Έστω η πραγµατική συνάρτηση f(t) της πραγµατικής µεταβλητής t (π.χ χρόνος). Ο µετασχηµατισµός Laplace της συνάρτησης f(t) δίνεται από τη σχέση:
|
|
- Χρύσηίς Βάμβας
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΜΑΘΗΜΑ : Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE. Εισαγωγή Ο µετασχηµατισµός pl και ο µετασχηµατισµός Z είναι δύο πού χρήσιµα µαθηµατικά εργαεία για την ανάυση και σχεδίαση συστηµάτων αυτοµάτου και ιδιαίτερα ΓΧΑ Γραµµικών Χρονικά Αναοίωτων συστηµάτων. Ο µετασχηµατισµός pl µετασχηµατίζει συναρτήσεις από το πεδίο του χρόνου στο πεδίο της µιγαδικής συχνότητας : Η ογική της χρήσης του µετασχηµατισµού pl είναι αντίστοιχη µε τη ογική της χρήσης του µετασχηµατισµού o στα τηεπικοινωνιακά συστήµατα. Η διαφορά έγκειται στο γεγονός ότι µε τον µετασχηµατισµό pl µπορούµε να µεετήσουµε και την συµπεριφορά συστηµάτων στη µεταβατική κατάσταση και όχι µόνο στη µόνιµη κατάσταση για αυτό και χρησιµοποιείται η µιγαδική µεταβητή σ ω, αντί της φανταστικής µεταβητής ω του µετασχηµατισµού o Η βασική χρήση του µετασχηµατισµού pl είναι για τη ύση οοκηρωδιαφορικών εξισώσεων ΓΧΑ συστηµάτων. Μέσω του µετασχηµατισµού οι εξισώσεις αυτές µετατρέπονται σε αγεβρικές των οποίων η επίυση είναι ευκοότερη. Ο µετασχηµατισµός pl χρησιµοποιείται όµως και για την µεέτη της ευστάθειας και τη σχεδίαση Σ.Α.Ε όπως για παράδειγµα µε τη µέθοδο του Γεωµετρικού Τόπου Ριζών.. Ο Μετασχηµατισµός pl Έστω η πραγµατική συνάρτηση f της πραγµατικής µεταβητής π.χ χρόνος. Ο µετασχηµατισµός pl της συνάρτησης f δίνεται από τη σχέση: [ f ] f. Ο µετασχηµατισµός pl της συνάρτησης f υπάρχει εφόσον το οοκήρωµα I σ f. συγκίνει για κάποιο πραγµατικό αριθµό σ, δηαδή ισχύει Ι <... Παράδειγµα Ο µετασχηµατισµός pl της συνάρτησης f - υπάρχει διότι το οοκήρωµα I υπάρχει για κάθε σ >-. σ σ σ I. σ σ Εποµένως ο µετασχηµατισµός pl [f] της συνάρτησης f - θα είναι:. Στο επόµενο σχήµα Σχήµα. δίνεται η φιοσοφία της χρήσης του µετασχηµατισµού pl στη µεέτη των συστηµάτων Σ.Α.Ε. Συγκεκριµένα ποά ΓΧΑ Σ.Α.Ε περιγράφονται από σχέσεις της µορφής:
2 . των οποίων η επίυση είναι δυσχερής. Η χρήση του µετασχηµατισµού pl αποποιεί τη διαδικασία επίυσης: Σχήµα.: Παράδειγµα χρήσης του µετασχηµατισµού pl.. Ο αντίστροφος µετασχηµατισµός pl Έστω ο µετασχηµατισµός pl [f] της συνάρτησης f. Η συνάρτηση f υποογίζεται από τον αντίστροφο µετασχηµατισµό pl -[]f µε τη βοήθεια του επικαµπύιου οοκηρώµατος: f ] [ π.6 για πραγµατικό αριθµό τέτοιο ώστε >σ. Στη πράξη και εξαιτίας της δυσκοίας υποογισµού του παραπάνω οοκηρώµατος ο αντίστροφος µετασχηµατισµός pl υποογίζεται µε ανάυση σε µερικά κάσµατα και χρήση γνωστών ζευγών του µετασχηµατισµού pl. Αν δηαδή ο µετασχηµατισµός pl µιας συνάρτησης f έχει τη µορφή δηαδή εκφράζεται ως ρητή συνάρτηση: τότε η συνάρτηση αναύεται σε µερικά κάσµατα ως εξής:....8 όπου... οι ρίζες του πουωνύµου. Για κάσµατα της µορφής ο αντίστροφος µετασχηµατισµός pl είναι γνωστός. Συγκεκριµένα ο αντίστροφος µετασχηµατισµός pl της είναι:... ] [.9 Σηµείωση: Για την διευκόυνση ανάυσης συναρτήσεων σε µερικά κάσµατα µπορείτε να χρησιµοποιείτε τις συναρτήσεις και oo της Ml.
