ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ618)
|
|
- Τάκης Βασιλόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ6) Διδάσκων: Δρ. Χρήστος Τάντος, Εαρινό εξάμηνο 7- ΕΡΓΑΣΙΑ #: Θερμική ακτινοβοία Ημερομηνία ανάρτησης εργασίας στην ιστοσείδα του μαθήματος: -- Ημερομηνία παράδοσης εργασίας: -- Σημαντικές παρατηρήσεις: Δεκτές θα γίνουν μόνο οι εργασίες που είναι γραμμένες σε κειμενογράφο (π.χ. Microoft Office Word, LibreΟffice writer, κτ.) στον Η/Υ. Στις απαντήσεις να αναγράφονται επτομερώς και επεξηγηματικά όες οι υποθέσεις και αποποιήσεις που υιοθετούνται. Διαφορετικά τα αριθμητικά αποτεέσματα δεν θα ηφθούν υπόψη!!! Άσκηση (%) Σχήμα : Φασματική-ημισφαιρική απορροφητικότητα συναρτήσει του μήκους κύματος για διάφορα υικά. Θεωρείστε μια επιφάνεια από ανοδιωμένο αουμίνιο στους 6 C με φασματική-ημισφαιρική απορροφητικότητα όπως φαίνεται στο σχήμα. Θεωρώντας ότι η επιφάνεια είναι διαχυτική υποογίστε την μέση ικανότητα εκπομπής ε. Επίσης πραγματοποιώντας την αντίστοιχη μεέτη θεωρώντας την θερμοκρασία της επιφάνεια στους C συγκρίνετε τα αποτεέσματα με τα αντίστοιχα στους 6 C. Equatio Chapter (Next) Sectio Απάντηση Αρχικά οι υποογισμοί θα γίνουν για θερμοκρασία επιφάνειας 6 C ( Κ). Η μέση ικανότητα εκπομπής ε υποογίζεται ως εξής W. Sieber, Z. Tech. hy., vol., -,.
2 ε= b, b, T Ε b,, T d ε Ε, T d ε Ε, T d, (.) όπου Τ (για την άσκηση C ή 6 C) η θερμοκρασία της επιφάνειας και δεδομένου ότι η επιφάνεια είναι διαχυτική ( ) η σχέση (.) γίνεται ε α ε= αεb, T, T d. (.) Όπως φαίνεται από το σχήμα η φασματική-ημισφαιρική απορροφητικότητα μιας επιφάνειας από ανοδιωμένο αουμίνιο παρουσιάζει απότομες ααγές για.μm<<μm καθιστώντας την θεώρηση ότι το α είναι σταθερό σε δεδομένες περιοχές αρκετά ανακριβή. Άρα στην περίπτωση αυτή το οοκήρωμα στην σχέση (.) θα πρέπει να υθεί αριθμητικά με τιμές Σημειώνεται ότι για >μm υποθέτουμε ότι α α που διαβάζονται από το σχήμα... Σημειώνεται ότι η φασματική ισχύς εκπομπής μέανου σώματος είναι κειστή έκφραση και δίνεται ως b,, E T = C. (.) C exp T Οι σταθερές C και C δίνονται στις διαφάνειες του μαθήματος. Άρα η μέση ικανότητα εκπομπής ε υποογίζεται ως εξής ε μm αεb, μm T T, T d α Εb, Ο δεύτερος όρος στη δεξιά πευρά της εξίσωσης (.) υποογίζεται ως, T d. (.) α b, Ε, T d α. T f f f (.) και δεδομένου ότι T = μm K =7μm K f - =.67 (το νούμερο αμβάνεται με γραμμική παρεμβοή απο τον πίνακα της συνάρτησης ακτινοβοίας μέανος σώματος διαφάνειες μαθήματος) από την σχέση (.) προκύπτει ότι
3 α b, Ε, T d T (.6) Ο πρώτος όρος στη δεξιά πευρά της εξίσωσης (.) υποογίζεται αριθμητικά με χρήση του κανόνα του μέσου σημείου για = διαστήματα (θα μπορούσαμε να δουέψουμε με περισσότερα διαστήματα για μεγαύτερη ακρίβεια) ως εξής, T d α, b, Ε α Ε, T b, T T, (.7) όπου α, η μέση τιμή της φασματικής-ημισφαιρικής απορροφητικότητας στο διάστημα (διαβάζεται από το γράφημα), η τιμή του μήκους κύματος στο κέντρο του διαστήματος και το πάτος του διαστήματος. Σημειώνεται ότι b, C, E T = C T exp (.) Οι τιμές όων των προαναφερθέντων ποσοτήτων καθώς και ο υποογισμός του αριθμητή δίνονται στον πίνακα. Συνεπώς προκύπτει ότι, b, α Ε, T T (.) Τεικά απο την εξίσωση (.) και τις εξισώσεις (.6) και (.) προκύπτει η μέση ικανότητα εκπομπής ε της επιφάνειας ως εξής ε= α α Ε, T d Ε, T d b, b,.7 T T. (.) Κάνοντας αντίστοιχους υποογισμούς για θερμοκρασία επιφάνειας C (7 Κ) προκύπτει ότι ε =.67. Σημειώνεται ότι στους υποογισμούς θεωρήσαμε ότι η μεταβοή της φασματικής-ημισφαιρικής απορροφητικότητας με το μήκος κύματος δεν εξαρτάται απο την θερμοκρασία. Τονίζεται ότι ο πρώτος όρος στη δεξιά πευρά της εξίσωσης (.) μπορεί να υποογιστεί με πιο ακριβείς τεχνικές αριθμητικής οοκήρωσης όπως ο κανόνας του Simpo του /. στους 6 C
