( ) ( j ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) RF širokopojasni pojačavači. ω1 ω1. ω 1 ωτ 1 ω τ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "( ) ( j ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) RF širokopojasni pojačavači. ω1 ω1. ω 1 ωτ 1 ω τ"

Transcript

1 i F široopojai pojačavači F široopojai pojačavači e orite za preo poataa izeđu I ola po iali liovia, u optiči ouiacijaa (traoutai pojačavači, za pojačavaje T iala, u eri itruetia (pr ociloop, u ultra-wieba i ulti ba raiju out Zout v i P T 3B out v Zout i 3B The hut peai aplifier i F eletroia, Ieja: jeotavo oavaje ule u fuciju preoa out v Zout i Z ( out ( out / v v i τ τ τ ( τ / eala ulaojuovao oplei polovi v ( j ( τ ( τ ( τ / τ Propui ope: ( j ( ( ( ( v τ τ τ τ τ τ ( ( x τ ( x ( x ( x x 4 x ( ( y y y x y x τ τ x Oo propuih opea a i bez oate iutivoti: Maiala vreot propuo opea: 85 BW exteio ratio-bwe BWE85 Proble: aplitua arateritia ia preašaj u propuo opeu Noralizovaa učetaot F eletroia, v τ τ τ (

2 v / / ( ( / v j ( /,8,7,6,5,4 lo ( j v,,4,6,8,,,4,6,8,,3, plitua arateritia bez preašaja: overhoot % pea 8 overhoot % Butterworth-aialao rava arateritia u oolii ooriato početa v ( j ( τ x F eletroia, ( τ ( τ ( x x ( j v 77 x 3 Miialo izobličeje rupo ašjeja(beel: faza arateritia e liearo eja ( φ cot Nelieara proea faze arateritie izaziva ejeaa ašjeja petralih opoeti, što proizvoi izobličeja Koproi: aialo ravo rupo ašjeje u oređeo opeu T D ( ( φ Maialo ravo rupo ašjeje: ( v j jτ jτ τ τ φ ( π arct ( τ arct τ /3 / eća iutivot u reju proširuje propui ope, ali i ajuje liearot faze arateritie Izobličeje rupo ašjeja proizvoi iteribolu iterfereciju i oraičava brziu preoa poataa u iitali ouiacioi iteia F eletroia, 4

3 The zero peae S aplifier << >> T S ZS S Z S S S i / S S S S S S S S S Z v Z S S Z S S S S v S / S / Kopezacija pola ulo proširuje propui ope pojačavača: v ( j S S / S B/ec lo S S v / Doavaje opezacioe ule u oru ovoi o ajeja pojačaja u propuo opeu S F eletroia, 5 Ulaza ipeaa: Zi ZS Zi ( j j S S Shut a erie peai, T-coil DD DD DD 3 i i i Kopezacija polova ulaa (olo ruo rea: Butterworth: / 3 8 Beel: / BWE8 ( 4 Prier: 5, 5 ff, pf f,7 z F eletroia, 6

4 T-coil peai ifferetial aplifier (BW4z, 9 heea, Mahoui, MT Sauleau, oeru, 4z, Broaba, ily iear plifier, Eployi T-coil Bawith Exteio Techique, FI Sypoiu 8 T-coil, /3, 5p, M45p, Q 4(4z 7 F eletroia, ai a revere iolatio Q ξ ietric T-coil Peai DD c M ( ( N Z Z i ( ( ( ( Z N, 35, 6, 6 8 F eletroia,, 35, 6, 6 BWE559!