3 .. Παρδείγµατα υποογισµού του αντίστροφου µετασχηµατισµού pl Παράδειγµα : ιακριτές ρίζες Η απόκριση ενός συστήµατος αυτοµάτου εέγχου σε είσοδο δ έχει υποογιστεί µέσω του µετασχηµατισµού pl και συγκεκριµένα αντιστοιχεί στη συνάρτηση: Να υποογιστεί η. Λύση Μετά από χρήση της συνάρτησης της Ml προκύπτει η εξής ανάυση της συνάρτησης σε µερικά κάσµατα: και εποµένως η συνάρτηση είναι: ] [ δ. Παράδειγµα : Ποαπότητα ριζών Η απόκριση ενός συστήµατος αυτοµάτου εέγχου σε είσοδο έχει υποογιστεί µέσω του µετασχηµατισµού pl και συγκεκριµένα αντιστοιχεί στη συνάρτηση: Να υποογιστεί η. Λύση Μετά από χρήση της συνάρτησης της Ml προκύπτει η εξής ανάυση της συνάρτησης σε µερικά κάσµατα: και εποµένως η συνάρτηση είναι: ] [ Παράδειγµα : Μιγαδικές ρίζες Η απόκριση ενός συστήµατος αυτοµάτου εέγχου σε είσοδο δ έχει υποογιστεί µέσω του µετασχηµατισµού pl και συγκεκριµένα αντιστοιχεί στη συνάρτηση: 9 Να υποογιστεί η. Λύση Μετά από χρήση της συνάρτησης oo της Ml προκύπτει ότι οι ρίζες του πουωνύµου είναι -, -, --. Άρα το γράφεται ως: 9 6
4 και εποµένως η συνάρτηση είναι: [ ].8 o.6. f - po o fo Σχήµα.: Η µορφή της συνάρτησης του παραδείγµατος... f - po o fo Σχήµα.: Η µορφή της συνάρτησης του παραδείγµατος
5 . Ιδιότητες του Μετασχηµατισµού pl Ιδιότητα : Γραµµικότητα: α [α f α f ]α α, όπου α, α σταθερές β - [ ] f f, όπου, σταθερές Ιδιότητα : Παραγώγιση στο πεδίο του χρόνου: f f f f f f f... Ιδιότητα : Οοκήρωση στο πεδίο του χρόνου: f τ τ f τ τ Ιδιότητα : Θεώρηµα αρχικής τιµής: l f l, > Ιδιότητα : Θεώρηµα τεικής τιµής: l f l, εφόσον το όριο l f υπάρχει Ιδιότητα 6: Ααγή κίµακας χρόνου: f, όπου α σταθερά Ιδιότητα 7: Ααγή κίµακας µιγαδικής συχνότητας: f Ιδιότητα 8: Χρονική καθυστέρηση: T [ f T ], όπου Τ>, και f-t για T.
