I Polynômes d Hermite
|
|
- Ἰάκωβος Αναγνωστάκης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 SESSION 29 Concours commun Mines-Ponts DEUXIEME EPREUVE FILIERE PSI I Polynômes d Hermite Pour x R, h (x et h (x 2 ex2 ( 2xe x2 x Soit n N Pour x R, h n(x ( n 2 n 2xex2 D n (e x2 + ( n 2 n ex2 D n+ (e x2 2xh n (x 2h n+ (x x R, h (x, h (x x et n N, 2h n+ (x 2xh n (x + h n(x 2 Montrons par récurrence que n N, h n est un polynôme de degré n et de coefficient dominant C est vrai pour n Soit n N Supposons que h n est un polynôme de degré n et de coefficient dominant Alors h n+ Xh n 2 h n est un polynôme puis deg(h n+ deg(xh n n + et dom(h n+ dom(xh n dom(h n On a montré par récurrence que n N, h n est un polynôme de degré n et de coefficient dominant 3 Soit x R Soient f une fonction de classe C sur R puis f x la fonction définie sur R par t R, f x (t f(x t f x est de classe C sur R et n N, t R, g (n (t ( n f (n (x t et en particulier, n/inn, f (n x ( ( n f (n (x On applique ce résultat à la fonction f : t e t2 de sorte que t R, f x (t e (x t2 On obtient pour n N, f (n x ( ( n D n (e t2 (x 2 n e x2 h n (x 4 Soit x R t R, f x (t e x2 e 2tx e t2 Par suite, la fonction f x est développable en série entière sur R en tant que produit de fonctions développables en série entière sur R De plus,, d après la question précédente, pour t R, f x (t + (x, t R 2, e (x t2 f (k + x k! tk k! 2k h k (xe x2 + k! 2k h k (xe x 2 5 Pour (x, t R, w(x, t e x2 f x (t + k! 2k h k (x Soit x R On sait que la série entière de somme w(x, t est dérivable sur R et que sa dérivée s obtient par dérivation terme à terme Pour tout réel t R, w + t (x, t (2x 2tw(x, t k (k! 2k h k (x (2x 2t + k! 2k+ h k+ (x x k! 2k h k (x k! 2k+ h k (x + + k (k! 2k h k (x k! 2k (2h k+ (x 2xh k (x + kh k (x (avec la convention h (x http ://wwwmaths-francefr c Jean-Louis Rouget, 29 Tous droits réservés
2 L unicité d un développement en série entière et l identité (3 permettent alors d affirmer que k N, 2h k+ (x 2xh k (x+ kh k (x On a montré que k N, x R, 2h k+ (x 2xh k (x + kh k (x avec la convention x R, h (x 6 L identité ( et l identité (3 donnent n N, h n nh n 7 D après la question 4, pour tout réel t, + 2 k h k ( + f (t e t2 k! p ( p t 2p p! Par unicité des coefficients d un développement en série entière, pour p N, on a h 2p+ ( puis 22p h 2p ( (2p! et donc h 2p ( ( p (2p! 2 2p p! On en déduit que pour p N, φ 2p+ ( puis ( p p! φ 2p ( ( ( p (2p! π(2p!2 2p /2 2 2p ( p (2p! p! π /4 2 p p! p N, φ 2p ( ( p (2p! π /4 2 p p! et φ 2p+ ( Soit n N Pour x R, φ n(x dn ( 2xh n (x + h n(xe x2 dn ( 2xh n (x + nh n (xe x2 convention x R, h (x Pour x, on obtient Donc φ n ( dn nh n ( n dn d n φ n ( 2n φ n ( p N, φ 2p ( et φ 2p+ ( 2(2p + ( p (2p! π /4 2 p p! (on rappelle la 8 Soient (x, y R 2 e N La relation (4 fournit 9 Puis, (x yh k (xh k (y xh k (xh k (y yh k (xh k (y ( h k+ (x + k 2 h k (x h k (y ( h k+ (y + k 2 h k (y h k (x (h k+ (xh k (y h k+ (yh k (x k 2 (h k(xh k (y h k (yh k (x (x y h k (xh k (y (h k+ (xh k (y h k+ (yh k (x k 2 (h k (xh k (y h k (yh k (x (h k+ (xh k (y h k+ (yh k (x (h k (xh k (y h k (yh k (x, et donc pour n N, on obtient par télescopage (en posant conventionnellement d n (x y h k (xh k (y (h n (xh n (y h n (yh n (x (h (xh (y h (yh (x d n d d n (h n (xh n (y h n (yh n (x http ://wwwmaths-francefr 2 c Jean-Louis Rouget, 29 Tous droits réservés
3 Si de plus, x et y sont distincts n n φ k (xφ k (y e x2 e y2 h k (xh k (y e x2 e y2 h n(xh n (y h n (yh n (x d n x y dn dn φ n(xφ n (y φ n (yφ n (x d n x y n 2 φ n(xφ n (y φ n (yφ n (x x y II Etude de Φ 2m L équation différentielle proposée est du type y + a(xy + b(xy c(x où a, b et c sont trois fonctions continues sur R D après le théorème de Cauchy, le problème de Cauchy (S(r, β, γ admet une et une seule solution sur R Les solutions sur R de l équation homogène associée ρ (x+γ 2 ρ(x sont les fonction des la forme x λ ρ (x+λ 2 ρ 2 (x où (λ, λ 2 R 2 et ρ et ρ 2 sont les fonctions définies sur R par x R, ρ (x cos(γx et ρ 2 (x sin(γx Une solution particulière de l équation ρ (x + γ 2 ρ(x r(x est fournie par la méthode de variation des constantes : il existe une solution particulière de l équation { de la forme x λ (xρ (x + λ 2 (xρ 2 (x où λ et λ 2 sont deux fonctions λ dérivables sur R et solution du système ρ + λ 2 ρ 2 λ ρ + λ 2 ρ 2 r On a ρ (x ρ 2 (x ρ (x ρ 2 (x cos(γx sin(γx γ sin(γx γ cos(γx γ et les formules de Cramer fournissent pour x R λ (x sin(γx γ r(x γ cos(γx γ r(xsin(γx et λ 2 (x cos(γx γ γ sin(γx r(x γ r(xcos(γx On peut prendre λ (x γ proposée est donc r(tsin(γt dt et λ 2 (t γ ρ(x γ cos(γx r(tsin(γt dt + γ sin(γx r(tcos(γt dt γ La solution générale de l équation proposée est x λ cos(γx + λ 2 sin(γx + γ La condition ρ( β fournit λ β Ensuite, pour x R, ( γ sin(γx γ et la condition ρ ( fournit λ 2 r(t cos(γt dt Une solution particulière de l équation r(tsin(γ(x t dt r(tsin(γ(x t dt, (λ, λ 2 R 2 ρ (x λ sin(γx + λ 2 cos(γx + x r(t sin(γt dt cos(γxr(x cos(γx + γ cos(γx r(t cos(γt dt + sin(γxr(x sin(γx, La solution sur R du problème de Cauchy (S(r, β, γ est la fonction ρ définie sur R par : x R, ρ (x β cos(γx + γ r(tsin (γ(x t dt Pour x R, posons r(x x 2 φ 2m (x D après le résultat admis ci-dessus, φ 2m est solution de (S(r, φ 2m (, φ 2m ( ou encore du problème (S(r, α 2m, où α 2m ( m (2m! π /4 2 m d après la question 7 et γ 4m + m! D après la question précédente, on a donc x R, φ 2m (x α 2m cos( 4m + x + 4m + sin ( 4m + (x y y 2 φ 2m (y dy où α 2m ( m (2m! 4m + π /4 2 m m! 2 D après la formule de Stirling http ://wwwmaths-francefr 3 c Jean-Louis Rouget, 29 Tous droits réservés