4 Πίνακας : Υποογισμός του αριθμητή της εξίσωσης (.7) για θερμοκρασία επιφάνειας 6 C. 6 7 Άκρα διαστημάτων [mi,max] [μm] [μm] α, [-] Ε b,, T [W/m ] α Ε, T, b, [W/m ] Άθροισμα στοιχείων τεευταίας στήης, b, α Ε, T. W / m Οι τιμές διαβάζονται απο το σχήμα ως η μέση τιμή της φασματικής-ημισφαιρικής απορροφητικότητας για μήκος κύματος
5 Άσκηση (%) Μια επίπεδη πού επτή αδιαφανής πάκα βρίσκεται σε τροχιά γύρω από τον Ήιο με μέση απόσταση km και με τις ηιακές ακτίνες να προσπίπτουν πάντα κάθετα στην πάκα. Η φασματική-ημισφαιρική ικανότητα εκπομπής των επιφανειών της πάκας παρουσιάζεται στο σχήμα. Υποογίστε α) την μέση ικανότητα απορρόφησης της πάκας, β) την μέση ικανότητα εκπομπής της πάκας, γ) την μέση ικανότητα ανάκασης της πάκας δ) την θερμοκρασία της πάκας Τp και ε) το ρυθμό της ηιακής ενέργειας ανά μονάδα επιφάνειας που δέχεται η πάκα. Σχήμα : Φασματική-ημισφαιρική εκπομπή της πάκας συναρτήσει του μήκους. Equatio Sectio (Next) Απάντηση Η μέση απορροφητικότητα της πάκας υποογίζεται ως Gd Ε, T d αgd εεb,, T d εεb,, T d α T b,, (.) όπου T η θερμοκρασία του ήιου η οποία αμβάνεται από τις διαφάνειες του μαθήματος ίση με T 76. Σημειώνεται ότι στη σχέση (.) ισχύει ότι ε α διότι η επιφάνεια είναι διαχυτική. Επίσης πρέπει να γίνει κατανοητό ότι η ακτινοβόηση δεν είναι ίση με την εκπομπή μέανος σώματος στη θερμοκρασία του G Ε,T. Αυτό που συμβαίνει είναι ότι θεωρείται ότι η ακτινοβόηση ήιου b, είναι ανάογη με την εκπομπή μέανος σώματος στη θερμοκρασία του ήιου G kε,t (δες τις διαφάνειες, ενότητα.6) και δεδομένου ότι εμφανίζεται b, στον αριθμητή και στον παρονομαστή η σταθερά αναογίας k απαείφεται. Συνεπώς προκύπτει
6 b, Ε, T d Ε, T d α. +.6, (.) T b, T -T f-t και δεδομένου ότι μm 76K =76μm K f f - 76 =.7 από την σχέση (.) προκύπτει ότι α=.. Ο ρυθμός της ηιακής ενέργειας ανά μονάδα επιφάνειας που δέχεται η πάκα (ηιακή σταθερά), δεδομένου ότι η ενέργεια που απομακρύνεται από την επιφάνεια του ήιου (θεωρώντας τον ήιο σαν σφαίρα με ακτίνα R) ισούται με την ενέργεια που διέρχεται από μια σφαιρική επιφάνεια η ακτίνα της οποίας είναι η μέση απόσταση πάκας-ήιου L, υποογίζεται ως εξής σt R σt πr = qπl q.7 W m L. (.) Εφαρμόζοντας το ισοζύγιο ενέργειας στην πάκα προκύπτει ότι η ενέργεια που απορροφάται από τον ήιο ισούται με την ενέργεια που εκπέμπεται από τις δυο πευρές της πάκας προκύπτει η θερμοκρασία της πάκας αq T ε T αq ε. (.) Τονίζεται ότι στη σχέση (.) για τον υποογισμό της θερμοκρασίας της πάκας η μόνη άγνωστη ποσότητα είναι η μέση ικανότητα εκπομπής ε η οποία υποογίζεται ως ε= b, b, b, ε Ε, T d ε Ε, T d, (.) T Ε, T d όπου η θερμοκρασία της πάκας. Από το σχήμα παρατηρούμε ότι η φασματική-ημισφαιρική εκπομπή της πάκας διατηρείται σταθερή σε δυο περιοχές για <μm και για >μm. Συνεπώς η εξίσωση (.) αποποιείται ως εξής Tp.6 f ε. f- T - T (.6) Όμως η συνάρτηση ακτινοβοίας f - υποογίζεται στη θερμοκρασία της πάκας η οποία δεν είναι ακόμα γνωστή. Απο τις σχέσεις (.) και (.6) προκύπτει ότι 6
7 T αq f. f- T.6 - T (.7) Η εξίσωση (.7) μπορεί να υθεί επαναηπτικά ως εξής: υποθέτουμε αρχικά μια θερμοκρασία πάκας και στη συνέχεια υποογίζεται η συνάρτηση ακτινοβοίας T f - T μέανου σώματος θερμοκρασία της πάκας στην προηγούμενη τιμή της T T. Έπειτα υποογίζεται η καινούργια τιμή της άπο την σχέση (.7). Αν η νέα τιμή της T είναι κοντά η διαδικασία σταματά διαφορετικά με την νέα τιμή T που εκτιμήσαμε συνεχίζουμε με νέα επανάηψη και εκτίμηση της T. Επανααμβάνοντας την διαδικασία καταήγουμε στον πίνακα όπου παρατηρούμε ότι η θερμοκρασία της πάκας υποογίζεται ως T K. Η μέση ικανότητα εκπομπής ε υποογίζεται απο την εξίσωση (.6) ίση με ε=.7 T =.666 ). Η μέση ικανότητα ανάκασης της πάκας δεδομένου ότι f - ( είναι αδιαφανής υποογίζεται ως α α.6. (.) Πίνακας : Υποογισμός της θερμοκρασία της πάκας T. Αριθμός επανάηψης Παιά τιμή T [Κ] f - T Νέα τιμή [Κ] Αρχική εκτίμηση= Τεική τιμή=.666 Τεική τιμή= T Equatio Sectio (Next) 7