6 Ιδιότητα 9: Μιγαδική µετατόπιση: [ ] f, όπου Τ>, και f-t για T. Ιδιότητα : Παραγώγιση στο πεδίο της συχνότητας: [ f ] [ f ] Ιδιότητα : Οοκήρωση στο πεδίο της συχνότητας: f w w Ιδιότητα : Συνέιξη στο πεδίο του χρόνου: [ ] f f f τ f τ τ f τ f τ τ. Ζεύγη του Μετασχηµατισµού pl Συνάρτηση Μετασχηµατισµός pl δ δ-! ω ω ω oω ω ω o ω ω ω ω Πίνακας.: Ζεύγη Μετασχηµατισµών pl
7 . Συναρτήσεις µεταφοράς Όπως έχει ήδη αναφερθεί τα ΓΧΑ Σ.Α.Ε περιγράφονται από σχέσεις της µορφής:. Εφαρµόζοντας µετασχηµατισµό pl στην παραπάνω σχέση βέπε Ιδιότητα προκύπτει:. από την οποία ύνοντας ως προς παίρνουµε:. Η έξοδος αµβάνεται υποογίζοντας τον αντίστροφο µετασχηµατισµό pl της. Ο πρώτος και δεύτερος όρος στην παραπάνω σχέση αντιστοιχούν στη διεγερµένη απόκριση του συστήµατος fo po ενώ ο τρίτος στην εεύθερη απόκριση f po. Είναι φανερό ότι η διεγερµένη απόκριση εξαρτάται από την είσοδο που επιβάεται στο σύστηµα προφανώς και από τα χαρακτηριστικά του συστήµατος ενώ η εεύθερη απόκριση εξαρτάται από την αρχική εσωτερική κατάσταση του συστήµατος προφανώς και από τα χαρακτηριστικά του συστήµατος. Όταν οι αρχικές συνθήκες της εξόδου και της εισόδου είναι ίσε µε µηδέν, δηαδή ισχύει,,,, τότε η σχέση. εκφυίζεται στη σχέση H. όπου H είναι γνωστή και ως συνάρτηση µεταφοράς του συστήµατος. Το δε ονοµάζεται χαρακτηριστικό πουώνυµο του συστήµατος.
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουλος
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Ι. Λυχναρόπουος Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα 3. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές ποαπότητες
Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Επιμέεια: Ι. Λυχναρόπουος. Έστω ο πίνακας 3. Δείξτε ότι το διάνυσμα v (,3) είναι ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή
Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας
ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος
TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ
TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ. ΕΙΣΑΓΩΓΗ Ας θεωρήσουμε το σύστημα ανοικτού βρόχου που περιγράφεται από τις εξισώσεις κατάστασης (.) και (.2): x Ax+ Bu (.)
ΚΕΦΑΛΑΙΟ 4: ΙΔΙΟΤΙΜΕΣ ΚΑΙ ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ
ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΟΡΙΣΜΟΙ Δίνεται ο πίνακας Παρατηρήστε τι γίνεται όταν ποαπασιάζουμε τον Α με το διάνυσμα u u u παίρνουμε δηαδή ένα διάνυσμα ποαπάσιο του u. Η αναζήτηση διανυσμάτων που έχουν παρόμοια
Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε
Σεµινάριο Αυτοµάτου Ελέγχου
Σεµινάριο Αυτοµάτου Εέγχου Μάθηµα 9 Ευστάθεια κατά Lyaunv Η έννοια της ευστάθειας κατά Lyaunv Γενικό κριτήριο ευστάθειας Παραδείγµατα Καιγερόπουος 9 Ευστάθεια κατά Lyaunv Εισαγωγή Η έννοια της ευστάθειας
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Μετασχηματισμός Ζ (Ζ Transform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
6. ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ
6. ΑΡΘΜΗΤΚΗ ΟΛΟΚΛΗΡΩΣΗ. Αριθµητική Οοκήρωση Οπως αναφέραµε στην εισαγωγή, είναι συχνά δύσκοο να υποογιστεί ο αναυτικός τύπος, ή δεν υπάρχει αναυτικός τύπος, που δίνει το ορισµένο οοκήρωµα µιας συνεχούς
Το πρόβλημα των μηδενικών ιδιοτιμών.