4 (2m α 2m ( m π /4 e 2 m ( m e 2m 4πm m 2πm ( m πm /4 α 2m ( m πm /4 3 Soient x R puis I [, x] si x et [x, ] si x sin ( 4m + (x y y 2 φ 2m (y dy 4m + y 2 φ 2m (y dy 4m + I y 4 dy φ 2 2m(y dy (inégalité de Cauchy-Schwarz 4m + I I 4m + I y 4 dy x 5 4m + 5 x 5/2 4m D après la question, pour tout réel x, ( ( m x πm /4 φ 2m 2 m φ 2 2m (y dy y 4 dy R 4m + I ( 4m x ( ( m x 4m + πm /4 α 2m cos 2 + ( m sin + ( πm /4 2 m 2 m y y 2 φ 2m (y dy m 4m + 4m + ( x 4m + 4m + Soit x R D après la question 2, on a lim ( m πm /4 α 2m cos 2 cosx (car m 2 m D autre part, ( 4m x ( m sin + ( πm /4 2 m 2 m y y 2 φ 2m (y dy 4m + x πm /4 2 5/2 m π x 5/2 5 4m 2 m On en déduit que lim ( m πm /4 x R, ( 4m x sin + ( 2 m y y 2 φ 2m (y dy et on a montré que 4m + lim m πm /4 φ 2m ( x 2 cosx m III Intégrales de déterminants 5 Soient N N et (x, y R 2 Pour z R, ( N ( N K (N (x, zk (N (z, y φ k (xφ k (z φ l (zφ l (y l k,l N φ k (xφ k (zφ l (zφ l (y Chaque produit φ k φ l, k, l N, étant intégrable sur R, la fonction z K (N (x, zk (N (z, y est intégrable sur R et K (N (x, zk (N (z, y dz k,l N k,l N N φ k (xφ l (y φ k (zφ l (z dz φ k (xφ l (yδ k,l (d après les relations (5 φ k (xφ k (y K (N (x, y http ://wwwmaths-francefr 4 c Jean-Louis Rouget, 29 Tous droits réservés
5 De même, les relations (5 fournissent N N, (x, y R 2, K (N (x, x dx N φ k (xφ k (x dx N K (N (x, zk (N (z, y dz K (N (x, y et N N, N K (N (x, x dx N 6 Une composée de deux permutations de, k est une permutation de, k et donc σ est une permutation de, k Si σ(k k, σ σ et donc σ(k k De plus, ε( σ ε(σ Si σ(k k, σ(k (k, σ(k (σ(k k De plus, ε( σ ε(σ σ est une permutation de, k telle que σ(k k, de même signature que σ si σ(k k et de signature opposée à celle de σ si σ(k k 7 Soit σ S k Pour τ S k on a (puisque τ(k k σ(k Soit τ S k telle que τ σ τ θ (θ ({σ} θ(τ θ(σ τ σ τ σ (, τ σ (k, τ(k τ (k, σ(k σ τ (k, τ(k (k, σ(k σ Ainsi, si τ σ, τ est nécessairement l une des permutations σ l (k, l (k, σ(k σ, l k Réciproquement, pour l, k, σ l (k (k, l(k l et donc σ l (k, σ l (k (k, l (k, σ(k σ (k, σ(k σ σ Ainsi, θ (θ ({σ} {σ l, l k} Comme les permutations σ l, l k, sont deux à deux distinctes (car (k, l (k, σ(k σ (k, l (k, σ(k σ (k, l (k, l l l, on a montré que card ( θ (θ ({σ} k σ S k, card ( θ (θ ({σ} k (Erreur d énoncé 8 Soient N N, (x,,x k R k et σ S k er cas Supposons σ(k k Dans ce cas, σ σ σ /,k De plus, i, k, σ(i k et donc, d après les identités de la question 5, i k K (N ( k x i, x σ(i dxk K (N ( x i, x σ(i i k N K (N ( x i, x eσ(i i k K (N (x k, x k dx k N i K (N ( x i, x σ(i 2ème cas Supposons σ(k k Pour i, k, σ(i k i σ (k et donc, toujours d après les identités de la question 5, i k K (N ( x i, x σ(i dxk i k, i σ (k K (N ( x i, x σ(i K (N ( x σ (k, x k K (N ( x k, x σ(k dxk K (N ( x σ (k, x σ(k i k, i σ (k K (N ( x i, x σ(i Maintenant, si i, k \ {k, σ (k}, alors i n est pas k et aussi σ(i n est ni k, ni σ(k Par suite, σ(i existe puis σ(i σ(i (k, σ(k σ(i σ(i, et si i σ (k, alors i k et σ(i σ(σ (k(k, σ(k σ(σ (k σ(k http ://wwwmaths-francefr 5 c Jean-Louis Rouget, 29 Tous droits réservés
6 Finalement, K ( (N x σ (k, x σ(k K (N ( k x i, x σ(i K (N ( x i, x eσ(i i k, i σ (k i N N, (x,,x k R k, σ S k, k i K (N ( x i, x σ(i dxk K (N ( x i, x eσ(i si σ(k k K (N ( x i, x eσ(i si σ(k k k N i k i 9 D après la question précédente, DetK (N (x,,x k dx N N σ S n ε(σ i σ S n/ σ(kk σ S n/ σ(kk (d après la question 6 et puisque ε( σ ε( σ k K (N ( x i, x σ(i dxk k ε(σ K (N ( x i, x eσ(i + i k ε( σ K (N ( x i, x eσ(i i σ S n/ σ(k k σ S n/ σ(k k k ε(σ K (N ( x i, x eσ(i i k ε( σ K (N ( x i, x eσ(i Maintenant, la question 7 montre que chaque élément σ de S k a exactemen antécédents par θ dans S k On peut donc partitionner S k en k parties S,, S k constituées chacune de (k! éléments telles que la restriction de θ à chaque S i, i k, soit une bijection de S i sur S k De plus, comme S k, θ( σ σ et que σ(k k, tout élément σ de S k admet un antécédent σ par θ vérifiant de plus σ(k k Par suite, on peut imposer que l une des parties S i, par exemple S, soit constituée des éléments σ S k telles que σ(k k On obtient i DetK (N (x,,x k dx N σ S n/ σ(kk k ε( σ K (N ( x i, x eσ(i i σ S n/ σ(k k N k ε( σ K (N ( k k x i, x eσ(i ε( σ K (N ( x i, x eσ(i σ S i l2 σ S l i k ε( σ K (N ( x i, x eσ(i N k ε( σ K (N ( k x i, x eσ(i (k ε( σ K (N ( x i, x eσ(i