακυρίωςεφαρμογήέναοπτικόσ υσ τατικό Ï ØµΤοπιοαπλόοπτικόσ υσ τατικόπουμπορείναχρησ
þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ ͽ Á ¼ µà±³³µ»¼±ä¹º  þÿµ¾ Å ½Éà  ³º» ³¹ºÎ½ ½ à þÿ ɺÁ Ä ÅÂ,
Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q
40 4 Vol 40 No 4 206 7 Journal of Jiangxi Normal UniversityNatural Science Jul 206 000-586220604-033-07 p q -φ 2 * 330022 Nevanlinna p q-φ 2 p q-φ p q-φ O 74 52 A DOI0 6357 /j cnki issn000-5862 206 04
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 653Ä664 ˆ Œ ˆ ˆ e + e K + K nπ (n =1, 2, 3) Š Œ ŠŒ -3 Š - ˆ Œ Š -2000 ƒ.. μéμ Î 1,2, μé ³ ±μ²² μ Í ŠŒ -3: A.. ß ±μ 1,2,. Œ. ʲÓÎ ±μ 1,2,.. ̳ ÉÏ 1,2,.. μ 1,.. ÏÉμ μ 1,.
Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί
2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp
Ñ 47 ± Ñ 3 Vol.47 No.3 2011 Đ 3 Ñ 284 290 ACTA METALLURGICA SINICA Mar. 2011 pp.284 290 ÚĐ Ó ± Ð ß Þ II. ¾½ 1,2) ¹ 1) 2) ¼ 1) 1)»º 1) 1) µ ÍÉ²È É µ ÉÆ, 150001 2) µ ÍÉ٠IJÈÐ Æ Ð Ò Ë, 150001 ƾ Ù ¾ Ź Ù
EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS
Electronic Journal of Differential Equations, Vol. 28(28), No. 146, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE
arxiv: v1 [math.dg] 3 Sep 2007
Ì Ö ØÓ Ð ÔÖÓ Ð Ñ Ò ØÛÓ Ò ÐÓ Ó Ø Å Ò ÓÛ ÔÖÓ Ð Ñ Ò Ê Ñ ÒÒ Ò Ô º Ò Ö Áº Ó Ö Ò Ó ½ arxiv:0709.0158v1 [math.dg] 3 Sep 2007 ØÖ Ø ÙØ ÓÖ Ò Ø ÓÐÙØ ÓÒ Ó Ø Ö ØÓ Ð ÔÖÓ Ð Ñ ÓÖ ÓÔ Ò Ò ÐÓ ÙÖ Ò Ê Ñ ÒÒ Ò Ô º Ì Ö ØÓ Ð ÔÖÓ
LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing
2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin
ZZ (*) 4l. H γ γ. Covered by LEP GeV
: 33 9! " 5< 687 235 # #) " " &( $ # $!" K I K T S R N \ N \ ] N ^ K V 63 7 "" ` 2 9 a C C E D # C B A @ " "? > H N OQP N M Y WX U V H O ( N O_P b i h i h h 63 7 "" ` C C E D # C B A @ " "? > b d e f f
Some New Friedrichs-Type Inequalities in Domains with Microinhomogeneous Structure
LICENTIATE T H E SIS Some New Friedrichs-Type Inequalities in Domains with Microinhomogeneous Structure Yulia Koroleva Luleå University of Technology Some New Friedrichs-Type Inequalities in Domains with
Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ È Ö ÐÓÙ º½ È Ö Õ Ñ Ò ØÓÙ ÐÓÙ ³ ÇÖ ÑÓ ½ ½½ ÈÖ Ø ½ ÈÛ Ö ÓÙÑ ØÓ ÒØÖÓ ØÓÙ ÐÓÙº ÈÖÓØ ¾ ½ ÉÓÖ ÐÓ Ø ÑÒ Ñ ÒÓ ÔØ Ñ ÒÓ º ÈÖÓØ ½ ½ ÔØ Ñ Ò º ÈÖÓØ ¾¼ ¾¾ ½ ÛÒ ØÑ Ñ Ø ÐÓÙ Ø ØÖ ÔÐ ÙÖ ÐÓÙº à ï Ä ÁÇ