8 Άσκηση (%) Η φασματική-ημισφαιρική ικανότητα εκπομπής μιας διαχυτικής επιφάνειας είναι. για < μm,. για μm < < μm και. για > μm. Αν η θερμοκρασία της επιφάνειας είναι Κ να υποογίστε α) την ισχύ εκπομπής σε KW/m καθώς και το μήκος κύματος (μm) στο οποίο η ισχύς εκπομπής μεγιστοποιείται. Απάντηση Αρχικά υποογίζεται η μέση ικανότητα εκπομπής ε η οποία υποογίζεται ως ε= b, b, ε Ε, T d ε Ε, T d Ε, T d b, T, (.) όπου η θερμοκρασία της επιφάνειας. Η φασματική-ημισφαιρική εκπομπή της πάκας διατηρείται σταθερή σε τρείς περιοχές για <μm, μm < < μm και για >μm. Συνεπώς η εξίσωση (.) αποποιείται ως εξής Tp.... ε. f f f ε. f- f- f- f- (.) Τεικά αντικαθιστώντας τις τιμές για την συνάρτηση ακτινοβοίας μέανου σώματος ποροκύπτει ότι ε=.. Άρα η ισχύ εκπομπής σε KW/m προκύπτει ως εξής Ε T = εε T ε T 6 κw m. (.) b Το μήκος κύματος στο οποίο εμφανίζεται το μέγιστο για μια συγκεκριμένη θερμοκρασία δεδομένου ότι το σώμα συμπεριφέρεται σαν μέαν σώμα δίνεται από το νόμο μετατόπισης του Wie ως εξής 7. max.7 μm. (.) Επίσης η φασματική ισχύς εκπομπής για μήκος κύματος max υποογίζεται ως εξής.7 Ε max, T = εεb, max, T. κw m μm. (.)... e
9 Όμως η φασματική-ημισφαιρική ικανότητα εκπομπής της επιφάνειας μεταβάεται με το μήκος κύματος και δεδομένου ότι ε=. για < μm η φασματική ισχύς εκπομπής που υποογίζεται στην εξίσωση (.) δίνει τη μέγιστη τιμή για την περιοχή < μm. Παρόο αυτά με την ααγή του ε που συμβαίνει για = μm μπορεί η τιμή της φασματικής ισχύς εκπομπής για μήκος κύματος = μm να είναι μεγα,ύτερη απο αυτή για max=.μm. Άρα η φασματική ισχύς εκπομπής για μήκος κύματος = μm υποογίζεται ως εξής.7 Ε, T = εεb,, T. 7 κw m μm. (.6). e Παρατηρούμε ότι 7. Ε, κw m μm > κw m μm = Ε,, (.7) άρα το μήκος κύματος (μm) στο οποίο η ισχύς εκπομπής μεγιστοποιείται είναι μm. Η ποιοτική μεταβοή της φασματικής ισχύς εκπομπής της επιφάνειας με το μήκος κύματος δίνεται στο σχήμα. Σχήμα : Μεταβοή φασματικής ισχύς εκπομπής της επιφάνειας με το μήκος κύματος (μπε: φασματική ισχύς εκπομπής μέανου σώματος, μαύρο: φασματική ισχύς εκπομπής πραγματικής επιφάνειας).
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 25-26 ΕΡΓΑΣΙΑ #: Ιδιότητες ακτινοβολίας μέλανος σώματος και πραγματικών επιφανειών Ημερομηνία ανάρτησης: -3-26, Ημερομηνία παράδοσης:
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ618)
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ68) Διδάσκων: Χρήστος Τάντος, Εαρινό εξάμηνο 06-07 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0-3-07 Ημερομηνία
ΕΝΤΑΣΗ (ή λαμπρότητα - radiance)
ΕΝΤΑΣΗ (ή αμπρότητα - radiance) Ακτινοβοούμενη ενέργεια σε καθορισμένη διεύθυνση ανά μονάδα χρόνου, ανά μονάδα εύρους μήκους κύματος (ή συχνότητας) ανά μονάδα στερεάς γωνίας και ανά μονάδα επιφάνειας κάθετης
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 1. Ένα αυτοκίνητο κινείται με κατεύθυνση από το Νότο προς το Βορρά. Κάποια στιγμή ο οδηγός αντιαμβάνεται ένα εμπόδιο και φρενἀρει. Εάν το αυτοκίνητο διαθέτει Α.Β.S.,
θ I λ dl dz I λ +di λ ΔΙΑΔΟΣΗ ΤΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ Η ένταση I λ προσεγγίζεται ως δέσμη παράλληλων ακτίνων (dω 0) Δέσμη ηλιακών ακτίνων
ΔΙΑΔΟΣΗ ΤΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ Η ένταση I προσεγγίζεται ως δέσμη παράηων ακτίνων (dω 0) θ I Δέσμη ηιακών ακτίνων Ατμοσφαιρικό στρώμα ρ dl dz I +di Εξασθένιση: di = kρidl k = k α + k (Απορρόφηση
Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα.
