1. Να λυθεί και να διερευνηθεί η εξίσωση: ( 2x 1 ) µ 2 = 5( 10x µ
|
|
- Σέλευκος Αναγνώστου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 1. Να λυθεί και να διερευνηθεί η εξίσωση: ( x 1 ) µ = 5( 10x µ ) Μετασχηµατίζουµε την εξίσωση στη µορφή αx = β. ( x 1 ) µ 5( 10x µ ) ( µ 50) x = µ 5µ () 1 = µ x µ = 50x 5µ µ x 50x = µ 5µ Λύνουµε την εξίσωση: µ 50 0 µ 5 = 0 = ( ) ( µ 5 )( µ + 5) = 0 µ 5= 0 ή µ + 5= 0 µ = 5 ή µ = 5. α. Αν µ 5, 5 τότε η (1) έχει µοναδική λύση την: µµ ( 5) ( )( ) ( ) µ 5µ µ x = = = µ 50 µ 5 µ + 5 µ + 5 β. Αν µ = 5 τότε η (1) γίνεται 0x = 0, που έχει άπειρες λύσεις (είναι ταυτότητα). Αν µ = 5 τότε η (1) γίνεται 0x = 50, που είναι είναι αδύνατη. x + λ λx 1 λx. Να λυθεί και να διερευνηθεί η εξίσωση: = 1 6 Πολλαπλασιάζουµε µε το ελάχιστο κοινό πολλαπλάσιο των παρονοµαστών, το 6. x + λ λx 1 λx 6 6 = 6 6 ( x + λ) ( λx 1) = 6 ( λx ) 6 x+ λ λx+ = 6 λx+ x λx + λx = 6 + λ ( λ+ λ) x= λ+ 7 ( λ+ ) x= λ+ 7 () 1 Είναι λ+ = 0 λ=.
2 4. Βήµα ο Λύνουµε περισσότερες ασκήσεις α. Αν λ τότε η (1) έχει µοναδική λύση την : λ+ 7 x = λ + β. Αν λ = τότε η (1) γίνεται: 0x =, άρα είναι αδύνατη.. Να λυθεί και να διερευνηθεί η εξίσωση: λ( λ )( x 1) = λ x 4 ( )( ) λ λ x 1 λ x 4 = ( λ λ) x+ x= λ λ+ λ 4 ( λ λ+ ) x = λ 4 () 1 Λύνουµε την εξίσωση: λ λ+ = 0 ( ) ± 1 λ = λ α. Αν λ 1, τότε η (1) έχει µοναδική λύση την: β. Αν λ= 1 τότε η (1) γίνεται: Αν λ= τότε η (1) γίνεται: λ 4 ( λ )( λ+ ) λ+ x = = = λ λ+ ( λ 1)( λ ) λ 1 ± 1 = λ= ή λ= 1 0x = 1 4 0x = και είναι αδύνατη. 0x = 4 0x = 0 και είναι ταυτότητα. 4. Να βρείτε διψήφιο αριθµό αν είναι γνωστό ότι το ψηφίο των δεκάδων είναι τριπλάσιο από το ψηφίο των µονάδων και αν εναλλάξουµε την θέση των ψηφίων του θα προκύψει αριθµός κατά 6 µικρότερος. Έστω xy ο διψήφιος αριθµός, τότε : ( x10 + y) ( y10 + x) = 6 (1) και x = y (). Λόγω της () έχουµε: x10 + y = 0y + y = 1y και y10 + x = 10y + y = 1y και απο την (1) παίρνουµε : 1y 1y = 6 18y = 6 y =. Άρα x = 6, οπότε ο ζητούµενος αριθµός είναι ο Να λυθούν οι εξισώσεις: i. x 1 = 5 ii. x 1 1 x 5 1 =
3 Λύνουµε περισσότερες ασκήσεις Βήµα ο 5. iii. x 1 x= 4 iv. x 1 = µ 9 i. x 1 = 5 x 1 = 5 ή x 1= 5 x 1 = ή x 1 = 7 x 1 = ή x 1 = 7 αδύνατη ή x 1 = 7. x 1 = 7 x 1= 7 ή x 1= 7 x = 8 ή x = 6 x = 4 ή x = ii. Θέτουµε ω= x 1 = 1 x (αφού οι αντίθετοι αριθµοί έχουν την ίδια απόλυτη τιµή), και η εξίσωση γίνεται: ω ω 5 ω ω 5 1= 6 6= 6 (ω ) 6= (ω 9) ω 4 6= ω 15 ω= 5 ω= 5.Άρα x 1 = 5 x 1= 5 ή x 1= 5 x = 6 ή x = 4. iii. x 1 x= 4 Από τον ορισµό της απόλυτης τιµής έχουµε: Άρα για x 1 η εξίσωση γράφεται: x 1,αν x 1 x 1 = x + 1,αν x 1 6 ( x+ 1) x = 4 5x = 6 x =, (απορρίπτεται). 5 και για x 1 η εξίσωση γράφεται: (x 1) x = 4 x = x = ( δεκτή). iv. Το πρόσηµο του τριωνύµου: φ(µ) = µ 9 = (µ + )(µ ) φαίνεται στον επόµενο πίνακα: µ + φ(µ) + +
4 6. Βήµα ο Λύνουµε περισσότερες ασκήσεις Έτσι : 1. Για µ (,) το µ 9< 0,άρα η (ε) είναι αδύνατη.. Για µ =, το µ 9= 0 και η (ε) γίνεται: x 1 = 0 x = 1.. Για µ ( ω, ) (, + ω) είναι µ 9> 0, άρα η (ε) γίνεται: = = ή = + ή x= µ x 1 µ 9 x 1 µ 9 x 1 µ 9 x µ < ii. < x 1 < 8 6. Λύστε τις ανισώσεις: i. x 1 1 x iii. x 1 < iv. i. Θέτουµε ω= x και η ανίσωση γίνεται: x + x+ 1 < x+ 5 ω 1 ω ω 1 ω < 1 6 < 6 6= (ω 1) < 6 (ω ) 1 1 ω < 6 ω+ 4 5ω< 1 ω< x < < x < < x < + < x < ii. Είναι x 1 < 8 < x 1 < 8 x 1 > x 1 < 8 8< x 1< 8 7< x < 9 7 < x < και x 1 > x 1 < ή x 1 > x < 1 ή x > 1 x < ή x > Τελικά παίρνουµε : < x < ή 1< x<.