Το πρόβημα των μηδενικών ιδιοτιμών. Από την προηγούμενη συζήτηση έχει γίνει φανερό ότι αν η ομογενής διαφορική εξίσωση L ϕ ( = 0έχει μη μηδενική ύση (ή ύσεις που να ικανοποιεί τις (ομογενείς συνοριακές
Τυπική µορφή συστήµατος 2 ας τάξης
Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το
Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
14. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ
4. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Η µέθοδος Newn-Raphsn για µη γραµµική ανάυση Η γενική εξίσωση ισορροπίας ενός µη γραµµικού συστήµατος γράφεται: F ( ) = F q () όπου είναι οι εσωτερικές
2.3 Στάσιμο κύμα. ημ 2π. συν = 2A. + τα οποία T. t x. T λ T λ ολ
.3 Στάσιμο Κύμα.3 Στάσιμο κύμα.3.1 Μαθηματική Επεξεργασία Ας υποθέσουμε ότι έχουμε μία χορδή και σε αυτήν την χορδή διαδίδονται δύο πανομοιότυπα κύματα σε αντίθετες κατευθύνσεις. Δηαδή αν το δούμε από
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
3. Χαρακτηριστικές Παράμετροι Κατανομών
. Χαρακτηριστικές Παράμετροι Κατανομών - Αναμενόμενη ή μέση τιμή μιας διακριτής τυχαίας μεταβητής. Θα ήταν αρκετά χρήσιμο να γνωρίζουμε γύρω από ποια τιμή «κυμαίνεται» η τ.μ. Χ. γύρω από την οποία «απώνεται»
Ανάλυση Σ.Α.Ε στο χώρο κατάστασης
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός
Ακολουθίες στον R n. ακολουθία διανυσµάτων στον. 1 1 ακολουθία στον 2 k. εφόσον 1+ e. k + R δεν είναι συγκλίνουσα. Πράγµατι αν
Ακοουθίες στον.4. Ορισµός Έστω ( ) ακοουθία διανυσµάτων στον 9, θα έµε ότι η ακοουθία ( ) συγκίνει στο θα γράφουµε, li = ή αν η ακοουθία πραγµατικών 0 Ισοδύναµα: li ( ε) + 0 0 : 0 = για κάθε ε > 0 υπάρχει
ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ
ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ Μ. Σφακιωτάκης mfak@taff.teicrete.gr Χειµερινό Οκτώβριος εξάµηνο 2010-11 2017 Σύστηµα Μάζας-Ελατηρίου-Αποσβεστήρα
(είσοδος) (έξοδος) καθώς το τείνει στο.
Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου
Η κατανόηση και ο χειρισµός ποσοτικών ή µορφολογικών αλλαγών, εντός του πεδίου βαρύτητας, µπορούν να αντιµετωπιστούν συνδυάζοντας έννοιες
Τοµέας Τοπογραίας, Εργ. Ανώτερης Γεωδαισίας Εισαγωγή στο γήινο πεδίο βαρύτητας (Αρχές της Φυσικής Γεωδαισίας) ιδάσκοντες ηµήτρης εηκαράογου 7ο εξάµηνο, Ακαδ. Έτος 08 8-99 Οι µετρήσεις των µεγεών που συνδέονται
Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID
Κεφάλαιο 6 Έλεγχος στο Πεδίο της Συχνότητας u Έλεγχος στο Πεδίο της Συχνότητας Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Τόπος Ριζών Για τον τόπο των ριζών δεν χρειάζεται καµία ιδιαίτερη
Β. Στο διπλανό σχήμα παρουσιάζεται η γραφική παράσταση της
ΕΥΚΛΕΙΔΗΣ 96 Διαγώνισμα μαθηματικών Χρήστος Λαζαρίδης Α1. Να αποδείξετε ότι ένα πουώνυμο Ρ(x) έχει παράγοντα το x-μ άν και μόνο αν το ρ είναι ρίζα του Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές
Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος
Τρίτη, 31 Μαΐου 2005 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 Τρίτη, Μαΐου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A.. Έστω µια συνάρτηση f, η οποία είναι ορισµένη σε ένα κειστό διάστηµα [α, β]. Αν η f είναι συνεχής στο [α, β] και f(α) f(β)
6.8 Συµβολή Κυµάτων. y = y 1 + y 2 +... http : //perif ysikhs.wordpress.com 55 Μιχάλης Ε. Καραδηµητριου
6.8 Συµβοή Κυµάτων Οταν δύο ή περισσότερα κύµατα διαδίδονται ταυτόχρονα στο ίδιο εαστικό µέσο έµε ότι συµβάουν. Εχει διαπιστωθεί ότι για την κίνηση των σωµατιδίων του µέσου τα κύµατα ακοουθούν την αρχή
Σήματα και Συστήματα
Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες
e είναι ακέραια ρίζα του Ρ(χ), να βρεθούν