ΕΙΣΑΓΩΓΗ ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ Τι ονομάζουμε κύμα; Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. Η διαταραχή μπορεί να είναι α. Η ταάντωση των μορίων του
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ618)
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ68) Διδάσκων: Δρ. Χρήστος Τάντος, Εαρινό εξάμηνο 07-08 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: --08
ΑΚΤΙΝΟΒΟΛΙΑ. Χαρακτηρίζεται από το µήκος κύµατος η τη συχνότητα
ΑΚΤΙΝΟΒΟΛΙΑ Μεταφορά ενέργειας (µε φωτόνια ή ηεκτροµαγνητικά κύµατα) Ε = hv Εκπέµπεται από 1) σώµατα µε θερµοκρασία Τ > 0 Κ 2) από διεργασίες στη δοµή των µορίων Χαρακτηρίζεται από το µήκος κύµατος η τη
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός
ηµήτρης Τσίνογου ρ. Μηχανοόγος Μηχανικός ΤΕΙ Σερρών Τµήµα Μηχανοογίας Αγωγή Μόνιµη κατάσταση Κεφάαιο 3 ΤΕΙ Σερρών Τµήµα Μηχανοογίας Το επίπεδο τοίχωµα Τοιχοποιία σπιτιών (τοίχοι, παράθυρα, στέγες) Τοιχώµατα
H κατανομή του Planck για θερμοκρασία 6000Κ δίνεται στο Σχήμα 1:
ΗΛΙΑΚΑ ΘΕΡΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 216-217 ΕΡΓΑΣΙΑ 2: Ηλιακή ακτινοβολία Ημερομηνία ανάρτησης (ιστοσελίδα μαθήματος): 2-4-217 Ημερομηνία παράδοσης: 26-4-217 Επιμέλεια λύσεων:
ΤΟ ΦΩΣ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΕΩΣ ΚΑΙ Η ΣΤΑΘΕΡΑ ΤΟΥ PLANK
ΤΟ ΦΩΣ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΕΩΣ ΚΑΙ Η ΣΤΑΘΕΡΑ ΤΟΥ PLANK To 1900 o Plank εισήγαγε την υπόθεση ότι το φως εκπέμπεται από την ύη με τη μορφή κβάντων ενέργειας hν. Το 190 ο Einstein επέκτεινε αυτή την ιδέα προτείνοντας
6. ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ
6. ΑΡΘΜΗΤΚΗ ΟΛΟΚΛΗΡΩΣΗ. Αριθµητική Οοκήρωση Οπως αναφέραµε στην εισαγωγή, είναι συχνά δύσκοο να υποογιστεί ο αναυτικός τύπος, ή δεν υπάρχει αναυτικός τύπος, που δίνει το ορισµένο οοκήρωµα µιας συνεχούς
Ενότητα 6 η : Μεταβατική αγωγή Θερμότητας
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπηρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 6 η : Μεταβατική αγωγή ερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό υικό υπόκειται
Έστω η πραγµατική συνάρτηση f(t) της πραγµατικής µεταβλητής t (π.χ χρόνος). Ο µετασχηµατισµός Laplace της συνάρτησης f(t) δίνεται από τη σχέση:
ΜΑΘΗΜΑ : Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE. Εισαγωγή Ο µετασχηµατισµός pl και ο µετασχηµατισµός Z είναι δύο πού χρήσιµα µαθηµατικά εργαεία για την ανάυση και σχεδίαση συστηµάτων αυτοµάτου και ιδιαίτερα ΓΧΑ Γραµµικών
Βρέθηκε ότι το πηλίκο φ/λ = 68,5905 J K 1.
Έστω ποσότητα He σε αεροστεγές δοχείο σταθερού όγκου V. Σε μια σειρά έξι πειραμάτων προσδιορίζουμε την μεταβοή της εντροπίας S τεική S ική, η οποία προκαείται από την μεταβοή της θερμοκρασίας του δοχείου
9 η ΑΣΚΗΣΗ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΚΤΙΝΟΒΟΛΙΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
ΑI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 9 η ΑΣΚΗΣΗ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΚΤΙΝΟΒΟΛΙΑ ΝΟΜΟΣ STFAN - BOLTZMANN Σκοπός της άσκησης H μελέτη του μηχανισμού μεταφοράς θερμότητας
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ () Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας
Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης
Τεχνοογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πηροφορικής & Επικοινωνιών Δίκτυα Τηεπικοινωνιών και Μετάδοσης Ίνες βηματικού δείκτη (step index fibres) Ίνα βηματικού δείκτη: απότομη (βηματική) μεταβοή του
ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 3 ΑΠΑΝΤΗΣΕΙΣ Επιµέεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 3 ευτέρα, Μαΐου 3 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ Στις ερωτήσεις Α-Α3 να γράψετε στο τετράδιό σας τον αριθμό της
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2010 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΘΕΜΑ Α Στις ερωτήσεις Α-Α3 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπα το γράμμα που αντιστοιχεί στη φράση, η οποία συμπηρώνει σωστά την
, όπου x = 0,1,...,300000. Έτσι, για την πιθανότητα σε ένα έτος να μην υπάρξουν θάνατοι ζώων από τον εμβολιασμό έχουμε, 2! 299998!