5 Λύνουµε περισσότερες ασκήσεις Βήµα ο 7. iii. x 1 < x < x 1 < 5< x 1 < 1 5 > x 1 > 1. Άρα x 1 < 5 5 < x 1 < 5 4 < x < 6 iv. Βρίσκουµε το πρόσηµο του τριωνύµου: = = 1 4= < 0, άρα x + x+ 1 = x + x+ 1. Άρα η ανίσωση γίνεται: φ(x) = x + x + 1. Είναι x + x+ 1> 0 για κάθε x R, δηλαδή x + x+ 1< x+ 5 x 4< 0 x < 4 x < < x<.. ΤΑΥΤΟΤΗTΕΣ ΚΑΙ ΑΝΙΣΟΤΑΥΤΟΤΗΤΕΣ µε Απόλυτα 7. Αν α < β< γ βρείτε χωρίς απόλυτα την παράσταση: Α = α β γ α + α β γ Ισχύουν: α< β α β< 0, άρα α β = α+ β γ > α γ α > 0, άρα γ α = γ α α< β και α < γ άρα α< β+ γ α β γ< 0 άρα α β γ = α+ β+ γ Τελικά είναι : Α = α+ β+ γ α+ α β γ Α = α. 8. Βρείτε τα x,y εφόσον ισχύει x y + x + y 4 = 0. x y + x + y 4 = 0 x y = 0 και x+ y 4= 0 x y = και x+ y = 4, οπότε λύνουµε το σύστηµα: x y = 4x y = 6 5x = 10 x = x+ y = 4 x+ y = 4 y = x y = 1 9. είξτε την ισοδυναµία α+ 5β = 5α+ β α = β
6 8. Βήµα ο Λύνουµε περισσότερες ασκήσεις α+ 5β = 5α+ β α+ 5β= 5α+ β ή α+ 5β= 5α β β= α ή 7α= 7β α= β ή α= β 10. είξτε την ισοδυναµία α+ 5β < 5α+ β β < α α+ 5β < 5α+ β α+ 5β < 5α+ β (α+ 5β) < (5α+ β) 4α + 5β + 0αβ < 5α + 4β + 0αβ 19β < 19α β < α β < α β < α 11. είξτε ότι: α 1 β+ 5 α 1 β+ Για α 1 ισχύει: α 1 1 α 1 α 1 α 1 Για β ισχύει: β β+ β+ 1 1 β β+ β+ Άρα α 1 β+ 5 α 1 β+ 1. Αν x < 1 και y < δείξτε ότι x + y < 8 x < 1 1< x < 1 άρα < x < άρα 8 < x + y < 8 y < < y< άρα 6 < y < 6 Οπότε και x + y < 8 ΡΙΖΕΣ 1. α. Λύστε την εξίσωση: β. Λύστε την ανίσωση: 4x 4x+ 1 8= 0 < x x+ 1 < 10
7 α. 4x 4x+ 1 8= 0 (x 1) = 8 x 1 = 8 x 1 = 4 x 1= 4 ή x 1= 4 x = 5 ή x = 5 x = ή x = β. < x x+ 1< 10 < (x 1) < 10 < x 1 < 10 x 1 < 10 x ( 9,11) x ( 9, 1) (,11) x 1 > x (, 1) (, + ) διότι: * x 1 < < x 1 < 10 9< x < 11 x ( 9,11) και x 1 > x 1< ή x 1> x < 1 ή x > x (, 1) (, + ) 14. ίνεται f(x) = x 4x+ 4 x+ µε x R : i. Γράψτε την f µε πολλαπλό τύπο. ii. Να γίνει η γραφική παράσταση της f. i) Για x R ισχύει f(x) = (x ) x+ = x x+. Από τον ορισµό της απόλυτης τιµής έχουµε: Άρα: x,αν x 0 x x = x +,αν x < 0 x < x + x x+ f(x) x+ x+ = x + 5 x x x+ = 1