eσ S k i eσ S k i (N k + DetK (N (x,,x k i N N, (x,, x k R k, i k K (N (x,, x k dx k (N k + DetK (N (x,, x k III Déterminants et intégrales 2 Soient N 2 et (x,, x N R n h N est un polynôme de degré N unitaire et donc h N x N est un polynôme de degré au plus N 2 La famille (h,, h N 2 est une base de R N 2 [X] (famille de N polynômes de degrés deux à N 2 deux distincts et inférieurs à N Donc il existe (α,,α N 2 R N tel que h N X N α k h k ou encore tel N 2 que h N α k h k X N On effectue alors sur le déterminant à calculer la transformation C N C N Cette transformation ne modifie pas la valeur du déterminant proposé et on obtient h (x h N 2 (x h N (x h (x h N 2 (x x N h (x 2 h N 2 (x 2 h N (x 2 h (x 2 h N 2 (x 2 x N 2 h (x N h N 2 (x N h N (x N h (x N h N 2 (x N xn N N k α k C k http ://wwwmaths-francefr 6 c Jean-Louis Rouget, 29 Tous droits réservés
7 On réitère sur les colonnes C N,, C 2 et en tenant compte de C h (x h N 2 (x h N (x h (x 2 h N 2 (x 2 h N (x 2 h (x N h N 2 (x N h N (x N ce qui reste conventionnellement vrai quand N, on obtient Van(x,, x N i<j N N N, (x,, x N R N, det(h j (x i i,j N Van(x,,x N (x j x i i<j N (x j x i 2 Pour k N, d d d N ψ (N N (x,,x N d d d N ψ (N (x,, x N e N i x2 i d d d N i<j N e N 2 i x2 i (det(h j (x i d d d i,j N N ( 2 det e x 2 j 2 2 h j (x i (det(φ j (x i i,j N dj i,j N det ((φ k (x i i,k N t (φ k (x j j,k N ( N ( Det φ k (x i φ k (x j Det( K (N (x i, x j i,j N k DetK (N (x,, x N La formule de l énoncé est donc vraie quan N i,j N Soi, N Supposons que φ (N k d d (x,, x k DetK (N (x,, x k Alors N φ (N k d d (x +,, x k N (N (k Le résultat est démontré par récurrence (N (k N N, (x,, x N R N, k, N, ψ (N k d d (x,, x k, y dy N (x j x i 2 DetK (N (x,, x k, y dy (par hypothèse de récurrence DetK (N (x,, x k (d après la question 9 d d N φ (N k (x,, x k DetK (N (x,,x k http ://wwwmaths-francefr 7 c Jean-Louis Rouget, 29 Tous droits réservés
COURBES EN POLAIRE. I - Définition
Y I - Définition COURBES EN POLAIRE On dit qu une courbe Γ admet l équation polaire ρ=f (θ), si et seulement si Γ est l ensemble des points M du plan tels que : OM= ρ u = f(θ) u(θ) Γ peut être considérée
Διαβάστε περισσότερα* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Courbes en polaires Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Διαβάστε περισσότεραTD 1 Transformation de Laplace
TD Transformation de Lalace Exercice. On considère les fonctions suivantes définies sur R +. Pour chacune de ces fonctions, on vous demande de déterminer la transformée de Lalace et de réciser le domaine
Διαβάστε περισσότεραLa Déduction naturelle
La Déduction naturelle Pierre Lescanne 14 février 2007 13 : 54 Qu est-ce que la déduction naturelle? En déduction naturelle, on raisonne avec des hypothèses. Qu est-ce que la déduction naturelle? En déduction
Διαβάστε περισσότεραTABLE DES MATIÈRES. 1. Formules d addition Formules du double d un angle Formules de Simpson... 7
ième partie : TRIGONOMETRIE TABLE DES MATIÈRES e partie : TRIGONOMETRIE...1 TABLE DES MATIÈRES...1 1. Formules d addition.... Formules du double d un angle.... Formules en tg α... 4. Formules de Simpson...
Διαβάστε περισσότεραX x C(t) description lagrangienne ( X , t t t X x description eulérienne X x 1 1 v x t
X 3 x 3 C Q y C(t) Q t QP t t C configuration initiale description lagrangienne x Φ ( X, t) X Y x X P x P t X x C(t) configuration actuelle description eulérienne (, ) d x v x t dt X 3 x 3 C(t) F( X, t)
Διαβάστε περισσότερα[ ] ( ) ( ) ( ) Problème 1
GEL-996 Analyse des Signaux Automne 997 Problème 997 Examen Final - Solutions Pour trouver la réponse impulsionnelle de e iruit on détermine la réponse fréquentielle puis on effetue une transformée de
Διαβάστε περισσότεραCorrigé de la seconde épreuve de l agrégation interne de mathématiques Février Transformée de Laplace et théorème d Ikehara
Corrigé de la seconde épreuve de l agrégation interne de mathématiques Février 2 Transformée de Laplace et théorème d Ikehara I. La transformée de Laplace 1. Un premier exemple Dans cette question la fonction
Διαβάστε περισσότεραLogique Propositionnelle. Cédric Lhoussaine. Janvier 2012
Logique Propositionnelle Automates et Logiques Cédric Lhoussaine University of Lille, France Janvier 2012 1 Syntaxe 2 Sémantique 3 Propriétés de la logique propositionnelle 4 Déduction naturelle Le système
Διαβάστε περισσότεραCorrigé exercices série #1 sur la théorie des Portefeuilles, le CAPM et l APT
Corrigé exercices série # sur la théorie des ortefeuilles, le CA et l AT Exercice N et Q ayant la même espérance de rentabilité, formons un portefeuille de même espérance de rentabilité, de poids investi
Διαβάστε περισσότεραΘέμα εργασίας: Η διάκριση των εξουσιών
Μάθημα: Συνταγματικό Δίκαιο Εξάμηνο: Α Υπεύθυνος καθηγητής: κ. Δημητρόπουλος Ανδρέας Θέμα εργασίας: Η διάκριση των εξουσιών Ονοματεπώνυμο: Τζανετάκου Βασιλική Αριθμός μητρώου: 1340200400439 Εξάμηνο: Α
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. (Σχολείο).