Σύογος Θετικών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του καθηγητή: Βασίη Ξανθόπουου Μαθηµατικά : Τάξη: Β ράµα 30 Μαρτίου 01 Θέµα Α ίνεται το πουώνυµο P ( x) = x κ x+ κ κ: θετικός ακέραιος. Α 1. Να βρεθούν
( s ) Παραγώγιση στο χρόνο. Ολοκλήρωση στο χρόνο. Θεώρηµα αρχικής και τελικής τιµής Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Σεραφείµ Καραµπογιάς
Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Παραγώγιση στο χρόνο d x( ) sx ( s ) x ( ) [ x ) ] X X x( ) e ( s Μετασχηµατισµός aplace παραγώγου dx ( ) sx Ολοκλήρωση στο χρόνο Μετασχηµατισµός aplace ολοκληρώµατος
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ A στω µια συν ρτηση f, η οποία είναι ορισµ νη σε ένα κειστό δι στηµα [α, β] Αν: η f είναι συνεχής στο [α, β] και fα fβ δείξτε ότι για κάθε
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier
Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβλητής
Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβητής (Α) Mέση τιµή Ορισµός Η µέση τιµή ή µαθηµατική επίδα µιας τ.µ. Χ µε πυκνότητα πιθανότητας f (x) είναι ο αριθµός: µ E() + xf (x) xf (x)dx διακριτή συνεχής
Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων
Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier
Διπλωματική Εργασία. Εφαρμοσμένη Θεωρία Πινάκων
Πανεπιστήμιο Μακεδονίας Τ.Ε.Ι. Δυτικής Μακεδονίας Π.Μ.Σ Εφαρμοσμένης Πηροφορικής Διπωματική Εργασία Θέμα Εφαρμοσμένη Θεωρία Πινάκων Επιβέπον Καθηγητής Πετράκης Ανδρέας Μεταπτυχιακός Φοιτητής Τσαγκαρή Αθηνά
ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
Επώνυμο: Όνομα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 94 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.syghrono.gr Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ --7 ΕΝΔΕΙΚΤΙΚΕΣ
Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΝΙΚΟΛΑΟΥ ΙΩ ΔΑΡΑ ΕΠΙΚΟΥΡΟΥ ΚΑΘΗΓΗΤΗ ΣΤΡΑΤΙΩΤΙΚΗΣ ΣΧΟΛΗΣ ΕΥΕΛΠΙΔΩΝ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ ος ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ΑΡΙΘΜΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΙΔΙΟΤΙΜΩΝ ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΑΛΓΕΒΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ
Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT. Οκτώβριος 2005 ΨΕΣ 1
Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT Οκτώβριος 2005 ΨΕΣ 1 Γενικά Μορφές Μετασχηµατισµού Fourir Σήµατα που αντιστοιχούν στους τέσσερους τύπους µετασχηµατισµών α Μετασχηµατισµός Fourir FT β Σειρά
4 Συνέχεια συνάρτησης
4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της
Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις
ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 14: Ανάλυση ΓΧΑ συστημάτων (ΙI) Απόκριση συχνοτήτων σε ρητή μορφή Χ (e jω ) Είδαμε ότι (όταν υπάρχει) η απόκριση συχνοτήτων H(e jω ) μπορεί να
Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID
Κεφάλαιο 6 Έλεγχος στο Πεδίο της Συχνότητας u Έλεγχος στο Πεδίο της Συχνότητας Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID Τόπος Ριζών Για τον τόπο των ριζών δεν χρειάζεται καµία ιδιαίτερη
Συνεπώς, η συνάρτηση µεταφοράς δεν µπορεί να οριστεί για z=0 ενώ µηδενίζεται όταν z=1. Εύκολα προκύπτει το διάγραµµα πόλων-µηδενικών ως εξής:
ΦΕΒΡΟΥΑΡΙΟΣ Άσκηση : Δίνεται το LTI σύστηµα y[ n ] T{ x[ n ] } που ορίζεται από την αναδροµική σχέση: y[n ]y[n - ] +x[n ]- x[ n -] +x[ n - ] ( ). Να βρεθεί η συνάρτηση µεταφοράς του συστήµατος H(z ). 𝑦
, όπου x = 0,1,...,300000. Έτσι, για την πιθανότητα σε ένα έτος να μην υπάρξουν θάνατοι ζώων από τον εμβολιασμό έχουμε, 2! 299998!