5 Kaaa veza pojačavača i ( ( ( ( out / P 3 B? / P ( ( ( j / T tot tot / tot P ( ( / / / / T / P P Kaa je pojačaje oovo pojačavača u propuo opeu otato, a povećaje broja aao povezaih pojačavačih tepea opaa propui ope Šta je a propui opeo aa e uupo pojačaje oržava otati, bez obzira a broj pojačavačih tepea? cot Maiala vreot propuo opea e obija aa je l opt l l l tot / F eletroia, 9 l l >> l l l tot l tot tot opt tot Optialo pojačaje oovo pojačavača:, opt / l tot / l opt opt tot opt tot e e e e Optiali propui ope aae veze pojačavača: / opt l T, opt / T T T opt el tot l tot l tot tot / P tot Ditribuirai pojačavači Korite oobie traiioih liija a rapoeljei i ocetriai paraetria, u oje e uljučuju paraziti efeti trazitora(ree iutivoti i paralele apacitivoti F eletroia,

6 Traiioe liije β Z / F eletroia, Z Z I Z Z Z Z Γ Z Z Z Z Koeficijet refleije: Nea refleije aa je izvršeo prilaođeje Z Z Γ Sreja aa už traiioe liije ia otatu vreot: Maiala vreot reje ae e obija aa ea refleije: plitua už liije e eja po zaou: P P ( Γ Z av ax av Koeficijet tojećih talaa (oltae Stai Wave atio : Ulaza ipeaa i oeficijet refleije a ulazu: F eletroia,

7 Microtrip lie F eletroia, 3 Traveli Wave Ditribute plifier-twd Z M M M3 M Z ( I I, W / W / D D T T, λ Z I, I, I Z Superpozicija: jβ j( β I ( Ie Ie I j β j j i, β i, β i e e e β i / β iije bez ubitaa: Z I I I3 3 I Z Z 3 I I I3 I Z Z / Z / F eletroia, i ( (( I e e e j β β j β β jβ 4

8 j( β β e I i e j( β β e ( β β j I 4 i i ( β β ( β β i ( β β Pout Z I Z 6 i ( β β twa P i ( ZZ out β β P 4 av i ( β β P av 4Z i ( β β β β i ( β β i x 3 5 x x x x 3! 5! Kaa potoji labljeje už liija ejta i reja twa β β twa β β Z Z ZZ e e 4 4, -labljeja Optiala broj pojačavačih tepea oji aje aialo pojačaje ae F eletroia, opt ( l / 5 c c c c c c 5 c Z Z i β Pojačaje ae u iverzo eru rtwa β β β 4 i β TWD ia obru izolaciju ulaz-izlaz, tipičo -4B, ali je oetljiv a upareot arateritia trazitora Prier: eterojuctio FET NE3584 F eletroia, f 384 z T f 33 z ax 6

9 Priea TWD: ctive obier ctive Splitter ctive irculator F eletroia, 7 acae Sile Stae Ditribute plifier-ssd vailable Power ai: F eletroia, 8

10 π-type iutor peai (PIP DD DD Dve ule i va para ojuovao-opleih polova ( PIP D D D D D D i 5, 86, 8 BWE33 SS PIP DD 4 5 M 3 M M 6 M 4, BWE! i M M F eletroia, 9 SS yetric Traforer Peai D D D D D DD i M M M M M M M 3 M 4 5 / 3 5, BWE76/7 ξ < ξ < p, 3 p, 3 Q Q J Ji a S u, iiaturize 7-z broaba aplifier i 3u MOS techoloy, IEEE Tra Microwave Theory Tech, vol 56, o, pp , Dec 8 F eletroia,

11 Noie acelli Techique Sialiu tačaa X i Y u u protivfazi Šuovi (o Iu tačaa X i Y u oreliai ealizacija: Poištavaje šua a izlazu (Feeforwar S x y y y S S Pojačavači M3 i M uoe uprota pojačaja Uticajšuaaulazupojačavačajezatoveći o uticaja šuova oatih trazitora Svai oreliai šu a ejtu i reju e a ovaj ači ože začajo uajiti F eletroia, Prier: Opšti lučaj:, i,, i,, i S F ( (, i, i,, i, α i, S S F T, i T, α F eletroia,

12 lterative ipleetacije ola za poištavaje oreliaih šuova F eletroia, 3 oo ate F: 3u, BW8-z, NF<6B, IIP36B W he, iu,b Zravo, M Nieya, ihly iear Broaba MOS N Eployi Noie a Ditrortio acellatio, FI Sypoiu, 7 F eletroia, 4