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Ενιαίο Πρόγραμμα Σπουδών των Ξένων Γλωσσών Πιλοτική Εφαρμογή 2011-12 Εξετάσεις Γυμνασίου Δείγμα εξέτασης στη Γαλλική ΕΠΙΠΕΔΟ Α1+ στην 6βαθμη κλίμακα
Διαβάστε περισσότεραPlanches pour la correction PI
Planches pour la correction PI φ M =30 M=7,36 db ω 0 = 1,34 rd/s ω r = 1,45 rd/s planches correcteur.doc correcteur PI page 1 Phases de T(p) et de correcteurs PI τ i =10s τ i =1s τ i =5s τ i =3s ω 0 ω
Διαβάστε περισσότεραPlasticité/viscoplasticité 3D
Ecoulement viscoplastique ε. p Elasticité f 0 Contraintes Plasticité/viscoplasticité 3D Georges Cailletaud MINES ParisTech Centre des Matériaux, CNRS UMR 7633 Plan 1 Les ingrédients 2 Ecoulement viscoplastique
Διαβάστε περισσότεραΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΑ ΓΑΛΛΙΚΑ
ΤΑΞΗ Α ΓΥΜΝΑΣΙΟΥ (Τµήµα Α1 και Α2) Méthode : Action.fr-gr1, σελ. 8-105 (Ενότητες 0, 1, 2, 3 µε το λεξιλόγιο και τη γραµµατική που περιλαµβάνουν) Οι διάλογοι και οι ερωτήσεις κατανόησης (pages 26-27, 46-47,
Διαβάστε περισσότεραΒασιλική Σαμπάνη 2013. Μαντάμ Μποβαρύ: Αναπαραστάσεις φύλου και σεξουαλικότητας
Βασιλική Σαμπάνη 2013 Μαντάμ Μποβαρύ: Αναπαραστάσεις φύλου και σεξουαλικότητας 200 Διαγλωσσικές Θεωρήσεις μεταφρασεολογικός η-τόμος Interlingual Perspectives translation e-volume ΜΑΝΤΑΜ ΜΠΟΒΑΡΥ: ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ
Διαβάστε περισσότεραPlan. Analyse tensorielle. Principe méthodologique. Tenseurs. Scalaires constante numérique, 0, dτ, champ scalaire. Vecteurs contravariants
1 / 36 Plan 2 / 36 Principe de covariance Analyse tensorielle Erwan Penchèvre 30 mars 2015 Vecteurs et tenseurs Algèbre tensorielle Pseudo-tenseurs Connexion affine et changement de coordonnées La dérivée
Διαβάστε περισσότεραPhotoionization / Mass Spectrometry Detection for Kinetic Studies of Neutral Neutral Reactions at low Temperature: Development of a new apparatus
Photoionization / Mass Spectrometry Detection for Kinetic Studies of Neutral Neutral Reactions at low Temperature: Development of a new apparatus , 542, id.a69 X 3 Σg Nouvelles surfaces d'énergie potentielle
Διαβάστε περισσότεραANNEXE 1. Solutions des exercices. Exercice 1.1 a) Cette EDP est linéaire, non homogène et d ordre 2. Pour montrer que l EDP est linéaire, considérons
ANNEXE 1 Solutions des exercices. Chapitre 1 Exercice 1.1 a Cette EDP est linéaire, non homogène et d ordre. Pour montrer que l EDP est linéaire, considérons l opérateur u Lu u x x y. Celui-ci est linéaire.
Διαβάστε περισσότεραΗ ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΚΑΙ ERP
Η ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΚΑΙ ERP 2 1 ΠΛΑΙΣΙΟ ΓΙΑΤΙ ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΚΑΙ ErP? Αντιμετωπίζοντας την κλιματική αλλαγή, διασφαλίζοντας την ασφάλεια της παροχής ενέργειας2 και την αύξηση της ανταγωνιστικότητα
Διαβάστε περισσότεραBACCALAURÉATS GÉNÉRAL ET TECHNOLOGIQUE
BACCALAURÉATS GÉNÉRAL ET TECHNOLOGIQUE SESSION 2019 GREC MODERNE LANGUE VIVANTE 2 Séries ES et S Durée de l épreuve : 2 h Coefficient : 2 Série L langue vivante obligatoire (LVO) Durée de l épreuve : 3h
Διαβάστε περισσότεραPhilologie et dialectologie grecques Philologie et dialectologie grecques Conférences de l année
Annuaire de l'école pratique des hautes études (EPHE), Section des sciences historiques et philologiques Résumés des conférences et travaux 145 2014 2012-2013 Philologie et dialectologie grecques Philologie
Διαβάστε περισσότεραBusiness Order. Order - Placing. Order - Confirming. Formal, tentative
- Placing Nous considérons l'achat de... Formal, tentative Nous sommes ravis de passer une commande auprès de votre entreprise pour... Nous voudrions passer une commande. Veuillez trouver ci-joint notre
Διαβάστε περισσότεραThèe : Calul d' erreur Lien vers les énonés des eeries : Marel Délèze Edition 07 https://www.deleze.nae/arel/se/applaths/sud/alul_erreur/_a_-alul_erreur.pdf Corrigé de l'eerie - Calulons d'abord la valeur
Διαβάστε περισσότεραSession novembre 2009
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ MINISTÈRE GREC DE L ÉDUCATION NATIONALE ET DES CULTES CERTIFICATION EN LANGUE FRANÇAISE NIVEAU ÉPREUVE B1 sur l échelle proposée
Διαβάστε περισσότεραΤΕΧΝΙΤΗΣ ΠΕΤΡΑΣ. Ήπειρος (Ελλάδα)
Ονοματεπώνυμο ΚΑΛΑΜΠΟΚΗΣ ΓΕΩΡΓΙΟΣ 1969 Μιχαλίτσι (Ήπειρος) Έτη δραστηριότητας ως τεχνίτης Δουλεύει από 15 ετών Ήπειρος (Ελλάδα) Οργανώνει το συνεργείο κατά περίπτωση Έμαθε την τέχνη από τον πατέρα και
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΜΙΑ ΕΥΡΕΙΑ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΚΑΤΟΧΥΡΩΣΗΣ ΤΩΝ ΠΟΛΙΤΙΚΩΝ ΔΙΚΑΙΩΜΑΤΩΝ ΤΙΤΛΟΣ ΠΡΩΤΟΣ ΦΟΡΕΙΣ ΤΩΝ ΠΟΛΙΤΙΚΩΝ ΔΙΚΑΙΩΜΑΤΩΝ
Περιεχόμενα 191 ΠΕΡΙΕΧΟΜΕΝΑ Σελ. ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ...9 PREFACE (ΠΡΟΛΟΓΟΣ)...13 ΠΡΟΛΕΓΟΜΕΝΑ... 17 ΣΥΝΤΟΜΟΓΡΑΦΙΕΣ...21 Ι. Ξενόγλωσσες...21 ΙΙ. Ελληνικές... 22 ΣΥΝΟΠΤΙΚΟ ΔΙΑΓΡΑΜΜΑ...25 ΕΙΣΑΓΩΓΗ... 29 Ι.