8 0. Βήµα ο Λύνουµε περισσότερες ασκήσεις x + 5,αν x ηλαδή: f (x) = 1,αν x < ii. Η γραφική παράσταση της f αποτελείται: Από την ηµιευθεία µε εξίσωση: y= x+ 5 αν x που έχει αρχή το Α(,1) και περνάει από το σηµείο y Β(1,). Από την ηµιευθεία µε εξίσωση y= 1 αν x που έχει αρχή το Α(,1) και είναι παράλληλη στον x x. Στις ιδιότητες των ριζών: 15. Βρείτε το γινόµενο: Γ= αβ α β 4 αβ x y B A 0 1 x Ισχύουν: αβ = 1 αβ= α β 6 6 αβ αβ = α β Άρα: Γ= αβ αβ αβ Γ= αβαβαβ Γ= α β Γ= αβ αβ 16. είξτε ότι: = 1 Ισχύει: = ( )( )( ) = ( )( ) ( 4 )( ) + + = + = ( )( ) + = = 4 = 1= είξτε ότι: ( 8 50)( 98 00) = 18
9 Λύνουµε περισσότερες ασκήσεις Βήµα ο 1. Ισχύουν: 8 = 4 = 4 = 50 = 5 = 5 = 5 98 = 49 = 49 = 7 00 = 100 = 100 = 10 Άρα: ( 8 50)( 98 00) ( 5 )( 7 10 ) ( ) = = = 9 = 9 = είξτε ότι: + = 4 Τροπή Άρρητου Παρονοµαστή σε ρητό: + + Ισχύουν ( ) ( )( ) ( ) ( )( ) = = = = = = = = Άρα: + + = + + = είξτε ότι: + = Ισχύουν: ( ) ( )( ) ( ) ( ) = = = = ( ) ( )( ) ( ) ( ) = = = =
10 . Βήµα ο Λύνουµε περισσότερες ασκήσεις = = = ( 6 5)( 6+ 5) 6 5 Άρα: = = = ιώνυµη εξίσωση: 0.Λύστε τις εξισώσεις: i. iii. 4 x - 16 = 0 6 4x + 8 = 0 ii. iv. x + 81 = 0 6 x = 64x i. 4 x - 16 = 0 4 x 16 = = 4 x 81 4 x 81 =± x =± ii. x + 81 = 0 x = 81 x = 7 = x = x 7 iii. 6 4x + 8 = 0 6 4x = 8 6 x = αδύνατη 6 iv. x = 64x 6 x 64x = 0 5 x( x ) = 0 5 x = 0 ή x = 0 5 x = 0 ή x = 5 x = 0 ή x = x = 0 ή x = 1.Λύστε τις εξισώσεις: i. (x - ) + 16 = 0 x -1 - x ii. -1= 6 iii. x -9x +8=0 4 4
11 i. (x - ) + 16 = 0 ii. (x ) 16 (x ) 8 = x 8 x = x = 0 x = 0 = = 4 4 x x -1= 4 4 x 1 x 6 6= 6 ( 4 ) 4 x 1 6= ( x) 4 4 4x 6= 9 x 4 7x = x = 7 17 x =± iii. x -9x +8=0 Θέτουµε W = x και η εξίσωση γίνεται : W 9W+ 8= 0 ( 9) ± 49 W = 9± 7 W = W = 1 ή W = 8 x = 1 ή x = 8 x = 1 ή x = Μεθοδολογία στις ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ Εξισώσεις µε Απόλυτα f(x) = θ f(x) = θ αν θ> 0 f(x) = θ f(x) = 0 αν θ= 0 αδύνατη αν θ < 0 f(x) = g(x) f(x) = g(x) ή f(x) = g(x) f(x) = g(x) Με τον ορισµό απαλλασόµαστε από το απόλυτο και λύνουµε την εξίσωση. Ανισώσεις µε Απόλυτα f(x) < θ θ< f(x) < θ θ > 0 f(x) > θ f(x) < θ ή f(x) > θ f(x) g(x) f(x) g(x) υψώνουµε στο τετράγωνο και καταλήγουµε σε 1ου και ου βαθµού εξίσωση. Με τον ορισµό απαλλασόµαστε από το απόλυτο και λύνουµε την ανίσωση. Όταν στην εξίσωση υπάρχουν περισσότερα από ένα διαφορετικά απόλυτα, µε τον ορισµό απαλλασόµαστε από τα απόλυτα. Όταν στην ανίσωση υπάρχουν περισσότερα από ένα διαφορετικά απόλυτα, µε τον ορισµό απαλλασσόµαστε από τα απόλυτα.