Η Κατανομή Poisso Ας δούμε ένα πρόβημα: Σε μια κτηνοτροφική περιοχή υπάρχουν 3 αιγοπρόβατα. Κάθε χρόνο όα τα αιγοπρόβατα εμβοιάζονται για προστασία από κάποια ασθένεια. Σύμφωνα με την άδεια χρήσης του
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός
Ισοδυναµία τοπολογιών βρόχων.
Ισοδυναµία τοπολογιών βρόχων. Κατά κανόνα, συµφέρει να ανάγουµε τις «πολύπλοκες» τοπολογίες βρόχων σε έναν απλό κλειστό βρόχο, µε µία συνάρτηση µεταφοράς στον κατ ευθείαν κλάδο και µία συνάρτηση µεταφοράς
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 8: Μετασχηματισμός Ζ Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Z Μετασχηματισμός Ζ (Ζ-Transform) Χρήσιμα Ζεύγη ΖT και Περιοχές Σύγκλισης (ROC) Ιδιότητες
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
Όταν θα έχουµε τελειώσει το κεφάλαιο αυτό θα µπορούµε να: υπολογίσουµε το µετασχηµατισµό aplace στοιχειωδών σηµάτων. αναφέρουµε τις ιδιότητες του µετασχηµατισµού aplace. Σεραφείµ Καραµπογιάς 6. ΚΕΦΑΛΑΙΟ
Μαθηµατικά Ιβ Σελίδα 1 από 5
Μάθηµα 5 ο ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΙΑΝΥΣΜΑΤΩΝ Μαθηµατικά Ιβ Σείδα από 5 Θεωρία : Γραµµική Άγεβρα : εδάφιο, σε. 8 (µέχρι Πρόταση.), εδάφιο, σε. 88 (µέχρι Πρόταση.8). Τα παραδείγµατα που αντιστοιχούν στην ύη
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ618)
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ6) Διδάσκων: Δρ. Χρήστος Τάντος, Εαρινό εξάμηνο 7- ΕΡΓΑΣΙΑ #: Θερμική ακτινοβοία Ημερομηνία ανάρτησης εργασίας στην ιστοσείδα του μαθήματος: -- Ημερομηνία παράδοσης εργασίας:
1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Ο μετασχηματισμός z αντιστοιχεί στην ακολουθία συνάρτηση: Xz ()
Ο Ρ Ι Σ Μ Ο Σ Ο μετασχηματισμός αντιστοιχεί στην ακολουθία συνάρτηση: X x x τη X O Μετασχηματισμός,, της ακολουθίας είναι μιγαδική συνάρτηση, της μιγαδικής μεταβλητής x r j Ω Ο μονόπλευρος μετασχηματισμός
ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE Δρ Γιώργος Μαϊστρος, Χημικός Μηχανικός
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τίτλος Μαθήματος Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κυκλώματα, Σήματα και Συστήματα
Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013 Απαντήσεις Θεμάτων Θεμα Α Α1. Θεωρία σχολικού βιβλίου σελ. 334-335
Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:
Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών
Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή
ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ
7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ E() ε() Διορθωτής D() ε c () Σύστημα G() S() Η() Ανάδραση H() E() ε() Διορθωτής D() ε c () Σύστημα G() S() Υπολογιστής Η() Ανάδραση H() Αναλογικό και ψηφιακό ΣΑΕ Πλεονεκτήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Μετασχ. Laplace και Συστήµατα
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Σκοπός του µαθήµατος Η Συστηµατική Περιγραφή: των Σηµάτων και των Συστηµάτων Τι είναι Σήµα; Ένα πρότυπο µεταβολών µιας ποσότητας που µπορεί να: επεξεργαστεί αποθηκευθεί
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
Μελέτη στερεού που κυλίεται χωρίς ολίσθηση για διαφορετικά σημεία εφαρμογής της δύναμης κύλισης Ενεργειακοί μετασχηματισμοί
Μεέτη στερεού που κυίεται χωρίς οίσηση ια διαφορετικά σημεία εφαρμοής της δύναμης κύισης Ενερειακοί μετασχηματισμοί Έχω τις παρακάτω περιπτώσεις κύισης χωρίς οίσηση όπου Τ η στατική τριβή ) ) α α α Α α
ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ
ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ Μ. Σφακιωτάκης fak@taff.teirete.gr Χειµερινό
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο
Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : =
. Δίνεται το ΓΧΑ σύστημα με συνάρτηση μεταφοράς ++2 Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Λύση : Α) +3 +2 ++2 2 + + 2+2 Η κρουστική απόκριση του συστήματος είναι L : 2 + 2 H είναι φραγμένη καθώς.