Διαβάστε περισσότεραΥ-ΓΛΩ 12 Φωνητική-Φωνολογία με εφαρμογές στη Γαλλική γλώσσα. Y-GLO-12 Phonétique-Phonologie Applications à la langue française
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υ-ΓΛΩ 12 Φωνητική-Φωνολογία με εφαρμογές στη Γαλλική γλώσσα Y-GLO-12 Phonétique-Phonologie Applications à la langue française Ενότητα
Διαβάστε περισσότεραZakelijke correspondentie Bestelling
- plaatsen Εξετάζουμε την αγορά... Formeel, voorzichtig Είμαστε στην ευχάριστη θέση να δώσουμε την παραγγελία μας στην εταιρεία σας για... Θα θέλαμε να κάνουμε μια παραγγελία. Επισυνάπτεται η παραγγελία
Διαβάστε περισσότεραModule #8b Transformation des contraintes et des déformations 2D-3D : Cercle de Mohr
Introduction Mohr D ( σ) σ&ɛ planes Mohr 3D ( σ) ɛ Mesures de ɛ Résumé Module #8b Transformation des contraintes et des déformations D-3D : Cercle de Mohr (CIV1150 - Résistance des matériaux) Enseignant:
Διαβάστε περισσότεραΤεχνικές του δράματος και Διδακτική των ζωντανών γλωσσών. Η συμβολή τους στη διαμόρφωση διαπολιτισμικής συνείδησης
Αντώνης Χασάπης 839 Αντώνης Χασάπης Εκπαιδευτικός, Μεταπτυχιακός ΠΔΜ, Ελλάδα Résumé Dans le domaine de la didactique des langues vivantes l intérêt de la recherche scientifique se tourne vers le développement
Διαβάστε περισσότεραA8-0176/54. Κείµενο που προτείνει η Επιτροπή. επίπεδα.
1.7.2015 A8-0176/54 Τροπολογία 54 Michèle Rivasi εξ ονόµατος της Οµάδας Verts/ALE Josu Juaristi Abaunz εξ ονόµατος της Οµάδας GUE/NGL Piernicola Pedicini εξ ονόµατος της Οµάδας EFDD Έκθεση A8-0176/2015
Διαβάστε περισσότεραΕπιτραπέζιος Η/Υ ASUS M12AD and M52AD Εγχειρίδιο χρήστη
Επιτραπέζιος Η/Υ ASUS M12AD and M52AD Εγχειρίδιο χρήστη M12AD M52AD GK9559 Πρώτη Έκδοση Ιούλιος 2014 Copyright 2014 ASUSTeK Computer Inc. Διατηρούνται όλα τα δικαιώματα. Απαγορεύεται η αναπαραγωγή οποιουδήποτε
Διαβάστε περισσότεραΚΕ-ΓΛΩ-21 Αξιολόγηση δεξιοτήτων επικοινωνίας στις ξένες γλώσσες. KE-GLO-21 Évaluation des compétences de communication en langue étrangère
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΚΕ-ΓΛΩ-21 Αξιολόγηση δεξιοτήτων επικοινωνίας στις ξένες γλώσσες KE-GLO-21 Évaluation des compétences de communication en langue étrangère
Διαβάστε περισσότεραΕπιτραπέζιος Η/Υ K30AM / K30AM-J Εγχειρίδιο χρήστη
Επιτραπέζιος Η/Υ K30AM / K30AM-J Εγχειρίδιο χρήστη GK9380 Ελληνικα Πρώτη Έκδοση Μάιος 2014 Copyright 2014 ASUSTeK Computer Inc. Διατηρούνται όλα τα δικαιώματα. Απαγορεύεται η αναπαραγωγή οποιουδήποτε τμήματος
Διαβάστε περισσότεραΤΟ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ
8 Raimon Novell ΤΟ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ Η ΜΑΡΙΑΝΉ ΠΑΙΔΑΓΩΓΙΚΗ ΑΠΑΝΤΗΣΗ ΜΕ ΒΑΣΗ ΤΙΣ ΡΙΖΕΣ ΚΑΙ ΤΗΝ ΠΑΡΑΔΟΣΗ ΤΗΣ ΚΑΙ ΟΙ ΣΥΓΧΡΟΝΕΣ ΠΡΟΚΛΗΣΕΙΣ 1.- ΑΠΟΣΤΟΛΗ, ΧΑΡΙΣΜΑ, ΠΑΡΑΔΟΣΗ ΚΑΙ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ
Διαβάστε περισσότεραRéseau de diffraction
Réseau de diffraction Réseau de diffraction Structure de base: fentes multiples Rappel:diffraction par fentes multiples θ Onde plane incidente d a θ 0. θ I( norm. sin ( Nγa / sin ( γd / sin ( γa / ( γd
Διαβάστε περισσότεραΗαχόρταγη μικρή κάμπια. La chenille qui fait des trous. Ηαχόρταγη μικρή κάμπια. La chenille qui fait des trous
Ηαχόρταγη μικρή κάμπια La chenille qui fait des trous Ηαχόρταγη μικρή κάμπια La chenille qui fait des trous Μια νύχτα με φεγγάρι κάποιο μικρό αυγoυλάκι ήταν ακουμπισμένο πάνω σ ένα φύλλο. Dans la lumière
Διαβάστε περισσότεραLes Mondes Fantastiques Melun Ville d Europe 2016
Les Mondes Fantastiques Melun Ville d Europe 2016 E Participation grecque à MVE 2016 École Jeanne d Arc Melun Ville d Europe 2016 Κόσμοι της Φαντασίας Θα συμμετάσχουμε και φέτος, για 24 η χρονιά, στο Ευρωπαϊκό
Διαβάστε περισσότεραΔΙΔΑΚΤΙΚΗ ΤΩΝ ΞΕΝΩΝ ΓΛΩΣΣΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΞΕΝΩΝ ΓΛΩΣΣΩΝ Ενότητα 5: Structuro-Globale Audio-Visuelle (SGAV) ΚΙΓΙΤΣΙΟΓΛΟΥ-ΒΛΑΧΟΥ ΑΙΚΑΤΕΡΙΝΗ ΤΜΗΜΑ ΓΑΛΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ
Διαβάστε περισσότεραLes intégrales et fonctions elliptiques
Les intégrales et fonctions elliptiques Marc Renaud To cite this version: Marc Renaud. Les intégrales et fonctions elliptiques. Rapport LAAS n 464. 04. HAL Id: hal-05333 https://hal.laas.fr/hal-05333
Διαβάστε περισσότεραΦλώρα Στάμου, Τριαντάφυλλος Τρανός, Σωφρόνης Χατζησαββίδης
Φλώρα Στάμου, Τριαντάφυλλος Τρανός, Σωφρόνης Χατζησαββίδης. H «ανάγνωση» και η «παραγωγή» πολυτροπικότητας σε μαθησιακό περιβάλλον: πρώτες διαπιστώσεις απο μια διδακτική εφαρμογή. Μελέτες για την ελληνική
Διαβάστε περισσότεραPlutarque : Vie de Solon, 19 Le constituant (594)
1 Plutarque : Vie de Solon, 19 Le constituant (594) Ἔτι δ ὁρῶν τὸν δῆμον οἰδοῦντα καὶ θρασυνόμενον τῇ τῶν χρεῶν ἀφέσει, δευτέραν προσκατένειμε βουλήν, ἀπὸ φυλῆς ἑκάστης (τεσσάρων οὐσῶν) ἑκατὸν ἄδρας ἐπιλεξάμενος,
Διαβάστε περισσότεραΥ-ΓΛΩ 12 Φωνητική-Φωνολογία με εφαρμογές στη Γαλλική γλώσσα. Y-GLO-12 Phonétique-Phonologie Applications à la langue française
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υ-ΓΛΩ 12 Φωνητική-Φωνολογία με εφαρμογές στη Γαλλική γλώσσα Y-GLO-12 Phonétique-Phonologie Applications à la langue française Ενότητα
Διαβάστε περισσότεραBACCALAURÉATS GÉNÉRAL ET TECHNOLOGIQUE
BACCALAURÉATS GÉNÉRAL ET TECHNOLOGIQUE SESSION 2016 GREC MODERNE MARDI 21 JUIN 2016 LANGUE VIVANTE 2 Séries ES et S Durée de l épreuve : 2 heures coefficient : 2 Série L Langue vivante obligatoire (LVO)
Διαβάστε περισσότεραΔΙΔΑΚΤΙΚΗ ΤΩΝ ΞΕΝΩΝ ΓΛΩΣΣΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΞΕΝΩΝ ΓΛΩΣΣΩΝ Ενότητα 4: Méthode Audio-Orale (MAO) ΚΙΓΙΤΣΙΟΓΛΟΥ-ΒΛΑΧΟΥ ΑΙΚΑΤΕΡΙΝΗ ΤΜΗΜΑ ΓΑΛΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ
Διαβάστε περισσότεραΜετανάστευση Στέγαση. Στέγαση - Ενοικίαση. Θα ήθελα να ενοικιάσω ένα. Για να δηλώσετε ότι θέλετε να ενοικιάσετε κάτι.
- Ενοικίαση γαλλικά Je voudrais louer. Για να δηλώσετε ότι θέλετε να ενοικιάσετε κάτι une chambre un appartement un studio une maison individuelle une maison jumelée une maison mitoyenne Combien coûte
Διαβάστε περισσότεραΑΝΑΚΟΙΝΩΣΗ ΠΡΟΣ ΤΑ ΜΕΛΗ
ΕΥΡΩΠΑΪΚΟ ΚΟΙΝΟΒΟΥΛΙΟ 2009-2014 Επιτροπή Αναφορών 20.9.2013 ΑΝΑΚΟΙΝΩΣΗ ΠΡΟΣ ΤΑ ΜΕΛΗ Θέμα: Αναφορά 1504/2012, της Chantal Maynard, γαλλικής ιθαγένειας, σχετικά με διπλή φορολόγηση της γερμανικής σύνταξής
Διαβάστε περισσότεραQUALITES DE VOL DES AVIONS
QUALITES DE OL DES AIONS IPSA Philippe GUIETEAU ONERA/DPRS/PRE Tel : 69 93 63 54 : 69 93 63 Eil : philippe.uicheteu@oner.r Qulités de vol des vions (/4) 4 Petits ouveents lonitudinu 4. Principe de linéristion
Διαβάστε περισσότεραΣύντομη ιστορική αναδρομή στο εργατικό κίνημα του Κεμπέκ
Σύντομη ιστορική αναδρομή στο εργατικό κίνημα του Κεμπέκ Η βιομηχανοποίηση του Κεμπέκ τον 19 ο αιώνα, έγινε σε συνθήκες απόλυτης ασυδοσίας της εργοδοσίας. Η κυρίαρχη αστική τάξη ήθελε το ρόλο του κράτους
Διαβάστε περισσότεραIntroduction à l analyse numérique
Introduction à l analyse numérique Jacques Rappaz Marco Picasso Presses polytechniques et universitaires romandes Les auteurs et l éditeur remercient l Ecole polytechnique fédérale de Lausanne dont le
Διαβάστε περισσότεραΔΙΔΑΚΤΙΚΗ ΤΩΝ ΞΕΝΩΝ ΓΛΩΣΣΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΞΕΝΩΝ ΓΛΩΣΣΩΝ Ενότητα 3 : Méthode Directe ΚΙΓΙΤΣΙΟΓΛΟΥ-ΒΛΑΧΟΥ ΑΙΚΑΤΕΡΙΝΗ ΤΜΗΜΑ ΓΑΛΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης
Διαβάστε περισσότεραMourad Bellassoued 1
ESAIM: Control, Optimisation and Calculus of Variations September 001, Vol. 6, 561 59 URL: http://www.emath.fr/cocv/ UNICITÉ ET CONTRÔLE POUR LE SYSTÈMEDELAMÉ Mourad Bellassoued 1 Abstract. In this paper,
Διαβάστε περισσότεραMontage - Raccordement Implantation EURO-RELAIS MINI & BOX. Mini & Box
Montage - Raccordement Implantation EURO-RELAIS MINI & BOX 3 Fiche technique EURO-RELAIS MINI & BOX DESCRIPTIF La borne Euro-Relais MINI est en polyester armé haute résistance totalement neutre à la corrosion
Διαβάστε περισσότεραImmigration Documents
- Général Πού μπορώ να βρω τη φόρμα για ; Demander où trouver un formulaire Πότε εκδόθηκε το [έγγραφο] σας; Demander quand un document a été délivré Πού εκδόθηκε το [έγγραφο] σας; Demander où un document
Διαβάστε περισσότεραΥ-ΓΛΩ 12 Φωνητική-Φωνολογία με εφαρμογές στη Γαλλική γλώσσα. Y-GLO-12 Phonétique-Phonologie Applications à la langue française
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Υ-ΓΛΩ 12 Φωνητική-Φωνολογία με εφαρμογές στη Γαλλική γλώσσα Y-GLO-12 Phonétique-Phonologie Applications à la langue française Ενότητα
Διαβάστε περισσότεραMécanique Analytique et CFAO. Travaux pratiques de mécanique analytique. Simulation en temps réel du mouvement d un pendule double
Méanique Analtique Travaux pratiques de méanique analtique Simulation en temps réel du mouvement d un pendule double 1 Méanique Analtique Mise en situation... Positions: X l A m Point A: (l sin, -l os
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. (Σχολείο).
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Ενιαίο Πρόγραμμα Σπουδών των Ξένων Γλωσσών Πιλοτική Εφαρμογή 2011-12 Εξετάσεις Γυμνασίου Δείγμα εξέτασης στη Γαλλική ΕΠΙΠΕΔΟ Α2 στην 6βαθμη κλίμακα
Διαβάστε περισσότεραVotre système de traite vous parle, écoutez-le!
Le jeudi 28 octobre 2010 Best Western Hôtel Universel, Drummondville Votre système de traite vous parle, écoutez-le! Bruno GARON Conférence préparée avec la collaboration de : Martine LABONTÉ Note : Cette
Διαβάστε περισσότεραBACCALAURÉAT GÉNÉRAL
BACCALAURÉAT GÉNÉRAL SESSION 2017 GREC MODERNE LANGUE VIVANTE 1 ÉPREUVE DU LUNDI 19 JUIN 2017 Durée de l épreuve : 3 heures Séries ES/S : coefficient 3 Série L Langue Vivante Obligatoire (LVO) : coefficient
Διαβάστε περισσότεραSTE 127 Assistance administrative mutuelle en matière fiscale (Annexe A), état au 28.VIII Impôt sur le chiffre d affaires des micro
Unis d Amérique Convention telle qu amendée par son Protocole de 2010 STE 127 Assistance administrative mutuelle en matière fiscale (Annexe A), état au 28.VIII.2015 Impôt sur le chiffre d affaires des
Διαβάστε περισσότεραΠολλά έχουν γραφτεί και ειπωθεί σχετικά με. Développement de votre ouverture pour décrire précisément de quoi traite votre thèse
- Introduction Dans ce travail / cet essai / cette thèse, j'examinerai / j'enquêterai / j'évaluerai / j'analyserai... générale pour un essai ou une thèse Σε αυτήν την εργασία/διατριβή θα αναλύσω/εξετάσω/διερευνήσω/αξιολογήσω...