12 1. Αν x = , αποδείξτε ότι: x + = x + = x + 4 x x x x. Να λυθεί η εξίσωση: (x + 1) + (x ) + (1 x) = 0
13 Λύνουµε µόνοι µας Βήµα 4 ο 5.. Να λυθούν οι εξισώσεις: α) ( ) ( ) ( ) ( ) x + 1 x + = x + 1 x β) γ) 0,x + 0,5( x + 1) = 1,( x + ) x + x + 1 5x = 6 4. Να λυθούν οι εξισώσεις: α)( λ 1) x = λ -1 β)( λ ) x = λ + γ) λ x = 4x + λ 5. Ένας χυµός φρούτων έχει περιεκτικότητα σε πορτοκάλι 60%. Προσθέτου- µε στο χυµό 50ml καθαρό χυµό πορτοκάλι και η περιεκτικότητα του χυ- µού γίνεται 70%. Να βρεθεί πόσα ml αρχικού χυµού είχαµε.
14 6. Βήµα 4 ο Λύνουµε µόνοι µας 6. Ο ιόφαντος ο Αλεξανδρεύς έζησε περίπου το 50 µ.χ. και είναι ο τελευταίος από τους µεγάλους Έλληνες αρχαίους µαθηµατικούς. Τίποτα δεν είναι γνωστό γι αυτόν, εκτός από τα βιβλία µε τα άριστα τεκµηριωµένα επιτεύγµατά του. Η µόνη λεπτοµέρεια απ την ζωή του είναι ο γρίφος που λέγεται ότι ήταν σκαλισµένος στον τάφο του. Ο Θεός του παραχώρησε το ένα έκτο της ζωής του για να είναι νέος. Μετά και από το ένα δωδέκατο αυτής είχαν φυτρώσει στα µάγουλα του γένια. Κατόπιν µε το ένα έβδοµο της επιπλέον, τον φώτισαν τα κεριά του γάµου, και πέντε χρόνια µετά το γάµο του (ο Θεός) του έδωσε ένα γιο. Αλίµονο! Το παιδί γεννήθηκε κακότυχο, και όταν απέκτησε το µισό της ηλικίας του πατέρα του, η άπονη Μοίρα το πήρε µακριά του. Η επιστήµη των µαθηµατικών ανακούφισε τον πόνο του, µετά όµως από τέσσερα χρόνια πέθανε Πόσα χρόνια έζησε ο ιόφαντος; x 1 x + 5x 7. α. Να λυθεί η ανίσωση: β. Να λυθεί η ανίσωση: λ( x + 1) 1 x για τις διάφορες τιµές του πραγ- µατικού αριθµού λ.
15 Λύνουµε µόνοι µας Βήµα 4 ο Να βρείτε τρείς θετικούς ακέραιους, αν το άθροισµά τους είναι µεγαλύτερο του 14 και µικρότερο του 4, όταν ο δεύτερος είναι διπλάσιος απ τον πρώτο και ο τρίτος µικρότερος απ τον δεύτερο κατα Να γράψετε την παράσταση Α χωρίς απόλυτα. x + x+1 A= x 10. Να λύσετε τις εξισώσεις: α. x 1 = x 4x+ β. x+ x 1 = x
16 8. Βήµα 4 ο Λύνουµε µόνοι µας γ. x 5 = 5 x δ. x x = x = x ε. x + = x + 1 στ. x + 1 = x + 6 ζ x x + 4 = α. Αν α, β < < να αποδείξετε ότι: i) α + β < 1 ii) α + β + 1 < 8
17 Λύνουµε µόνοι µας Βήµα 4 ο 9. 1.Να λύσετε τις ανισώσεις: α. x+ x< 5 β. x 1 < x + 5 γ. x < x + x 5 δ. < x x+ 1 < Αν x = και y = να βρεθεί η τιµή της παράστασης: A = x xy + y Να αποδείξετε τις ισότητες: α α α α. 9 = α α β. α β 1 = 6 αβ α β
18 40. Βήµα 4 ο Λύνουµε µόνοι µας γ. 4 + = δ. ( )( ) = Να λυθεί η εξίσωση: x ( 1 x) = ( 1 x) 1
19 Λύνουµε µόνοι µας Βήµα 4 ο ίνεται η εξίσωση x x + λ + = 0. Αν η εξίσωση έχει ρίζα το 5 να βρεθεί η άλλη ρίζα. 17. Έστω η εξίσωση x (λ + 1)x + λ = 0 και x 1, x είναι οι ρίζες της. Αν οι αριθµοί, x 1, x είναι πλευρές τριγώνου, να δείξετε ότι το λ (1,) x - λ + 1 x λ =. Αν τα x 1, x είναι ρίζες της εξίσωσης να υπολογίσετε το λ ώστε: x - 7x x - 7x x + x 18. Έστω η εξίσωση ( ) =
20 4. Βήµα 4 ο Λύνουµε µόνοι µας 19. ίνεται η εξίσωση x - 5x + 1 = 0 α) είξτε (χωρίς να τις βρείτε), ότι οι ρίζες της εξίσωσης είναι πραγµατικές, διάφορες του µηδενός. β) Αν x 1, x οι δύο ρίζες της παραπάνω εξίσωσης, να κατασκευάσετε την εξίσωση που έχει ρίζες τα: x x x και x 1) 1 1 ) x1- και x - 0. ίνεται η εξίσωση x - ( λ - ) x λ Για ποιες τιµές του λ η εξίσωση έχει: α) δύο ρίζες αρνητικές β) δύο ριζες θετικές και άνισες