13 Ditortio acelli (IM3 i S S is x Y BIMOS WB N 67x67 Effective chip ize: 6x5 F eletroia, 5u, BWD-78z, NF<44B, S6B, Pc65W 5 F eletroia, 6

Osnovni principi kompresije 2D i 3D signala. 2D transformacija kompakcija energije. Estimacija pokreta u 3D signalima

Osnovni principi kompresije 2D i 3D signala. 2D transformacija kompakcija energije. Estimacija pokreta u 3D signalima OADP: Kompreija lie i ideo igala Ooi priipi ompreije D i 3D igala D traformaija ompaija eergije Katoaje D igala Kodoaje D igala Etimaija poreta u 3D igalima oi ad 06 traa OADP: Kompreija lie i ideo igala

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ

Διαβάστε περισσότερα

# " $! % $ " & "! # '' '!" ' ' ( &! )!! ' ( *+ & '

#  $! % $  & ! # '' '! ' ' ( &! )!! ' ( *+ & ' " # " $ % $ " & " # '' '" ' ' ( & ) ' ( *+ & ' "#$% &% '($&)$'%$ *($+,& #,-%($%./*, -./ "' ' + -0,$1./ 2 34 2 51 2 6.77.8. 9:7 ; 9:.? 9 9@7 9:> 9@>.77 9 9=< 9@>./= 9:=.7: 9=@.7@ 9::.87./>./7

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -

Διαβάστε περισσότερα

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση. (, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

!#$ %&$ ##%&%'()) *..$ /. 0-1$ )$.'- !!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8

Διαβάστε περισσότερα

!"#ά%&'( 19 ) *+&,-,+ό/'(0 1+(23'(+'24ό0 5(- 62(7-8ί(- 1%:+;4ώ/ =&' : >&=+(('=(/(4'=ή 1(%'5'=ή

!#ά%&'( 19 ) *+&,-,+ό/'(0 1+(23'(+'24ό0 5(- 62(7-8ί(- 1%:+;4ώ/ =&' : >&=+(('=(/(4'=ή 1(%'5'=ή L'ώ+8(0 J%(8(2=(ύ#:0, 7&!20ή4 8&')0)/&'ή ',& 9,6'ό"/&, 8&')0)/ί,!"#ά%&'( 19 ) *+&,-,+ό/'(0 1+(23'(+'24ό0 5(- 62(7-8ί(- 1%:+;4ώ/ =&' : >&=+(('=(/(4'=ή 1(%'5'=ή @5( ="#ά%&'( &-5ό "A'="/5+;/ό4&25" 2" 7:5ή4&5&

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

<< 3; -. ; ; ; C? 1 1 B C 4 4 C?. B B; ;? 9= 2 C? 1 1 C 4 4 C?. B

<< 3; -. ; ; ; C? 1 1 B C 4 4 C?. B B; ;? 9= 2 C? 1 1 C 4 4 C?. B ! "! #! $ % & ' (# # ) " * +, (! + $ % % # #! -.! # # # / 0 + 1 12 3. 4 5 2 677 8 9 -: ; < = 49 => ==: 4? @9 : 4? ; A 4 B 4 C? =

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

ITU-R SA (2010/01)! " # $% & '( ) * +,

ITU-R SA (2010/01)!  # $% & '( ) * +, (010/01)! " # $% & '( ) * +, SA ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA S RS SA SF SM SNG TF V

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

OBRASCI ELEMENTARNE MATEMATIKE SY jun 2008.