Διαβάστε περισσότεραEUROPEAN CONFERENCE OF PRESIDENTS OF PARLIAMENT LIMASSOL, CYPRUS, 10-12 JUNE 2010
EUROPEAN CONFERENCE OF PRESIDENTS OF PARLIAMENT LIMASSOL, CYPRUS, 10-12 JUNE 2010 Closing address by the President of the House of Representatives, Mr. Marios Garoyian Mr. President of the Parliamentary
Διαβάστε περισσότεραΣΥΜΦΩΝΙΑ - ΠΛΑΙΣΙΟ. Αθήνα, 3-4 Ιουλίου T:#211#770#0#670! F:#211#770#0#671! W:!www.gmlaw.gr! Ακαδημίας!8,!10671!Αθήνα!
Αθήνα, 3-4 Ιουλίου 2014 T:#211#770#0#670! F:#211#770#0#671! E:!info@gmlaw.gr! W:!www.gmlaw.gr! Ακαδημίας!8,!10671!Αθήνα! ΕΙΔΙΚΟΤΕΡΑ ΖΗΤΗΜΑΤΑ ΚΑΤΑ ΤΗΝ ΥΠΟΛΟΙΗΣΗ ΤΗΣ ΣΥΜΦΩΝΙΑΣ ΠΛΑΙΣΙΟ Δοµή Εισήγησης I. Επιλογή
Διαβάστε περισσότεραΟ Στρατής Πασχάλης, µεταφραστής του Ρακίνα
Άννα Ταµπάκη Καθηγήτρια στο Τµήµα Θεατρικών Σπουδών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Ο Στρατής Πασχάλης, µεταφραστής του Ρακίνα Ι. Η γνωριµία µου µε τον Ρακίνα σε τρεις χρονικότητες Χρόνος
Διαβάστε περισσότεραquelles différences?
Développements asymptotiques raccordés et développement multi-échelle, quelles différences? G. VIAL IRMAR, ENS de Cachan, antenne de Bretagne avec S. Tordeux et M. Dauge 2 e journée d équipe d analyse
Διαβάστε περισσότεραJeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
Διαβάστε περισσότεραΧΡΙΣΤΟΥΓΕΝΝΙΑΤΙΚΗ ΔΙΑΚΟΣΜΗΣΗ ΚΑΤΑΣΤΗΜΑΤΩΝ
ΧΡΙΣΤΟΥΓΕΝΝΙΑΤΙΚΗ ΔΙΑΚΟΣΜΗΣΗ ΚΑΤΑΣΤΗΜΑΤΩΝ Αυτήν την εβδομάδα στήνουμε την χριστουγεννιάτικη διακόσμηση στα καταστήματα: διαφημιστικά, κουτιά δώρου και κρεμαστά διακοσμητικά. Η πρόταση είναι διαθέσιμη στον
Διαβάστε περισσότεραMicroscopie photothermique et endommagement laser
Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université
Διαβάστε περισσότεραPourriez-vous confirmer Μπορείτε la date παρακαλώ d'expédition να επιβε et le prix par fax? αποστολής και την τιμή με Votre commande sera que possible
订单 - 配售 Nous considérons l'achat Εξετάζουμε de... την αγορά... 正式, 试探性 Nous sommes ravis de passer Είμαστε une στην commande ευχάριστη θέσ auprès de votre entreprise παραγγελία pour... μας στην εταιρε
Διαβάστε περισσότεραR 3. dx = e f (e 1 du + e 2 dv)
j. differential geometry 79 008 479-516 SURFACES ISOTROPES DE O ET SYSTÈMES INTÉGRABLES Idrisse Khemar Résumé We define a notion of isotropic surfaces in O, i.e., on which some canonical symplectic forms
Διαβάστε περισσότεραé r q Pr té t r s r t r st r rs té s r t P r s
é r q Pr té t r s r t r st r rs té s r t P r s t r ss s t s rs t é r q s s à s s t s ét ts rs rs s s str é rs t r t s été ré sé s s t s t s t té é s rs r à s s str é rs t r rs rés t q q s t s t s t é r
Διαβάστε περισσότεραCouplage fort de deux oscillateurs
Couplage fort de deux oscillateurs Corrigé Première partie Circuits électriques couplés Equations différentielles couplées. R i + C R i + C i + L di + M di = e(t i + L di + M di =. En dérivant par rapport
Διαβάστε περισσότεραΠανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή
Διαβάστε περισσότεραLycée Palissy Agen France Istituto Statale di Istruzione Superiore "Malignani Cervignano Italie
IES Rio Trubia Trubia Espagne Lycée Palissy Agen France Istituto Statale di Istruzione Superiore "Malignani Cervignano Italie Lycée Pédagogique Al. Vlahuta Bârlad Roumanie 3 Geniko Lyceum Galatsi Athènes
Διαβάστε περισσότεραLeçon 3. L'article défini (singulier) L'article indéfini La déclinaison des substantifs (singulier)
Leçon 3 L'article défini (singulier) L'article indéfini La déclinaison des substantifs (singulier) Στην Καφετέρια 1 Γειά σας. Τι θα π άρετε π αρακαλώ; Θα ήθελα μία ζεστή σοκολάτα χωρίς ζάχαρη. Εγώ θέλω
Διαβάστε περισσότεραΘεσµοί και Ιδεολογία στη νεοελληνική κοινωνία 15 ος - 19 ος αι.
ΕΘΝΙΚΟ Ι ΡΥΜΑ ΕΡΕΥΝΩΝ ΚΕΝΤΡΟ ΝΕΟΕΛΛΗΝΙΚΩΝ ΕΡΕΥΝΩΝ Θεσµοί και Ιδεολογία στη νεοελληνική κοινωνία 15 ος - 19 ος αι. ΠΡΩΤΟΣ ΑΠΟΛΟΓΙΣΜΟΣ ΕΝΟΣ ΕΡΕΥΝΗΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΑΘΗΝΑ 2004 Πρόλογος Το φθινόπωρο του 2000
Διαβάστε περισσότεραr r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Διαβάστε περισσότερα: 4 4 6 6 60 61............................................................................................................ : 1 16 1 4 41 4 4 0 6 6 6....................................................................................