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός-Z. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός-Z Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Μετασχηµατισµός - Ιδιότητες Μετασχηµατισµού- Γραµµικότητα Χρονική Ολίσθηση Κλιµάκωση
4.3 Παραδείγµατα στην συνέχεια συναρτήσεων
5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι
ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ
Ε. Μ. Πολυτεχνείο Εργαστήριο Ηλεκτρονικής ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Γ. ΠΑΠΑΝΑΝΟΣ ΠΑΡΑΡΤΗΜΑ : Συναρτήσεις Δικτύων Βασικοί ορισμοί Ας θεωρήσουμε ένα γραμμικό, χρονικά
Σύστημα και Μαθηματικά μοντέλα συστημάτων
Σύστημα και Μαθηματικά μοντέλα συστημάτων Όταν μελετούμε έναν συγκεκριμένο μηχανισμό η μια φυσική διεργασία επικεντρώνουμε το ενδιαφέρον μας στα φυσικά μεγέθη του μηχανισμού τα οποία μας ενδιαφέρει να
Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης - Τεστ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επικ Καθ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
0 f(t)e st dt. L[f(t)] = F (s) =
Α. Δροσόπουλος 3 Ιανουαρίου 29 Περιεχόμενα Μετασχηματισμοί Laplace 2 Αντιστάσεις, πυκνωτές και πηνία 2 3 Διέγερση βαθμίδας σε L κυκλώματα 5 3. Φόρτιση.....................................................
Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT
Σ. Φωτόπουλος ΨΕΣ Κεφάλαιο 3 ο DTFT -7- Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT (discrete time Fourier transform) 3.. Εισαγωγικά. 3.. Είδη µετασχηµατισµών Fourier Με την ονοµασία Μετασχηµατισµοί Fourier
Μετασχηματισμός Z. Κυριακίδης Ιωάννης 2011
Μετασχηματισμός Z Κυριακίδης Ιωάννης 20 Τελευταία ενημέρωση: /2/20 Εισαγωγή Ο μετασχηματισμός- είναι ένα πολύ ισχυρό μαθηματικό εργαλείο για τη μελέτη διακριτών σημάτων και συστημάτων. Μπορεί να χρησιμοποιηθεί:
ορίσουμε το Μετασχηματισμό Laplace (ML) και το Μονόπλευρο Μετασχηματισμό Laplace (MML) και να περιγράψουμε τις βασικές διαφορές τους.