OBRASCI ELEMENTARNE MATEMATIKE SY jun 2008. OBRASCI ELEMENTARNE MATEMATIKE SY347 9. ju 008. Priroi rojevi u kup vih pozitivih elih rojev, N {,, 3,...}. Celi rojevi u kup vih pozitivih i etivih elih rojev i ule, Z {...,, 3, 0,,, 3,...}. Rioli rojevi

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

Formulas of Agrawal s Fiber-Optic Communication Systems NA n 2 ; n n. NA( )=n1 a

Formulas of Agrawal s Fiber-Optic Communication Systems NA n 2 ; n n. NA( )=n1 a Formula o grawal Fiber-Oti Communiation Sytem Chater (ntroution) 8 / max m M / E nh N h M m 4 6.66. J e 9.6 / m log /mw SN / / /, NZ SN log / Z max N E Chater (Otial Fiber) Setion - (Geometrial Oti erition)

Διαβάστε περισσότερα

! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#

! #  #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #./-0$23#(&&# ! "# " #!$ %""! &'( )'&* $!"#$% &$'#( )*+#'(,#* /$##+(#0 &1$( #& 23 #(&&# +, -. % ($4 ($4 ##!$2 $567 56 $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&# 6 < 6 6 6 66 6< <

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#% " #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Γ

ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Γ ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Γ ΜΑΘΗΜΑ 2 Ισοδύναμο Ηλεκτρικό Κύκλωμα Σύγχρονων Μηχανών Ουρεϊλίδης Κωνσταντίνος, Υποψ. Διδακτωρ Υπολογισμός Αυτεπαγωγής και αμοιβαίας επαγωγής Πεπλεγμένη μαγνητική ροή συναρτήσει των

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ

Διαβάστε περισσότερα

tel , version 1-7 Feb 2013

tel , version 1-7 Feb 2013 !"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 &#89% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici. VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

cz+d d (ac + cd )z + bc + dd c z + d

cz+d d (ac + cd )z + bc + dd c z + d T (z) = az + b cz + d ; a, b, c, d C, ad bc 0 ( ) a b M T (z) = (z) az + b c d cz + d (T T )(z) = T (T (z) (T T )(z) = az+b a + cz+d b c az+b + = (aa + cb )z + a b + b d a z + b cz+d d (ac + cd )z + bc

Διαβάστε περισσότερα

Osnovne studije: Transportne potrebe i transportni zahtevi

Osnovne studije: Transportne potrebe i transportni zahtevi UNIVERITET U BEOGRADU SAOBRAĆAJNI FAKULTET KATEDRA A DRUMSKI I GRADSKI TRANSPORT PUTNIKA Oove tudije: Traporte potrebe i traporti zahtevi Predavač: Prof. dr Slave M. TICA, dipl.iž.aobraćaja Beograd, 017.

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

!! #!!!$ #$! %!&' & (%!' #!% # *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2! # $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

κ α ι θ έ λ ω ν α μ ά θ ω...

κ α ι θ έ λ ω ν α μ ά θ ω... { ( a -r ν ρ ι -Μ Π ώτ 1 Γ '- fj T O O J CL κ α ι θ έ λ ω ν α μ ά θ ω < US η ixj* ί -CL* λ ^ t A u t\ * < τ : ; Γ ν c\ ) *) «*! «>» Μ I Λ 1,ν t f «****! ( y \ \, 0 0 # Περικλή_ Χαντζόπουλο κ α ι θ έ λ

Διαβάστε περισσότερα

ITU-R BT.1908 (2012/01) !" # $ %& '( ) * +, - ( )

ITU-R BT.1908 (2012/01) ! # $ %& '( ) * +, - ( ) (2012/01)!" # $ %& '( ) * +, - 0 1 "'./ ( ) BT ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA RS S SA

Διαβάστε περισσότερα

Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

( t) ( ) ( ) ( ) ( ) ( ) Šum u RF kolima

( t) ( ) ( ) ( ) ( ) ( ) Šum u RF kolima Šu u F kola Oetljvot F koukacja ltraa je utcaje šua Šu u opšte lučaju ozačava blo kakvu etju koja je korta al U uže lu šu u elektrok kola predtavlja alu proeu truje koja je poledca dkretot aelektraja Šu