21 Λύνουµε µόνοι µας Βήµα 4 ο 4. γ) δύο ρίζες ετερόσηµες δ) δύο ρίζες αντίστροφες ε) δύο ρίζες αντίθετες 1. Να λυθεί η εξίσωση: + 1 x + x = x x x + 1
22 44. Βήµα 4 ο Λύνουµε µόνοι µας. Να απλοποιηθεί η παράσταση: Κ = ( α β και α,β> 0) α β α β + β α. Αν α > β> 0 δείξτε ότι α+ β α + β αβ α β α+ β = α+ β
23 Λύνουµε µόνοι µας Βήµα 4 ο Αν α, β, γ θετικοί αριθµοί δείξτε ότι: α β γ α+ β+ γ + + = βγ αγ αβ αβγ
24 46. Βήµα 5 ο Ελέγχουµε τη γνώση µας ÂÞìá 5 ÂÞìá 4 ÂÞìá ÂÞìá ÂÞìá 1 ÅëÝã ïõìå ôç ãíþóç ìáò ΘΕΜΑ 1 ο Α. Nα λυθούν οι ανισώσεις: i) x i) x + 1 iii) x + < 1 iv) x 1 0 Β. Να λυθούν οι ανισώσεις: i) 1 < x < ii) -1 x iii) 1 < x + 1 < x + 1 iv) 1 x + ΘΕΜΑ ο x 1 1 x Α. Να λυθεί η εξίσωση: + = x + Β. Να γίνουν οι πράξεις: α) γ) 45α β + 15α β 0α β α,β > 0 Γ. Nα απλοποιηθούν οι παραστάσεις:
25 Ελέγχουµε τη γνώση µας Βήµα 5 ο 47. i) 4 16 ii) 5 4 iii) 4 iv) ΘΕΜΑ ο α) Ένας µαθηµατικός που πρόκειται να αγοράσει ένα περιφραγµένο οικόπεδο στο Βαρνάβα Αττικής σχήµατος ορθογωνίου µε εµβαδόν 4070 m θέλησε να µάθει τις διαστάσεις των πλευρών του. Ο ιδιοκτήτης όµως του οικοπέδου δεν ήξερε τις διαστάσεις. Θυµόταν, όµως, ότι χρησιµοποίησε 58m συρµατόπλεγµα για να το περιφράξει. Μ αυτές τις πληροφορίες ο µαθηµατικός βρήκε τις διαστάσεις. Ποιες ήταν αυτές; β) Μετά θέλησε να µάθει από την πολεοδοµία του Καπανδριτίου ποιο είναι το µέγιστο εµβαδόν του σπιτιού που δικαιούται µε βάση το νόµο, να κτίσει. Ο πολεοδόµος για να τον δυσκολέψει (υποτίθεται) του έδωσε την απάντησή ότι η περίµετρος του σπιτιού (σχήµατος ορθογωνίου) µπορεί να είναι µέχρι 40m. Ο µαθηµατικός φυσικά βρήκε το µέγιστο εµβαδό. Ποιό ήταν αυτό;
Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:
Διαβάστε περισσότερα1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
Διαβάστε περισσότερα0. Να λύσετε τις εξισώσεις: i) ( )( ) ( ). Να διερευνήσετε τις εξισώσεις i) ( ) ( 6) b, b 0. b. Ποιοι περιορισμοί πρέπει να ισχύουν για τα α και b ώστ
ΜΑΘΗΜΑ: Άλγεβρα ΤΑΞΗ: Α ΛΥΚΕΙΟΥ ΥΛΗ: Εξισώσεις και Ανισώσεις Πρώτου Βαθμού Απόλυτη Τιμή - Ρίζες Α. Εξισώσεις Πρώτου Βαθμού. Να λύσετε τις εξισώσεις i) 9(8 ) 0(9 ) ( ) 8 7y y i ( ) 0( ) 0 ( 0) iv) y. Να
Διαβάστε περισσότερα( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x
ΜΟΡΦΕΣ ΤΡΙΩΝΥΜΟΥ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Τριώνυµο λέγεται ένα πολυώνυµο της µορφής : f x = αx + βx+ γ, όπου α, β, γ R µε α. ( ) ιακρίνουσα και ρίζες του τριωνύµου f( x) = αx + βx+ γ λέγεται η διακρίνουσα και
Διαβάστε περισσότεραΝα αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άσκηση 1 Από τους µαθητές ενός Λυκείου, το 25% συµµετέχει στη οµάδα, το 30% συµµετέχει στη θεατρική οµάδα ποδοσφαίρου και το 15% των µαθητών
Διαβάστε περισσότερα4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ
1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός
Διαβάστε περισσότερα2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ
Διαβάστε περισσότεραβ) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότεραx y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση
Διαβάστε περισσότερα4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ
4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Πολυωνυµική εξίσωση Λέγεται κάθε εξίσωση της µορφής Ρ(x) = 0, όπου Ρ(x) πολυώνυµο.. Ρίζα πολυωνυµικής εξίσωσης Λέγεται κάθε ρίζα του αντίστοιχου πολυωνύµου.