Διαβάστε περισσότεραΚεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
Διαβάστε περισσότεραΤεστ Κατάταξης 1 Grading Test 1
HELLENIC CULTURE CENTRE - Education, Language and Culture www.hcc.edu.gr, e-mail: Ifigenia@hcc.edu.gr, Tel.: (+30) 210 5238149, Fax: (+30) 210 8836494 Τεστ Κατάταξης 1 Grading Test 1 Οδηγίες Πρέπει να
Διαβάστε περισσότεραVous pouvez me montrer où c'est sur le plan? Vous pouvez me montrer où c'est sur le plan? Παράκληση για ένδειξη συγκεκριμένης τοποθεσίας σε χάρτη
- Τόπος Je suis perdu. Όταν δεν ξέρετε που είστε Je suis perdu. Vous pouvez me montrer où c'est sur le plan? Vous pouvez me montrer où c'est sur le plan? Παράκληση για ένδειξη συγκεκριμένης ς σε χάρτη
Διαβάστε περισσότεραΠρόγραμμα ταινιών Programme de films Οι πιο μικρές μέρες Les Jours les plus courts
Πρόγραμματαινιών Programmedefilms Οιπιομικρέςμέρες LesJourslespluscourts Πέμπτη19Δεκεμβρίου2013 Jeudi19décembre2013 InstitutfrançaisdeThessalonique SalleNehama Débutdesprojections:10h00/Έναρξηπροβολών:10.00πμ
Διαβάστε περισσότεραΣτερέωση του επίπλου στον τοίχο Προσοχή, η στερέωση πρέπει να γίνει από κάποιον επαγγελματία διότι απαιτούνται σφήνες που να ταιριάζουν στον τοίχο σας
Στερέωση του επίπλου στον τοίχο Προσοχή, η στερέωση πρέπει να γίνει από κάποιον επαγγελματία διότι απαιτούνται σφήνες που να ταιριάζουν στον τοίχο σας. Προστατέψτε το περιβάλλον διαχωρίζοντας τα απορρίμματα
Διαβάστε περισσότεραTD 1 : Déformations. Exercice 1 : x Figure 1 : disque soumis à glissement simple
TD 1 : Déformations > Exercice 1 : x 1-1 x 1 - - -1 1 Figure 1 : disque soumis à glissement simple Un disque plat est soumis à du glissement simple (Figure 1). Calculer : le tenseur gradient de la transformation
Διαβάστε περισσότεραΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ. Εκπαιδευτική εφαρμογή Διδασκαλία τραγουδιού της σύγχρονης γαλλικής μουσικής Dernière danse - INDILA
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Εκπαιδευτική εφαρμογή Διδασκαλία τραγουδιού της σύγχρονης γαλλικής μουσικής Dernière danse - INDILA 1. ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Εισηγήτρια : Αλεξάνδρα Κουρουτάκη, ΠΕ 05 Γαλλικής φιλολογίας, ΠΕ
Διαβάστε περισσότεραLicence 1 Sciences & Technologies Algèbre - Semestre 2 Université du Littoral - Côte d'opale, La Citadelle Laurent SMOCH Janvier 2009 Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville Université
Διαβάστε περισσότεραΘα ήθελα να κλείσω τον τραπεζικό μου λογαριασμό.
- Γενικά Est-ce que je peux retirer de l'argent en [pays] sans payer de commission? Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Πληροφόρηση σχετικά με το αν πρέπει να πληρώσετε ποσοστά
Διαβάστε περισσότεραATELIER DECOUVERTE GYMNASTIQUE ACROBATIQUE
P sur le dos, jambes fléchies avec les genoux écartés à la largeur des épaules de V. V debout avec les jambes de part et d'autre de P. Mains posées sur les genoux de P et regard sur les mains. V prend
Διαβάστε περισσότεραTrès formel, le destinataire a un titre particulier qui doit être utilisé à la place de son nom
- Ouverture Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Très formel, le destinataire a un titre particulier qui doit être utilisé à la place de son nom Αγαπητέ κύριε, Formel, destinataire masculin,
Διαβάστε περισσότεραΑΝΝΑ ΤΑΜΠΑΚΗ. Ιστορία και θεωρία της µετάφρασης 18 ος αιώνας Ο Διαφωτισµός
ΑΝΝΑ ΤΑΜΠΑΚΗ Ιστορία και θεωρία της µετάφρασης 18 ος αιώνας Ο Διαφωτισµός Αθήνα 1995 Η εργασία αυτή εκπονήθηκε στο πλαίσιο του προγράµµατος του Κέντρου (τώρα Ινστιτούτου) Νεοελληνικών Ερευνών του Εθνικού
Διαβάστε περισσότεραINTRODUCTION À LA GRAMMAIRE DE L'ÉNONCIATION
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ INTRODUCTION À LA GRAMMAIRE DE L'ÉNONCIATION Unité 6 : Les indices de l énonciation : les embrayeurs / les déictiques Dr. Simos P. Grammenidis
Διαβάστε περισσότεραPersonnel Lettre. Lettre - Adresse
- Adresse Κυρ. Ιωάννου Οδ. Δωριέων 34 Τ.Κ 8068, Λάρνακα Format adresse postale en France : Jeremy Rhodes 212 Silverback Drive California Springs CA 92926 Format adresse postale aux États-Unis : nom du
Διαβάστε περισσότεραINTRODUCTION À LA GRAMMAIRE DE L'ÉNONCIATION
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ INTRODUCTION À LA GRAMMAIRE DE L'ÉNONCIATION Unité 3 : Enseignement de la grammaire : mythes et réalité Dr. Simos P. Grammenidis Professeur,
Διαβάστε περισσότεραRadio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Διαβάστε περισσότεραd dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Διαβάστε περισσότεραSTE 127 Assistance administrative mutuelle en matière fiscale (Annexe A), état au 22.XII Impôt sur le chiffre d affaires des micro
d Amérique Annexes, Protocole et Convention telle qu amendée par son Protocole de 2010 STE 127 Assistance administrative mutuelle en matière fiscale (Annexe A), état au 22.XII.2015 Impôt sur le chiffre
Διαβάστε περισσότεραCHAPITRE 4 ANALYSE D UN PLI DE COMPOSITE UNIDIRECTIONNEL
Mécanique des matériau composites hapitre 4 Analse d un pli de composite unidirectionnel H4 HAPITRE 4 ANALYE D UN PLI DE OMPOITE UNIDIRETIONNEL Un stratifié est constitué de plusieurs plis Analse de comportement
Διαβάστε περισσότεραΤΑ ΝΕΑ ΜΑΣ!!!! Ο Αγιασμός στην Αδαμάντιο Σχολή. Επίσκεψη των προνηπίων στο Κτήμα Γεροβασιλείου
ΣΕΠΤΕΜΒΡΙΟΣ 2013 Ο Αγιασμός στην Αδαμάντιο Σχολή Οι μικροί μαθητές κάτω από την Ευλογία και τη Χάρη της εκκλησίας στον Αγιασμό για την έναρξη της νέας σχολικής χρονιάς 2013 2014. Όμορφα πρόσωπα, χαρούμενα,
Διαβάστε περισσότεραPrésidence du gouvernement
Royaume du Maroc 2016 Présidence du gouvernement Ministère de l'enseignement Supérieur, de la Recherche Scientifique et de la Formation des Cadres L'Office de la Formation Professionnelle et de la Promotion
Διαβάστε περισσότερα