Όταν θα έχουμε τελειώσει το κεφάλαιο αυτό θα μπορούμε να: υπολογίσουμε το μετασχηματισμό aplac στοιχειωδών σημάτων. αναφέρουμε τις ιδιότητες του μετασχηματισμού aplac. 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE
ΚΕΦΑΛΑΙΟ 5 ΡΟΠΟΓΕΝΝΗΤΡΙΕΣ
ΚΕΦΑΛΑΙΟ 5 ΡΟΠΟΓΕΝΝΗΤΡΙΕΣ 5 Εισαγωγή Σ αυτό το κεφάαιο θα δούµε ότι οι ροπές µιας τυχαίας µεταβητής µπορούν να υποογιστούν µε τη βοήθεια κατάηων συναρτήσεων Αυτές οι συναρτήσεις καούνται ροπογεννήτριες
2( ) ( ) ψ είναι οι ιδιοκαταστάσεις του τελεστή. ψ x, θα πάρουµε
ΟΙ Ι ΙΟΚΑΤΑΣΤΑΣΕΙΣ ΤΟΥ ΤΕΛΕΣΤΗ ΚΑΤΑΣΤΡΟΦΗΣ ΩΣ ΚΑΤΑΣΤΑΣΕΙΣ ΕΛΑΧΙΣΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΣΥΝΟΧΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (COHERENT STATES) ΤΟΥ ΑΡΜΟΝΙΚΟΥ ΤΑΛΑΝΤΩΤΗ Στην προηγούµενη ανάρτηση, δείξαµε ότι στην αναπαράσταση
x k Ax k Bu k y k Cx k Du k «άνυσµα καταστάσεων» «άνυσµα εισόδων»
ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΣΤΟΝ ΧΩΡΟ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Μία άλλη περιγραφή συστηµάτων διακριτού χρόνου είναι η περιγραφή µέσω των εξισώσεων του «χώρου των καταστάσεων» (state space represetatios)
Κεφάλαιο 5 Μετασχηματισμός z και Συνάρτηση μεταφοράς
Κεφάλαιο Μετασχηματισμός και Συνάρτηση μεταφοράς Σύνοψη Στο κεφάλαιο αυτό δίνεται ο ορισμός του μετασχηματισμού και παρουσιάζονται οι ιδιότητες του μετασχηματισμού Δίνεται ο ορισμός της συνάρτησης μεταφοράς
6.8 Συµβολή Κυµάτων. y = y 1 + y perif ysikhs.wordpress.com 55 Μιχάλης Ε. Καραδηµητριου
6.8 Συµβοή Κυµάτων Οταν δύο ή περισσότερα κύµατα διαδίδονται ταυτόχρονα στο ίδιο εαστικό µέσο έµε ότι συµβάουν. Εχει διαπιστωθεί ότι για την κίνηση των σωµατιδίων του µέσου τα κύµατα ακοουθούν την αρχή
Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί
Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός Laplace Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αιτιατότητα Μη-Αιτιατότητα. Ευστάθεια. Περιοχή Σύγκλισης Μετασχηµατισµού Laplace
Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας
Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 0: Εισαγωγή στο µάθηµα 2 Διαδικαστικά Παράδοση: Παρασκευή 16:00-18:30 Διδάσκων: E-mail:
7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z
7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Σκοπός του Κεφαλαίου είναι να ορίσει
y(t) = x(t) + e x(2 t)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΞΕΤΑΣΗ ΠΡΟΟ ΟΥ - ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ιάρκεια : 3 ώρες
f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R
ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 2004., η οποία όµως µπορεί να γραφεί µε την παρακάτω µορφή: 1 e
ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 4 AΣΚΗΣΗ () [ ] (.5)
Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Οαλγόριθµος καθόδου κατά την µέγιστη κλίση (Steepest-descent)
ΒΕΣ Προσαρµοστικά Συστήµατα στις Τηεπικοινωνίες Προσαρµοστικοί Αγόριθµοι Υοποίησης Βέτιστων Ψηφιακών Φίτρων: Οαγόριθµος καθόδου κατά την (Steepest-escent) κατά τη Βιβιογραφία Ενότητας Benvent []: Κεφάαι
x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/0.0 Θέµα ο - Περιοδικά
ΠΕΠΕΡΑΣΜΕΝΕΣ ΙΑΦΟΡΕΣ ΚΑΙ ΕΞΙΣΩΣΕΙΣ ΙΑΦΟΡΩΝ
ΠΕΠΕΡΑΣΜΕΝΕΣ ΙΑΦΟΡΕΣ ΚΑΙ ΕΞΙΣΩΣΕΙΣ ΙΑΦΟΡΩΝ Α. Πεπερασµένες διαφορές Εστω δεδοµένος πραγµατικός αριθµός. Για τυχούσα συνάρτηση f = f() ορίζουµε ως διαφορά (πρώτης τάξης) της f() την συνάρτηση f µε f() =
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Σάββατο Νοεμβρίου 7 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Να διατυπώσετε το θεώρημα του Bolzano και να δώσετε τη γεωμετρική