Διαβάστε περισσότεραΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ
ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.
Διαβάστε περισσότεραΆλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί
wwwaskisopolisgr Άλγεβρα Α Λυκείου Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ 006-08 Δίνεται ότι και y Πραγματικοί αριθμοί α) i Να βρεθούν τα όρια μεταξύ των οποίων περιέχεται το ii Να βρεθούν τα όρια μεταξύ
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :
ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0
Διαβάστε περισσότερα1. Να λυθούν οι παρακάτω εξισώσεις : α. 3
. Να λυθούν οι παρακάτω εξισώσεις : α. 0 6 β. ( + ) + ( ) = ( + ) γ. ( + ) 4 = ( ) δ. ( 7) + = ε. ( ) + ( + 4)( 4) + 8 = ( + ) στ. ( 7) + = ζ. ( ) = ( )( 4) + 9. Ομοίως : α. ( + 5) (9 5) + 6 + 0 = 0 β.
Διαβάστε περισσότερα( ) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σηµείωση. 2. Παραδοχή α = Ιδιότητες x. αβ = α = α ( ) x. α β. α : α = α = α
. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Σηµείωση Οι δυνάµεις α του κεφαλαίου έχουν βάση α > 0 και εκθέτη οποιονδήποτε πραγµατικό αριθµό.. Παραδοχή 0 α. Ιδιότητες α + α ( ) α α : α ( ) α α α αβ α β α β α β. Εκθετική
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
Διαβάστε περισσότεραΕκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ
Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.
Διαβάστε περισσότερα4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ
1 4. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ 1. Η γενική µορφή του τριωνύµου µε µεταβλητή x R i) α x + βx + γ, α 0 ii) β α x + α 4α, α 0. Ειδικές µορφές του τριωνύµου Όταν > 0 τότε α x + βx + γ α(x x 1 )(x x ), όπου
Διαβάστε περισσότερα1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,
. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Διαβάστε περισσότερα2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
Διαβάστε περισσότεραΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού 108 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθµό, να υπολογιστεί
Διαβάστε περισσότεραΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
Διαβάστε περισσότεραΑνισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88
Διαβάστε περισσότερα7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Διαβάστε περισσότεραΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
Διαβάστε περισσότερα1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και
Διαβάστε περισσότεραΦεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ
Διαβάστε περισσότερα2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. α) Να βρείτε τις ρίζες της εξίσωσης x +0x=. x + 0x β) Να λύσετε την εξίσωση x. ίνεται η εξίσωση: x λx+(λ +λ )=0 (), λ R. α) Να προσδιορίσετε τον πραγµατικό αριθµό λ, ώστε η
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΣΥΣΤΗΜΑΤΑ....................................................
Διαβάστε περισσότερα1 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 1. Έστω η εξίσωση (k 5k+ 4) x (k 1)x + 1= 0 Να βρείτε την τιµή του k ώστε η εξίσωση να έχει µία µόνο ρίζα την οποία ρίζα να προσδιορίσετε i Να βρείτε την τιµή του k ώστε η
Διαβάστε περισσότεραΑ Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό
Διαβάστε περισσότερα1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι
_ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2
Διαβάστε περισσότεραΤράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 3. Ασκήσεις: -5 Θεωρία ως και την 3.3 Ασκήσεις: 6-8 Άσκηση Δίνεται η παράσταση: A= 3 5 +
Διαβάστε περισσότεραii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας
. Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο
Διαβάστε περισσότερα6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ
1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,
Διαβάστε περισσότεραΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ Να δείξετε ότι (x 2) 3 + (3x 4) 3 + (6 4x) 3 = 3(x 2)(3x 4)(6 4x). Λύση Στο 1 0 μέλος βλέπουμε άθροισμα κύβων 3 αριθμών, εξετάζουμε αν έχουν άθροισμα 0, (x 2) + (3x 4) + (6
Διαβάστε περισσότεραΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.
ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =
ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει
ΕΡΩΤΗΣΕΙΣ. Αν α =β, τότε η τιµή της παράστασης κ= α β +β α είναι: ( ) 4 ( Β )0, ( )4 δίνονται. Α, C, ( D ), (Ε) δεν µπορεί να προσδιοριστεί από τις πληροφορίες που. Πόσα στοιχεία του συνόλου { 5,,0,4,6,7}
Διαβάστε περισσότερα4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114
1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +
Διαβάστε περισσότεραΑσκήσεις Άλγεβρας Α Λυκείου 2 oυ και 3 oυ Κεφαλαίου 1
Ασκήσεις Άλγεβρας Α Λυκείου oυ και 3 oυ Κεφαλαίου έµης Απόστολος, Ζάχος Ιωάννης, Κατσαργύρης Βασίλειος, Κόσυβας Γεώργιος, Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής Οκτώβριος 004 Νοεµβρίου
Διαβάστε περισσότεραρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο
ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον
Διαβάστε περισσότεραΤετραγωνική ρίζα πραγματικού αριθμού
Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:
Διαβάστε περισσότερα1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:
ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x
Διαβάστε περισσότεραΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
Διαβάστε περισσότερα3 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. Έστω η συνάρτηση f() = 80 αν < < 0 αν 0 αν i ) Να υπολογιστεί η τιµή της παράστασης Α = f( ) + f(0) 5f() f + f( ) Αν Μ(, ) και Ν(, 0) να βρείτε την εξίσωση της ευθείας ΜΝ i
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότεραςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός
01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους
Διαβάστε περισσότερα4 η δεκάδα θεµάτων επανάληψης
1 4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Α Β δεν είναι το κενό. Έχουµε Ρ( Α
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Άσκηση 1102 Δίνονται δύο ενδεχόμενα ενός δειγματικού χώρου Ω και οι πιθανότητες α) Να υπολογίσετε την (Μονάδες 9) β) i) Να υπολογίσετε με διάγραμμα Venn και να γράψετε στη γλώσσα των συνόλων το ενδεχόμενο:
Διαβάστε περισσότερα1 η Εργασία Ηµεροµηνία αποστολής: 19 Νοεµβρίου 2006
η Εργασία Ηµεροµηνία αποστολής: 9 Νοεµβρίου 6. α. Να βρεθεί η γωνία µεταξύ των διανυσµάτων a = i + j k και b = 6 i j + k. β. Να δείξετε ότι τα διανύσµατα a, b, c είναι ορθογώνια και µοναδιαία. a = ( i
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης. Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0%. Να βρείτε: i. Το πλήθος των μαθητών
Διαβάστε περισσότερα2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 1.Δίνεται η εξίσωση f x x 4x. Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η
ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ Δίνεται η εξίσωση fx x 4x Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η εξίσωση f x 0 έχει: α) ρίζα το β) δύο ρίζες πραγματικές και άνισες γ) ρίζες ετερόσημες δ) Αν 3,
Διαβάστε περισσότεραΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί
Διαβάστε περισσότεραΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.
ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του
Διαβάστε περισσότερα8. Να λυθεί η εξίσωση : 10 3 x= Αν ν είναι φυσικός αριθμός, τότε να υπολογίσετε την παράσταση: Α=(-1) ν +3(-1) ν+1-3(-1) 3ν+1.
Α. ΔΥΝΑΜΕΙΣ. Να γράψετε σε απλούστερη μορφή τις παραστάσεις: α.α.α = 5 : = (-).(-) - = (-0,) 5.(-0,5) 5 = α -.(α ) -.α. Υπολογίστε τις παραστάσεις (i) (ii) (-).(-0,5) - (iii) (0,) : (-0). Να γίνουν οι
Διαβάστε περισσότεραΟρισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
Διαβάστε περισσότεραΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού
Διαβάστε περισσότεραΑ. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα
Διαβάστε περισσότεραΑσκήσεις Άλγεβρας Α Λυκείου 2 oυ και 3 oυ Κεφαλαίου 1
Ασκήσεις Άλγεβρας Α Λυκείου oυ και 3 oυ Κεφαλαίου έµης Απόστολος, Ζάχος Ιωάννης, Κατσαργύρης Βασίλειος, Κόσυβας Γεώργιος, Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής Οκτώβριος 004 4 εκεµβρίου
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008
-6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι
Διαβάστε περισσότεραςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός
014 ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο είναι ένα τμήμα μιας προσωπικής
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α. Να βρείτε το πεδίο ορισμού της. x x x x β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο Δίνεται η συνάρτηση
Διαβάστε περισσότερα12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
Διαβάστε περισσότερα3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ
Διαβάστε περισσότερα3. Να δειχτει οτι α α. Ποτε ισχυει το ισον;
EΞΙΣΩΣΕΙΣ Ε ξ ι σ ω σ η ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Εστω η εξισωση: α+β=0 () Λυση η ριζα. της Aν εξισωσης α, β θετικοι λεγεται, να συγκρινεται κάθε τιμη τους του πραγματικου
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 00) Η Εργασία χωρίζεται σε µέρη: Το πρώτο Ασκήσεις - περιλαµβάνει
Διαβάστε περισσότεραB= πραγματοποιείται τουλάχιστον ένα από τα ενδεχόμενα Α και Β ii) B = πραγματοποιούνται ταυτόχρονα τα ενδεχόμενα Β και Γ iii)
Πιθανότητες.3096. α) Αν Α,Β,Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης που αποτελείται από απλά ισοπίθανα ενδεχόμενα, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα: i) A B ii)
Διαβάστε περισσότεραΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης
Διαβάστε περισσότερα( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31.