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

Građevinski fakultet, Beograd

Građevinski fakultet, Beograd Građesk fakule Beogra Eksploaaa zaša pozeh oa Obašea ežbe VEŽBA Pree ežbe e raspor aere u porozo sre. raspora eača presala zako oržaa ase pree a supsau koa se rasporue. Oržae ase rasporoae supsae ože a

Διαβάστε περισσότερα

!"#ά%&'( 18 )*&+",έ. )/0&%%&12&*'3έ. 45(*'2ί"., 7&,"28ά5"'. 5*90 :1(,ά )/0&%%ά12&*(. 3&' ;&3,(('3(0(2'3ή 7(%'*'3ή

!#ά%&'( 18 )*&+,έ. )/0&%%&12&*'3έ. 45(*'2ί., 7&,28ά5'. 5*90 :1(,ά )/0&%%ά12&*(. 3&' ;&3,(('3(0(2'3ή 7(%'*'3ή L'ώ,1(. :%(1(53(ύ#9.,!"#$%ή' ("*%*+"ή," -,.ό0+", ("*%*+ί,!"#ά%&'( 18 *&+",έ. /0&%%&12&*'3έ. 45(*'2ί"., 7&,"28ά5"'. 5*90 :1(,ά /0&%%ά12&*(. 3&' ;&3,(('3(0(2'3ή 7(%'*'3ή *( 3"#ά%&'( &/*ό ">'3"0*,?0ό2&5*"

Διαβάστε περισσότερα

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A ΚEΦΑΛΑΙΟ Πίνακες Εστω και είναι το σώµα των πραγµατικών και των µιγαδικών αριθµών αντιστοίχως Στο εξής όταν γράφουµε F θα εννοούµε είτε το είτε το Ορισµός Eστω F = ή και m, Κάθε ορθογώνια διάταξη m A F

Διαβάστε περισσότερα

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form: G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.

Διαβάστε περισσότερα

Το αντικείμενο αυτό είναι χειροποίητο από 100% οικολογικό βαμβάκι, με φυτικές βαφές και φυτική κόλλα.

Το αντικείμενο αυτό είναι χειροποίητο από 100% οικολογικό βαμβάκι, με φυτικές βαφές και φυτική κόλλα. Cotton leather paper Με υπερηφάνια σας παρουσιάζουμε μια νέα σειρά χειροποίητων προϊόντων το...cotton leather paper. Το αντικείμενο αυτό είναι χειροποίητο από 100% οικολογικό βαμβάκι, με φυτικές βαφές

Διαβάστε περισσότερα

ΧΙΙΙ ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ ΕΓΚΑΡΣΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ (ΤΕΜ)

ΧΙΙΙ ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ ΕΓΚΑΡΣΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ (ΤΕΜ) ΧΙΙΙ ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ ΕΓΚΑΡΣΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ (ΤΕΜ) ΧΙΙΙ. ΧΙΙΙ. ΧΙΙΙ.3 Οι εξισώσεις στροφής το Maxwell όταν τα διανύσµατα βρίσκονται στο εγκάρσιο στη διεύθνση διάδοσης επίπεδο Εξισώσεις το Maxwell

Διαβάστε περισσότερα

Trimmable Thick Film Chip Resistor

Trimmable Thick Film Chip Resistor rimmable hick ilm Chip Resistor R Series rimmable hick ilm Chip Resistor Scope -his specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. eatures

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

TALAR ROSA -. / ',)45$%"67789

TALAR ROSA -. / ',)45$%67789 TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1] 1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter

Διαβάστε περισσότερα

1857 Κ.Δ.Π. 312/9& ; Αριθμός 312 Ο ΠΕΡΙ ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΧΩΡΟΤΑΞΙΑΣ ΝΟΜΟΣ (ΝΟΜΟΙ 90 ΤΟΥ 1972 ΚΑΙ 56 ΤΟΥ 1982)