Η Κατανομή Poisso Ας δούμε ένα πρόβημα: Σε μια κτηνοτροφική περιοχή υπάρχουν 3 αιγοπρόβατα. Κάθε χρόνο όα τα αιγοπρόβατα εμβοιάζονται για προστασία από κάποια ασθένεια. Σύμφωνα με την άδεια χρήσης του
Εξαιτίας της συμβολής δύο κυμάτων του ίδιου πλάτους και της ίδιας συχνότητας. που διαδίδονται ταυτόχρονα στο ίδιο γραμμικό ελαστικό μέσο
ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ Τι ονομάζουμε στάσιμο κύμα f()=0.5sin() Εξαιτίας της συμβοής δύο κυμάτων του ίδιου πάτους και της ίδιας συχνότητας που διαδίδονται ταυτόχρονα στο ίδιο γραμμικό εαστικό μέσο με αντίθετη φορά,
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπηρώτρια Καηγήτρια Ε.Μ.Π. Ενότητα 4 η : Μονοδιάστατη αγωγή με σύγχρονη παραγωγή ερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό υικό υπόκειται σε άδειες
Κύματα. Ζαχαριάδου Αικατερίνη Τμήμα Ηλεκτρολόγων και Ηλεκτρονικών Μηχανικών Πανεπιστήμιο Δυτικής Αττικής
Κύματα Ζαχαριάδου Αικατερίνη Τμήμα Ηεκτροόγων και Ηεκτρονικών Μηχανικών Πανεπιστήμιο Δυτικής Αττικής Προτεινόμενη βιβιογραφία: SERWY Phsics fo scieniss and enginees YOUNG H.D. Univesi Phsics Bekele Phsics
Με αφορμή την άσκηση 2.47
Με αφορμή την άσκηση 2.47 Σε κάποιο σημείο ενός ομογενούς εαστικού μέσου βρίσκεται μία πηγή Π παραγωγής εγκαρσίων κυμάτων d με εξίσωση y=a ημ(ωt). Στο σημείο Σ βρίσκεται δέκτης κυμάτων που απέχει απόσταση
ΑΠΑΝΤΗΣΕΙΣ. 5. Τα θετικά φορτισµένα σωµάτια α αποκλίνουν προς µία κατεύθυνση µε τη βοήθεια ενός µαγνητικού πεδίου. Άρα σωστή απάντηση είναι η δ.
ΑΠΑΝΤΗΣΕΙΣ Ζήτηµα 1ο 1. Σωστή απάντηση είναι η δ.. Η ενέργεια σύνδεσης ανά νουκεόνιο µετράει τη σταθερότητα του πυρήνα. Όσο µεγαύτερη είναι η ενέργεια σύνδεσης ανά νουκεόνιο, τόσο σταθερότερος είναι ο
Τυπολόγιο 1ου Κεφαλαίου. Συχνότητα. N f t Θεμελιώδης εξίσωση της κυματικής. c λ f Ο Ρ Ο Σ Η Μ Ο. Ενέργεια φωτονίου. E h f h λ
Τυποόιο ου Κεφααίου Συχνότητα Φυσική της B Λυκείου Γενικής Παιδείας N f t Θεμειώδης εξίσωση της κυματικής f Ενέρεια φωτονίου E h f h Οική ενέρεια φωτεινής δέσμης (Ν φωτονίων) Eo N Eφ Ν h f Ν h Ανάκαση
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2001 Τρίτη, 12 Ιουνίου 2001 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Τρίτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα που αντιστοιχεί στη σωστή απάντηση..
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ
24-10-11 ΑΠΟΦΟΙΤΟΙ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπα το γράµµα που αντιστοιχεί
4. Όρια ανάλυσης οπτικών οργάνων
4. Όρια ανάυσης οπτικών οργάνων 29 Μαΐου 2013 1 Περίθαση Οι αρχές ειτουργίας των οπτικών οργάνων που περιγράψαμε μέχρι στιγμής βασίζονται στη γεωμετρική οπτική, δηαδή την περιγραφή του φωτός ως ακτίνες
Λύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 05-06 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0-03-06 Ημερομηνία
Ασκηση 1: Να διατυπώσετε το πρόβλημα οριακών τιμών το οποίο απαιτείται για τη μαθηματική επίλυση του φυσικού μοντέλου που φαίνεται στο σχήμα: y Λ 2
Ασκήσεις Κεφααίου 5 Ασκηση : Να διατυπώσετε το πρόβημα οριακών τιμών το οποίο απαιτείται για τη μαθηματική επίυση του φυσικού μοντέου που φαίνεται στο σχήμα: y K κυματιστήρας b b 4 M M 4 b 3 3 K κάτοψη
+ παριστάνει : α. διάσπαση β β. διάσπαση γ γ. σύντηξη δ. σχάση. Μονάδες 5
ΘΜ ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Η πυρηνική αντίδραση 35 4 9 + 9 U 56 Ba 36 Kr + 3 + ενέργεια α. διάσπαση
TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ
TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ. ΕΙΣΑΓΩΓΗ Ας θεωρήσουμε το σύστημα ανοικτού βρόχου που περιγράφεται από τις εξισώσεις κατάστασης (.) και (.2): x Ax+ Bu (.)
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ
1 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙ ΕΥΤΙΚΑ Ι ΡΥΜΑΤΑ Μάθηµα: ΦΥΣΙΚΗ Ηµεροµηνία και ώρα εξέτασης:
1. Υποθέτοντας ότι η τριβή είναι αρκετά μεγάλη, το σημείο επαφής θα έχει συνεχώς
Διονύσης Μητρόπουος Άνοδος κάθοδος κυιόμενου αρχικά σώματος σε κεκιμένο επίπεδο, με ή χωρίς οίσθηση ΕΚΦΩΝΗΣΗ Ένα «στρογγυό» σώμα έχει μάζα m, ακτίνα R και ροπή αδράνειας Ι cm m R². Οι τιμές του είναι ⅖
Τα χαρακτηριστικά του κύματος
Τα χαρακτηριστικά του κύματος 1. Στην ήρεμη επιφάνεια μιας δεξαμενής με νερό αφήνουμε να πέφτουν μικρές σταγόνες νερού (από κάποια βρύση) με ρυθμό 4 σταγόνες το επτό. Αν η οριζόντια απόσταση δύο διαδοχικών
Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα, που αντιστοιχεί στη σωστή απάντηση.
Επαναηπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ ο Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα, που αντιστοιχεί στη σωστή απάντηση.. Μια δέσµη
Φαινόμενα Μεταφοράς Μάζας θερμότητας
Φαινόμενα Μεταφοράς Μάζας θερμότητας 2 η Διάλεξη Μηχανισμοί μετάδοσης θερμότητας Εμμανουήλ Σουλιώτης Τμήμα Μηχανικών Περιβάλλοντος Πανεπιστήμιο Δυτικής Μακεδονίας Ακαδημαϊκό Έτος 2018-2019 Μαθησιακοί στόχοι
ΑΤΜΟΣΦΑΙΡΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ
ΑΤΜΟΣΦΑΙΡΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ Ακτινοβοία = Μεταφορά ενέργειας (δυναµικό µέγεθος) (µε φωτόνια ή ηεκτροµαγνητικά κύµατα) Χαρακτηρίζεται από: µήκος κύµατος. συχνότητα v = c/. κυµατάριθµος k = 2π/ ή vɶ = 1/ Ενέργεια
ΑΚΤΙΝΟΒΟΛΙΑ. Εκπέμπεται από σώματα που έχουν θερμοκρασία Τ > 0 Κ. Χαρακτηρίζεται από το μήκος κύματος η τη συχνότητα
ΑΚΤΙΝΟΒΟΛΙΑ Μεταφορά ενέργειας (με φωτόνια ή ηλεκτρομαγνητικά κύματα) Εκπέμπεται από σώματα που έχουν θερμοκρασία Τ > 0 Κ Χαρακτηρίζεται από το μήκος κύματος η τη συχνότητα Φασματικές περιοχές στο σύστημα
ΔΟΜΗ ΚΑΙ ΣΥΣΤΑΣΗ. Εισαγωγή στη Φυσική της Ατμόσφαιρας: Ασκήσεις Α. Μπάης
ΔΟΜΗ ΚΑΙ ΣΥΣΤΑΣΗ 1. Να υπολογιστούν η ειδική σταθερά R d για τον ξηρό αέρα και R v για τους υδρατμούς. 2. Να υπολογιστεί η μάζα του ξηρού αέρα που καταλαμβάνει ένα δωμάτιο διαστάσεων 3x5x4 m αν η πίεση
0.5, Μεταφορά θερμότητας ανάμεσα σε κυλίνδρους μεγάλου μήκους (χωρίς ασπίδα):
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 0-05 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 6-03-05 Ημερομηνία
Η Φυσική των ζωντανών Οργανισμών (10 μονάδες)
Η Φυσική των ζωντανών Οργανισμών (10 μονάδες) Δεδομένα: Κανονική Ατμοσφαιρική Πίεση, P 0 = 1.013 10 5 Pa = 760 mmhg Μέρος A. Η φυσική του κυκλοφορικού συστήματος. (4.5 μονάδες) Q3-1 Στο Μέρος αυτό θα μελετήσετε
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Επιμέεια: Ι. Λυχναρόπουος. Έστω ο πίνακας 3. Δείξτε ότι το διάνυσμα v (,3) είναι ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή
14. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ
4. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Η µέθοδος Newn-Raphsn για µη γραµµική ανάυση Η γενική εξίσωση ισορροπίας ενός µη γραµµικού συστήµατος γράφεται: F ( ) = F q () όπου είναι οι εσωτερικές
2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
Πληροφορίες για τον Ήλιο:
Πληροφορίες για τον Ήλιο: 1) Ηλιακή σταθερά: F ʘ =1.37 kw m -2 =1.37 10 6 erg sec -1 cm -2 2) Απόσταση Γης Ήλιου: 1AU (~150 10 6 km) 3) L ʘ = 3.839 10 26 W = 3.839 10 33 erg sec -1 4) Διαστάσεις: Η διάμετρος
Ακτινοβολία µικρού µήκους κύµατος
Ακτινοβοία µικρού µήκους κύµατος 1 Ακτινοβοία µικρού µήκους κύµατος 1.1.Γενικά Ο Ήιος είναι µια γιγαντιαία µηχανή θερµοπυρηνικής σχάσης. Κάτω από συνθήκες πού υψηών πιέσεων και θερµοκρασιών στο εσωτερικό
39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3
ΑΛΛΑΓΗ ΤΗΣ ΘΕΡΜΟΚΡΑΣΙΑΣ ΤΟΥ ΑΕΡΑ ΜΕ ΤΟ ΥΨΟΣ, ΣΤΑΘΕΡΟΤΗΤΑ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ KAI ΡΥΠΑΝΣΗ ΤΟΥ ΑΕΡΑ Στην κατακόρυφη κίνηση του αέρα οφείλονται πολλές ατμοσφαιρικές διαδικασίες, όπως ο σχηματισμός των νεφών και
ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Ενότητα 7
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Ακτινοβολία Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ατμοσφαιρική Ρύπανση
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Ισοζύγιο ενέργειας στο έδαφος Μουσιόπουλος Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Γραπτή Εξέταση στο Μάθημα "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ" 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις. μ 1.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηεκτρονικής & Συστημάτων Πηροφορικής Εργαστήριο Διαχείρισης και Βέτιστου Σχεδιασμού Δικτύων - NETMODE
Εργαστήριο ΑΠΕ I. Ενότητα 3: Ηλιακοί Συλλέκτες: Μέρος Α. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ
Εργαστήριο ΑΠΕ I Ενότητα 3: Ηλιακοί Συλλέκτες: Μέρος Α Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Ηλιακή Ενέργεια ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 2 Αλληλεπίδραση
ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής
ΤΕΠΑΚ, Τμήμα Ποιτικών Μηχ. / Τοπογράων Μηχ. και Μηχ. Γεωπηροορικής Μάθημα 6ου Εξαμήνου: Ανώτερη Γεωδαισία (Ακαδ. Έτος 011-1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... ιάρκεια 110 - Επιέξτε και απαντήστε σε δύο από τα
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό
Οπτική Μικροκυμάτων ΜΚ 2
Οπτική Μικροκυμάτων ΜΚ Εισαγωγή Τα Μικροκύματα είναι ηεκτρομαγνητικά κύματα με μήκος κύματος 0.cm
ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
Επώνυμο: Όνομα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 94 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.syghrono.gr Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ --7 ΕΝΔΕΙΚΤΙΚΕΣ
N t. N t ΦΑΙΝΟΜΕΝΟ DOPPLER
ΦΙΝΟΜΕΝΟ DOPPLER Γενικά Φαινόμενο Doppler είναι το φαινόμενο κατά το οποίο η συχνότητα ενός ήχου που αντιαμβάνεται ένας παρατηρητής είναι διαφορετική από τη συχνότητα που εκπέμπει μια πηγή αν μεταξύ παρατηρητή
Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ Τομέας Περιβάοντος και Χρήσης Ενέργειας Εργαστήριο Τεχνοογίας Περιβάοντος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ (3 ο ΕΞΑΜΗΝΟ)
ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΑΙΝΟΜΕΝΟ DOPLER ΟΝΟΜΑΤΕΠΩΝΥΜΟ.. ΗΜΕΡΟΜΗΝΙΑ
ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΑΙΝΟΜΕΝΟ DOPLER ΟΝΟΜΑΤΕΠΩΝΥΜΟ.. ΗΜΕΡΟΜΗΝΙΑ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α6 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία συμπληρώνει
ΦΑΙΝΟΜΕΝΟ DOPPLER. 1
Υικό Φυσικής Χηµείας ΦΙΝΟΜΕΝΟ DOPPLER Γενικά είναι το φαινόµενο κατά το οποίο η συχνότητα ενός ήχου που αντιαµβάνεται ένας παρατηρητής είναι διαφορετική από τη συχνότητα που εκπέµπει µια πηγή αν µεταξύ
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1 Χαρακτηριστικά Διάδοσης Κύματος Όλα τα κύματα μεταφέρουν ενέργεια.
Θερμοκρασία sol-air. Η θερμοκρασία sol-air. Ts max = Ta max + [(1 r) x Io Tsky x hr] / (hc + hr)
Θερμοκρασία sol-air 1 Η θερμοκρασία sol-air Ts max = Ta max + [(1 r) x Io Tsky x hr] / () Ts max: η θερμοκρασία sol-air, σε C Ta max: η θερμοκρασία αέρα, σε C Io: η προσπίπτουσα ηλιακή ακτινοβολία, σε
ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ
ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ 1. Εισαγωγή. Η ενέργεια, όπως είναι γνωστό από τη φυσική, διαδίδεται με τρεις τρόπους: Α) δι' αγωγής Β) δια μεταφοράς Γ) δι'ακτινοβολίας Ο τελευταίος τρόπος διάδοσης
ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 www.pmoiras.weebly.om ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς στα αέρια. Μηχανισμοί διάδοσης θερμότητας 3. Διάδοση θερμότητας
R 1. e 2r V = Gauss E + 1 R 2
: Γραμμική πυκνότητα φορτίου βρίσκεται στον άξονα αγώγιμου κυινδρικού φοιού εσωτερικής ακτίνας και εξωτερικής α) Να υποογιστεί η επαγόμενη πυκνότητα φορτίου στις δύο όψεις του φοιού, αν το συνοικό του
ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου
2. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ Με τον όρο ακτινοβολία
ηλεκτρικό ρεύμα ampere
Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =
Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.
Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται
β) Για ένα μέσο, όπου το Η/Μ κύμα έχει ταχύτητα υ
Ασκ. 5 (σελ 354) Το πλάτος του μαγνητικού πεδίου ενός ηλεκτρομαγνητικού κύματος ειναι 5.4 * 10 7 Τ. Υπολογίστε το πλάτος του ηλεκτρικού πεδίου, αν το κύμα διαδίδεται (a) στο κενό και (b) σε ένα μέσο στο
ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ 5 Ο : ΚΡΟΥΣΕΙΣ ΦΑΙΝΟΜΕΝΟ DOPPLER ENOTHT 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ Κρούση: Κρούση ονομάζουμε το φαινόμενο κατά το οποίο δύο ή περισσότερα σώματα έρχονται σε επαφή για πολύ μικρό χρονικό διάστημα κατά
6.8 Συµβολή Κυµάτων. y = y 1 + y 2 +... http : //perif ysikhs.wordpress.com 55 Μιχάλης Ε. Καραδηµητριου
6.8 Συµβοή Κυµάτων Οταν δύο ή περισσότερα κύµατα διαδίδονται ταυτόχρονα στο ίδιο εαστικό µέσο έµε ότι συµβάουν. Εχει διαπιστωθεί ότι για την κίνηση των σωµατιδίων του µέσου τα κύµατα ακοουθούν την αρχή
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Φυσική Γενικής Παιδείας Γ Λυκείου 2001
Φυσική Γενικής Παιδείας Γ Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Η πυρηνική αντίδραση:
A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών.