1 4 η δεκάδα θεµάτων επανάληψης 31. ίνονται οι συναρτήσεις f() = ln(e e + 3) και g() = ln3 + ln(e 1) i. Να βρείτε το πεδίο ορισµού τους. ii. Να βρείτε τα σηµεία τοµής των γραφικών παραστάσεων των f, g
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 17 Απριλίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 016 ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 016 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι για οποιουσδήποτε πραγµατικούς αριθµούς
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς
Διαβάστε περισσότεραΠραγματικοί αριθμοί. Κεφάλαιο Οι πράξεις και οι ιδιότητές τους. = 2. Να υπολογίσετε
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους. Έστω α, β δύο πραγματικοί αριθμοί για τους οποίους ισχύει α + β = 0 και β + α την τιμή της παράστασης αβ + αβ. =. Να υπολογίσετε. Αν x y
Διαβάστε περισσότερα3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ
ΑΝΙΣΩΣΕΙΣ 1 Α ν ι σ ω σ η 1 ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 110 0α. Ποτε ισχυει το ισον; Μορφη: αx + β > 0 με α,β. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ Αν α > 0
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου
Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο
Διαβάστε περισσότερα5 η δεκάδα θεµάτων επανάληψης
5 η δεκάδα θεµάτων επανάληψης 41. α + 1 Έστω η συνάρτηση f() = ( 3 ), α 1 Αν το σηµείο Μ( 1, 3) βρίσκεται στην γραφική παράσταση της f να βρείτε το α ii ) Αν α = 0 να λύσετε την ανίσωση f() + f(2) > 2
Διαβάστε περισσότερα2.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
1.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΣΧΟΛΙΟ Για να λύσουµε ένα πρόβληµα, αφού το διαβάσουµε καλά, εντοπίζουµε τον άγνωστο και τον συµβολίζουµε µε µία µεταβλητή. Με βάση τα δεδοµένα του προβλήµατος καταστρώνουµε την
Διαβάστε περισσότεραΑ ΛYKEIOY ΆΛΓΕΒΡΑ Άλγεβρα. Μίλτος Παπαγρηγοράκης Χανιά
Άλγεβρα Α ΛYKEIOY ΆΛΓΕΒΡΑ 09-00 Μίλτος Παπαγρηγοράκης Χανιά Ταξη: Α Γενικού Λυκείου Άλγεβρα Έκδοση 907 Η συλλογή αυτή διανέμεται δωρεάν σε ψηφιακή μορφή μέσω διαδικτύου προορίζεται για σχολική χρήση και
Διαβάστε περισσότεραΦ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α 31. Μία κυλινδρική δεξαµενή έχει µήκος βάσης 1,56 m. Η δεξαµενή είναι γεµάτη κατά τα 6 7 και περιέχει 75,36 m3 νερό. Να υπολογίσετε το βάθος της δεξαµενής. Να υπολογίσετε
Διαβάστε περισσότερα5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ
5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ Για να επιλύσουμε μία παραμετρική εξίσωση ακολουθούμε τα παρακάτω βήματα: i) Βγάζω παρενθέσεις ii) Κάνω απαλοιφή παρανομαστών iii) Χωρίζω γνωστούς από αγνώστους (άγνωστος είναι
Διαβάστε περισσότεραεξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες
Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο
Διαβάστε περισσότεραΆλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους
οι πράξεις και οι ιδιότητές τους Μερικές ακόμη ταυτότητες (επιπλέον από τις αξιοσημείωτες που βρίσκονται στο σχολικό βιβλίο) ) Διαφορά δυνάμεων με ίδιο εκθέτη: ειδικά αν ο εκθέτης ν είναι άρτιος υπάρχει
Διαβάστε περισσότεραa = f( x ) =. (Μονάδες 8) 2 = =,από όπου προκύπτει ( υψώνοντας στο τετράγωνο ), x =, επομένως x = 0 x = ή Άσκηση 4679 Δίνεται η συνάρτηση:
Άσκηση 4679 Δίνεται η συνάρτηση: a = + 4 f( x) x x α) Να βρείτε τις τιμές του πραγματικού αριθμού α, ώστε το πεδίο ορισμού της συνάρτησης f να είναι το σύνολο. (Μονάδες 0) β) Αν είναι γνωστό ότι η γραφική
Διαβάστε περισσότερα1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R
. ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και
Διαβάστε περισσότερα1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ
.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΘΕΩΡΙΑ. Ταυτότητα : Λέγεται κάθε ισότητα που περιέχει µεταβλητές και αληθεύει για οποιεσδήποτε τιµές των µεταβλητών της.. Αξιοσηµείωτες ταυτότητες : Είναι ταυτότητες που χρησιµοποιούµε
Διαβάστε περισσότεραβ=0 Η εξίσωση (λ-2)χ=2λ-4 για λ=2 είναι αδύνατη. Σ Λ Αν η εξίσωση αχ+β=0 έχει δύο διαφορετικές λύσεις τότε είναι αόριστη. Σ Λ
3. ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ 3. ΕΞΙΣΩΣΕΙΣ α 0 Η εξίσωση έχει μία μοναδική λύση την x= - αx+β=0 α=0 β 0 β=0 Η εξίσωση είναι αδύνατη, δηλαδή δεν έχει λύση. Η εξίσωση είναι αόριστη ή ταυτότητα, δηλαδή επαληθεύεται
Διαβάστε περισσότερα