1857 Κ.Δ.Π. 312/9& ; Αριθμός 312 Ο ΠΕΡΙ ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΧΩΡΟΤΑΞΙΑΣ ΝΟΜΟΣ (ΝΟΜΟΙ 90 ΤΟΥ 1972 ΚΑΙ 56 ΤΟΥ 1982) Ε.Ε. Πα. I(I) Α. 292, 1.12.98 1857.Δ.Π. 12/9& ; Αιθμός 12 ΠΕΙ ΠΛΕΔΜΙΑΣ ΑΙ ΩΤΑΞΙΑΣ ΝΜΣ (ΝΜΙ 90 ΤΥ 1972 ΑΙ 56 ΤΥ 1982) Διάταγμα Διατήησης σύμφνα με τ άθ 8(1) Ασκώντας τις εξυσίες πυ ηγύνται σ' αυτόν από

Διαβάστε περισσότερα

& : $!" # RC : ) %& & '"( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( :

& : $! # RC : ) %& & '( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( : : : C : : C : : : .. ).. (................... ٢ ( - ). :.... S MP. T S..... -. (... ) :. :. : :. - - - - ٣ sweep :X. :Y. :. CCD.. ( - ) ( - ) ( - ) ( ) ( ) ( ) X : gnd -.... ٤ DC AC - AC DC DC - Y ( )

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %

Διαβάστε περισσότερα

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871, E.E. Πρ. ll () 429 Κ.Δ.Π. 50/ Αρ. 7, 24.6. Αρθμός 50 ΠΕΡ ΤΑΧΥΔΡΜΕΩΝ ΝΜΣ (ΚΕΦ. 0 ΚΑ ΝΜ 42 ΤΥ 96 ΚΑ 7 ΤΥ 977) Δάτγμ δνάμ τ άρθρ 7() Τ Υπργκό Σμβύλ, σκώντς τς ξσίς π πρέχντ Κ»>. 0. σ' τό δνάμ τ δφί τ άρθρ

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Algoritmi zadaci za kontrolni

Algoritmi zadaci za kontrolni Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana

Διαβάστε περισσότερα

Map Generation of Mobile Robot by Probabilistic Observation Model Considering Occlusion

Map Generation of Mobile Robot by Probabilistic Observation Model Considering Occlusion Map Generation of Mobile Robot by Probabilistic Observation Model Considering Occlusion *, **, **, * Kazuma HARAGUCHI Nobutaka SHIMADA Yoshiaki SHIRAI Jun MIURA *,{haraguti,jun}@cv.mech.eng.osaka-u.ac.jp

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι I,S: SU() group I : SU() group ΠΡΟΤΥΠΟ ΤΩΝ ΑΔΡΟΝΙΩΝ ΜΕ ΣΤΑΤΙΚΑ QUARKS QUARK ATOMS Πλήθος Βαρυονίων & Μεσονίων ~ 96 - αρχικά οι κανονικότητες (patterns) των αδρονικών

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

EE434 ASIC & Digital Systems Arithmetic Circuits

EE434 ASIC & Digital Systems Arithmetic Circuits EE434 ASIC & Digital Systems Arithmetic Circuits Spring 25 Dae Hyun Kim daehyun@eecs.wsu.edu Arithmetic Circuits What we will learn Adders Basic High-speed 2 Adder -bit adder SSSSSS = AA BB CCCC CCCC =

Διαβάστε περισσότερα

/&25*+* 24.&6,2(2**02)' 24

/&25*+* 24.&6,2(2**02)' 24 !! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &

Διαβάστε περισσότερα

( N m 2 /C 2 )( C)( C) J

( N m 2 /C 2 )( C)( C) J Electrical Energy and Capacitance Practice 8A, p. 669 Chapter 8. PE electric = 6.3 0 9 J q = q = q p + q n = ().60 0 9 C + ()(0) = 3.0 0 9 C kcqq (8.99 0 9 N /C )(3.0 0 9 C) r = = P Ee lectric 6.3 0 9