P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï
P15-2012-75.. Ò±,. Ï ± ˆ Œ ˆŸ ˆ, š Œ ˆ ˆŒˆ Š ƒ ˆŸ ˆ ˆ, Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ ² μ Ê ² Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï Ò±.., Ï ±. P15-2012-75 ˆ ³ Ö μ Ì μ É, μ Ñ ³ ÒÌ μ É Ì ³ Î ±μ μ μ É μ Íμ Ö ÕÐ
Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ
Ó³ Ÿ. 2012.. 9, º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ œ ˆŸ FlexCtrl SCADA Ÿ Œ ˆ ˆˆ Š ˆ.. ± Ëμ μ 1,.. ² ±μ, Š.. ÒÎß, ˆ.. μ,.. ʱ Ï ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É ÉÓ μ Ò É Ö μ ³³ Ö Î ÉÓ Éμ³ É Í Ê ±μ É ² ²
FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY
Đ 49 Đ 11 Vol.49 No.11 2013 ³ 11 Đ 1406 1410 CT METLLURGIC SINIC Nov. 2013 pp.1406 1410 γ Til º Cr W º  û ÒÑ ( ÌÇ̵ Öà Å, 211106) Ë Ç º ÙÄÞ «γ Til Cr W. ÅÚÆ, γ Til Cr W, Ú Å ±, ÑÎ Ú Å 648.8 HV 0.1, ß³
POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM
Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS
ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ
13-2009-159.. ƒê,.. ± É,.. Ëμ μ Š ˆŒ œ ˆ ˆ ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ ² μ Ê ² ² ±É Î É μ ƒê.., ± É.., Ëμ μ.. 13-2009-159 ± ³ É ²Ó μ ² μ Ê ² Î Ö ³ É μ μ μ²ö Ð Í ² Î ± - ³³ É Î μ μ ³ É μ ³
Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος
Κληρονομικότητα ΙωάννηςΓºΤσούλος ¾¼½ ½ Ηκατηγορία ÈÖ ÓÒ ΗκληρονομικότητααποτελείένααπόταβασικότεραχαρακτηριστικάτουαντικειμενοστραφούςπρογραμματισμούºΤαβασικάτηςστοιχείασε είναι ½ºΤαπεδίαπουχρειάζεταιναπεράσουνστηνκατηγορίαπουκληρονομείθα
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ¾ ÓÑ ¹ Ì Ø ÖØ»»¾ ÃÙ ÐôÑ Ø ÔÖ Ü ÛÒ ¹ ËØÓ Õ ô ÑÓÒ Ö Ñ Ø»¾¾ Ö Ñ Ø ÔÖ Ü ÔÓÙ Ø Ð Ø Ò Ò ÀºÍº Ò À ÔÖ ¾ Ù ôò
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
¼ ½ ¾ À Á Â Á Ã Ä Å Á Æ Ç È É È É Á Ê Ä Ã Ã Ë Ì Í Ç Á Ê Ã È Á Ê Æ Ê Ì Ä Î Í Ï Ä É È Í Ç È Í Ð Í Ä Ê Ñ Ê Ì Ä É È Í Ò Ó Ô Õ Ö Ø Ù Ú Ú Û Ü Ý Þ Ó Ø ß à á
F G H I J J K L L! " # $ % % & ' ( # ) * + ), -. - / 0 1 2 ), -. 3.. 4, 5 1 6 7 1 8 9 4 : ; < 4 = 4 < >? $ @ @ A B < < C D D E E E 1 8 9 4 >? U S U X s U V W U X X Y W U X U V W š T Z J J ^ _ h \ J F \
Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.
2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for