Γ Λυκείου 26 Απριλίου 2014 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα
ΤΡΟΠΟΙ ΔΙΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Είναι τρείς και σχηματικά φαίνονται στο σχήμα
ΔΙΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΤΡΟΠΟΙ ΔΙΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Είναι τρείς και σχηματικά φαίνονται στο σχήμα Μεταφορά Αγωγή Ακτινοβολία Ακτινοβολία ΑΓΩΓΗ (1 ΟΣ ΜΗΧΑΝΙΣΜΟΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ) Έστω δύο σώματα που διατηρούνται
ΑΣΚΗΣΗ 5. Χρώµα στην Αστρονοµία
ΑΣΚΗΣΗ 5 Χρώµα στην Αστρονοµία Περιεχόµενα Χρώµα στην Αστρονοµία o Χρώµα άστρων o Χρώµα και θερµοκρασία Ο νόµος του Planck o Ακτινοβολία Μέλανος Σώµατος O νόµος της µετατόπισης του Wien Στόχος της άσκησης
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 8 ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλά Μεταβαλλόμενη Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourseswordpresscom/ Βασικές έννοιες Ένα σώμα δεν κινείται πάντα με σταθερή
ΤΕΧΝΟΛΟΓΙΑ ΠΑΡΑΓΩΓΗΣ Ι ΕΡΓΑΣΤΗΡΙΟ-2 Υ: ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΙ ΕΛΕΓΧΟΙ
ΤΕΧΝΟΛΟΓΙΑ ΠΑΡΑΓΩΓΗΣ Ι ΕΡΓΑΣΤΗΡΙΟ-2 Υ: ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΙ ΕΛΕΓΧΟΙ ΥΠEΡΥΘΡΗ ΘΕΡΜΟΓΡΑΦΙΑ Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Τομέας Υλικών, Διεργασιών και
ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.
ΜΑΘΗΜΑ / Προσανατολισμός / ΤΑΞΗ ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΦΥΣΙΚΗ/ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / Γ ΛΥΚΕΙΟΥ 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ) ΘΕΜΑ Α A1. Στις ερωτήσεις
ΑΠΑΝΤΗΣΕΙΣ. κατά την οποία το πλάτος της ταλάντωσης ισούται με το 4
ΑΠΑΝΤΗΣΕΙΣ 75 5 Ισχύει: 0 0 ή 0 ή Έστω t 00 00 η χρονική στιγμή 40 κατά την οποία το πλάτος της ταλάντωσης ισούται με το 4 της αρχικής του τιμής Ισχύει: Είναι: t N ή t e ή 0 t ή 0 N Σωστή απάντηση είναι
ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 Εκπομπή και απορρόφηση ακτινοβολίας ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ Στέλιος Τζωρτζάκης 1 3 4 Ηλεκτρομαγνητικά πεδία Απορρόφηση είναι Σε αυτή τη διαδικασία το ηλεκτρόνιο
g = 1, b = 1, c = 7. V eff (r) = L2 V eff (r).
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι Τμήμα Κ Τσίγκανου & Ν Βαχάκη 5 Σεπτεμβρίου Διάρκεια εξέτασης ώρες Καή επιτυχία ( bonus ερωτήματα) Ονοματεπώνυμο: ΑΜ:
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 019 ΘΕΜΑ 1 Ο : ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της
Μηχανικά Κύματα. ελαστικού μέσου διάδοσης στο οποίο διαδίδεται το κύμα.
Μηχανικά Κύματα Τρέχον αρμονικό κύμα Ταχύτητα διάδοσης: υ δ = Δx Δt απόσταση που διένυσε το κύμα χρονικό διάστημα για την απόσταση αυτή ΣΗΜΑΝΤΙΚΟ: η ταχύτητα διάδοσης εξαρτάται ΜΟΝΟ από τις ιδιότητες του
3. Έχουμε δύο ποτήρια, το ένα γεμάτο πάγο και το άλλο γεμάτο με νερό 80 C. Τα αφήνουμε πάνω σε ένα τραπέζι. Τι θα συμβεί καθώς περνά ο χρόνος;
1. Τι είναι θερμότητα; Θερμότητα είναι η ενέργεια που μεταφέρεται από ένα θερμό σώμα σε ένα ψυχρό ώσπου να αποκτήσουν την ίδια θερμοκρασία. Μονάδα μέτρησης της θερμότητας είναι το 1 Joule. 2. Τι είναι
Χειμερινό εξάμηνο
Μεταβατική Αγωγή Θερμότητας: Ανάλυση Ολοκληρωτικού Συστήματος Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής 1 Μεταβατική Αγωγή (ranen conducon Πολλά προβλήματα μεταφοράς θερμότητας εξαρτώνται από
Κεφάλαιο 1. Κίνηση σε μία διάσταση
Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 28-29 ΕΡΓΑΣΙΑ #: Ιδιότητες ακτινοβολίας μέλανος σώματος και πραγματικών επιφανειών Ημερομηνία ανάρτησης: 8-2-29, Ημερομηνία παράδοσης:
Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 20-3-2011 2 ΘΕΜΑ 1ο Να γράψετε στο
ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να
Ανάλυση: όπου, με αντικατάσταση των δεδομένων, οι ζητούμενες απώλειες είναι: o C. 4400W ή 4.4kW 0.30m Συζήτηση: ka ka ka dx x L
Κεφάλαιο 1 Εισαγωγικές Έννοιες της Μετάδοσης Θερμότητας ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1.1 Ένα διαχωριστικό τοίχωμα σκυροδέματος, επιφάνειας 30m, διαθέτει επιφανειακές θερμοκρασίες 5 ο C και 15 ο C, ενώ έχει
Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙII
2.11.2011 Άσκηση 1: Θεωρήστε δύο αδρανειακά συστήματα αναφοράς O, O ' και ας υποθέσουμε ότι το δεύτερο κινείται με ταχύτητα V κατά τη διεύθυνση του άξονα των χ σε σχέση με το πρώτο. Τη χρονική στιγμή που
ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Αν δύο μεταβλητά μεγέθη x, y συνδέονται με τη σχέση y f(x), όταν f είναι μια συνάρτηση παραγωγίσιμη στο x, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο
Γ Λυκείου. ένταση. μήκος κύματος θέρμανσης. Ε 4 =-1, J Ε 3 =-2, J Ε 2 =-5, J Ε 1 = J
22 Μαρτίου 2008 Θεωρητικό Μέρος Θέμα 1o Γ Λυκείου Στις ερωτήσεις Α και Β, μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.