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpeCueWae hp://cw.m.eu 6.13/ESD.13J Elecmagec a pplca, Fall 5 Pleae ue he llwg ca ma: Maku Zah, Ech Ippe, a Dav Sael, 6.13/ESD.13J Elecmagec a pplca, Fall 5. (Maachue Iue Techlgy: MIT OpeCueWae). hp://cw.m.eu

Διαβάστε περισσότερα

DESKTOP - Intel processor reference chart

DESKTOP - Intel processor reference chart DESKTOP - Intel processor reference chart Family Intel Turbo Boost 7 - Max Turbo 4th Generation Intel Core i7 and i5 Family (22nm) Cores / Intel HD Graphics Intel vpro 1, i7-4960x 3.6 4.0 1866 15 MB L3

Διαβάστε περισσότερα

Formulas of Agrawal s Fiber-Optic Communication Systems. Section 2-1 (Geometrical Optics Description) NA n 2 ; n n. NA( )=n1 a

Formulas of Agrawal s Fiber-Optic Communication Systems. Section 2-1 (Geometrical Optics Description) NA n 2 ; n n. NA( )=n1 a Formula o grawal Fier-Oti Commuiatio Sytem Chater (troutio 8 max m M E h h M m 4 6.66. J e.6 9 m log mw S, Chater (Otial Fier SFMMF: i i ir Z Setio - (Geometrial Oti eritio i Z S log i h max E ii o ; GFMMF:

Διαβάστε περισσότερα

The User Defined Functions of the Sonnet Lite free Electromagnetic Simulator. N.Ishitobi. Sonnet Giken Co. Ltd. Sonnet Lite S Sonnet Lite.

The User Defined Functions of the Sonnet Lite free Electromagnetic Simulator. N.Ishitobi. Sonnet Giken Co. Ltd. Sonnet Lite S Sonnet Lite. : Sonnet Lite The User Defined Functions of the Sonnet Lite free Electromagnetic Simulator N.Ishitobi Sonnet Giken Co. Ltd. Sonnet Lite S Sonnet Lite CRLH, KID : keywords : factor,, electromagnetic simulator,

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ˆ ˆ. Ô² ±É µ µ É µ, µ²ó ÊÖ µ ÊÕ µí Ê Ê ± ɵ Ö. ³Ò ² Ê ±

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ˆ ˆ. Ô² ±É µ µ É µ, µ²ó ÊÖ µ ÊÕ µí Ê Ê ± ɵ Ö. ³Ò ² Ê ± ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 003.. 34.. 1 Š 539.165 ˆŒŒ ˆ Ÿ ˆŸ Š ˆ ˆ. Œ µ µ± µ ³µ µ ÉÓ µ É µ² ÊÕ Ëµ ³ ²Ó ÊÕ ³³ É Í Õ ± ɵ µ É µ Ô² ±É µ µ É µ, µ²ó ÊÖ µ ÊÕ µí Ê Ê ± ɵ Ö. ³Ò ² Ê ± ³ Ö É Ö, µ² É µ ̵ ³µ É µ µ ÉÓ µ µ

Διαβάστε περισσότερα

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο. 728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.

Διαβάστε περισσότερα

d 2 y dt 2 xdy dt + d2 x

d 2 y dt 2 xdy dt + d2 x y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Složeni cevovodi

MEHANIKA FLUIDA. Složeni cevovodi MEHANIKA FLUIDA Složeni cevovoi.zaata. Iz va velia otvorena rezervoara sa istim nivoima H=0 m ističe voa roz cevi I i II istih prečnia i užina: =00mm, l=5m i magisalni cevovo užine L=00m, prečnia D=50mm.

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati:

Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati: Staša Vujičić Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati: pseudo jezikom prirodnim jezikom dijagramom toka. 2

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=

Διαβάστε περισσότερα

PERFOMANCE TABLE FOR 3M SERIES 3000 R.P.M. / 2 POLES LRT RLT. Eff % P.F. COSΦ. Duty Type : (S1) Rated Voltage : 400 V / 440 V

PERFOMANCE TABLE FOR 3M SERIES 3000 R.P.M. / 2 POLES LRT RLT. Eff % P.F. COSΦ. Duty Type : (S1) Rated Voltage : 400 V / 440 V Pn kw PERFOMANCE TABLE FOR 3M SERIES 3000 R.P.M. / 2 VOLTAGE Speed RPM Eff % P.F. COSΦ LRT LRA RLA BDT Noise LwdB(A) W kg J Kgm2 380 400 415 63 M1 0.18 0.53 0.50 0.48 2720 65.0 0.80 2.3 5.5 2.2 50 14.00031

Διαβάστε περισσότερα

Magnetically Coupled Circuits

Magnetically Coupled Circuits DR. GYURCSEK ISTVÁN Magnetically Coupled Circuits Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN:978-3-330-71341-3 Ch. Alexander,

Διαβάστε περισσότερα

Εισαγωγή στη Σχεδίαση RF Κυκλωμάτων

Εισαγωγή στη Σχεδίαση RF Κυκλωμάτων Εισαγωγή στη Σχεδίαση F Κυκλωμάτων Βασικές έννοιες Σχεδίασης F Κυκλωμάτων Σωτήριος Ματακιάς, 0-, Σχεδίαση Τηλεπικοινωνιακών I Κυκλωμάτων, Κεφάλαιο /9 Εικόνα θορύβου Παράδειγμα Ενισχυτής MO και ισοδύναμο

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ Ε.Π.Ε.Α.Ε.Κ «ΑΡΧΙΜΗΔΗΣ ΙΙ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΤΕΙ (Ε.Ε.Ο.Τ.)»

ΠΡΟΓΡΑΜΜΑ Ε.Π.Ε.Α.Ε.Κ «ΑΡΧΙΜΗΔΗΣ ΙΙ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΤΕΙ (Ε.Ε.Ο.Τ.)» ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΡΟΓΡΑΜΜΑ Ε.Π.Ε.Α.Ε.Κ «ΑΡΧΙΜΗΔΗΣ ΙΙ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΤΕΙ (Ε.Ε.Ο.Τ.)» ΥΠΟΕΡΓΟ 4: ΑΝΑΠΤΥΞΗ ΝΕΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ, ΠΡΟΣΟΜΟΙΩΣΗ, ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΑΙ

Διαβάστε περισσότερα

PARTS LIST. 1. EXPLODED VIEW 1.1 FINAL ASSEMBLY <M1> The instruction manual to be provided with this product will differ according to the destination.

PARTS LIST. 1. EXPLODED VIEW 1.1 FINAL ASSEMBLY <M1> The instruction manual to be provided with this product will differ according to the destination. ARTS IST SATY RCAUTIO arts identified by the symbol are critical for safety. Replace only with specified part numbers. BWAR O BOUS ARTS arts that do not meet specifications may cause trouble in regard

Διαβάστε περισσότερα

x k Ax k Bu k y k Cx k Du k «άνυσµα καταστάσεων» «άνυσµα εισόδων»

x k Ax k Bu k y k Cx k Du k «άνυσµα καταστάσεων» «άνυσµα εισόδων» ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΣΤΟΝ ΧΩΡΟ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Μία άλλη περιγραφή συστηµάτων διακριτού χρόνου είναι η περιγραφή µέσω των εξισώσεων του «χώρου των καταστάσεων» (state space represetatios)

Διαβάστε περισσότερα

NEC Silicon RFIC Amplifiers Low Power, Wideband & SiGe/SiGeC

NEC Silicon RFIC Amplifiers Low Power, Wideband & SiGe/SiGeC NEC Silicon RFIC Amplifiers Low Power, Wideband & SiGe/SiGeC Low Power Amplifiers ELECTRICAL CHARACTERISTICS (TA = 25 C) Range VCC ICC NF Gain RLIN RLOUT PdB ISOL @ 3dB (V) (ma) (dbm) Part down Package

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά

Διαβάστε περισσότερα

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα