( t) ( ) ( ) ( ) ( ) ( ) Šum u RF kolima
|
|
- Ἠσαῦ Καραβίας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Šu u F kola Oetljvot F koukacja ltraa je utcaje šua Šu u opšte lučaju ozačava blo kakvu etju koja je korta al U uže lu šu u elektrok kola predtavlja alu proeu truje koja je poledca dkretot aelektraja Šu tovreeo određuje ajaj vo koro ala koa a la pojačavat ajveću vredot pojačaja pojačavača koj e odvod pojačavač u zaćeje Izvor šua: Sača šu (Shot oe) Terčk šu (Johoov l Nyqutov šu) Flcker šu (/ šu l Pk šu) eeracoo-rekobaco šu Šu ače je karaktertča za prelaz dkreth aelektraja preko potecjale barjere uvek je pruta kod p pojeva Elektro šuplje aučo prolaze barjeru eeršu lučaje truje pule u vreeu qi D ( ) qid ID A / 8 pa/ Hz MHz I 7 A Spektrala uta ae šua ače: -e zav od učetaot -je proporcoala truj drekte polarzacje -e zav od teperature kada je truja polarzacje kotata -a auovu rapodelu Terčk šu ataje uled lučajoj kretaja elektroa u provodca F elektroka, Spektrala uta ae terčko šua (Power Spectral Dety-PSD) ( t) t T t v T P l dt l ( t) dt T T T T t T l T T t t t dt v t T v l T T t t ( t) dt Model: v P 4kT r v e ( ) 4kT P PSD d P kt 4 T 9K v 4 ( ) PSD 4kT 6 J P 4kTd 4kT 4kT 4kT I ( ) kt V e 4kT A 5 Ω ( ) 3 Hz 5Ω e ( ) 8 F elektroka, 8 V Hz v r V 89 Hz MHz V 9 µv I 8 A
2 Spektrala uta ae: r v er ( ) 4kT vr 4 r ( ) pektrala uta ae terčko šua a otporku : -e zav od učetaot do učetaot prblžo /7p 59THz -drekto je proporcoala a teperaturo -eja e po auovoj rapodel Flcker šu je uočljv a k učetaota Uzrok šua u eavršeot aterjala, koje dovode do tvaraja zak za ooce aelektraja Zake hvataju olobađaju ooce aelektraja po lučajo redoledu a I I K ( ) K Spektrala uta ae lcker šua: -e zav od teperature -obruto je proporcoala a rekvecjo -proporcoala je a trujo drekte polarzacje a kt eeracoo-rekobaco šu ataje u poluprovodca uled proee broja lobodh olaca aelektraja zazvao rakdaje upotavljaje kovaleth veza Ova truja e uperpora a jedoeru truju poluprovodka b b I I ( / ) ( / ) K K Spektrala uta ae ovo šua opada a porato učetaot F elektroka, 3 Faktor šua S, N N a S, N ukupa aa ua P P P F aa ua od zvora P P N N N a a N N Odo al-šu a ulazu: Odo al-šu a zlazu: SN SN P P P S N S P ( ) S P P P N N N a SN SN P N a F PN Kakada veza pojačavača S, N # # #3 S, N S, N 3 S, N N a N a N a3 3 Ukupa aa šua a zlazu: 3 ( ) P a N PN P a N P N PN P a N PN 3 ( PN PN ) P N PN P P P N N N, tot 3 { }, tot a a a3 Ukupa aa šua a zlazu koja potče od ulazo eeratora šua P P N, 3 N 4
3 P Faktor šua: N P, tot N P a N P a Na3 F P P P P P N N F PN PN F N, N N N a a a a P F P P PN P a 3 3 Na F 3 F3 P P N N F PN PN F F3 F ( F ) N N Optzacja aktora šua Y Y v v v v Noele v c Noele v ( Y v ) c c ( Yv ) F Faktor šua: F Y v c c c Y v Y v c Y v Y v Nekorela zvor šua šu dvoporte reže Y v Izvor šua u dvoportoj rež ou bt korela ekorela Uzo opšt lučaj da truja šua a korelau ekorelau vredot a apoo šua 5 u c u Ycv Y c? * * * * u c c c * v v v v Y v v v Y v Y Faktor šua: (( Y ) ) Yc v u Model : 4 kt, e Y [ ] F v 4kT u 4kT u Yc c jbc Y jb u c c 4kT jb jb 4kT F 4kT u F B B c c Faktor šua e ože zrat zboro atae zvora Y u B B F B Bc c c I prethod zraz e ože zrat zboro df d B Bc u c c c u F elektroka, 6
4 Optala vredot adtae zvora: Mala vredot aktora šua: Y jb jb u opt opt opt c c u F F Y Yopt Faktor šua u ukcj ale vredot aktora šua: opt opt ( opt c ) ( opt c ) F F ( ) ( B B ) F Y Y Noe Fure: NF lo F [ db] opt opt opt Dačk ope SFD-Spurou Free Dyac ae SFD 3dB ( 5dB) 8dB D-Dyac ae D B ( 5dB) 5dB MDS-Mu Detectable Sal P P P lo( ktb) NF S N P 74 db / Hz lo( B) NF MDS MDS F elektroka, 7 F bpolar traztor Otporot tela kolektora e ajuje a ukopa otrvo, dok e otale erjke otporot ajuju všetruk poljašj kotakta VBE / Vt Struja kolektora: I I e ( V / V ) C CE A Šea za određvaje učetaot jedčo pojačaja: Model za ale ale: rb rb rbdtr Cµ Cµ dtr (,, ) I V V τ C BE CB T HF: r π >> ωc π j e θ ω b je T IC π Cπ Cµ π π πvtcπ ( ) C Cπ C C C je C je W Cb τ F B τ F τ F elektroka, 8
5 ωt Cπ Cµ τ C je C Makala učetaot ax za koju je rapoložvo pojačaje ae jedako ax? * Prlaodjeje po az Z Z ( ) b C µ F µ L out L out L L C π V be V be L b C π F elektroka, V be C µ L V be Vx Ix Z V x µ out Ix Vx I x Cµ Cπ Z Prlaodjeje po az: Pojačaje ae: P / P ax P / P << rb P rb LL P π axc out LL p V π r p out p out L out b x C V C C x C I C C be µ π π x µ µ L C C π µ I I Vbe jωc ωc π π 9 Prlaodjeje po az: orto c L L I ωc π C I π Pout ax L L Cµ ωcπ Pout ax C I π p ax P Cµ ωcπ rb I 4ω Cπ Cµ rb Kada e uč da je akalo pojačaje jedako jeda, dobja e akala učetaot ax p ax ω ax 4 ω 6π 8πCπ C rb ax ax ax Cπ Cµ rb π π Cπ Cµ rb T µ p ax Otporot tela baze e kod občh traztora ože ajt povećao dopraošću baze, al e tada dratčo ajuje koecjet trujo pojačaja traztora D W β D W E N N de p B ab F elektroka,
6 Se HBT (Hetero-jucto bpolar trator) e četo kort u F opeu Ueto a S, baza je dopraa a Se poluprovodko, če e potže ajeje trazcoo vreea u baz povećajeučetaotjedčopojačaja T,odoopovećajetrujopojačajatraztora β HBT E β Sa povećao dopraošću baze e ajuje otporot tela baze trujo pojačaje traztora, a povećava e Earlyjev apo qnabwb V A ε ε e /( kt ) Šu u bpolaro traztoru v b b C µ b c b b r π C π V be V be c v 4kTrb IB b kib K e e c kic Na vok učetaota e ože zaeart utcaj Flcker šua utcaj otporot r π Zaearvaje utcaja kapactvot kolektor-baza aalza e uprošćava Već a ekolko Hz potoj parcjala korelacja zeđu terčko šua šua ače F elektroka, F MOSFET Kratk kaal: VOV D at ox λ DS VOV EcL ( ) I Wv C V VOV VS VT E c µ v at µ e µ e θ V OV D eltd B S eltd W 3 L W L eltd F elektroka,
7 Chael Iduced ate etace ch d ch drt F elektroka, eltd D C jd C j ub ub C ate C V B Subtrate Eect V µ C W / L D C W / L ch d ch drt V I Dat t ox ox W eltd S 3 L Cd T V rd π C C πc ( d ) C d db T? I V C V D V C I Cd I C C C C I ( Cd ) ( ) ( ) d d 3 C CoxWL 3 ax? ate C Du kaal: V C d T 3 µ V OV Kratk kaal: 4π L T WC v 3 v π C π C L ox at at L L P ax C I out p ax P C d ωc atei V L p ax 4ω CCd ate ω T π 6π C C 8π C ax p ax ax d ate d ate Lateral DMOS (LDMOS) HV: BV d V S ( ) 3 V F elektroka, 4
8 Šu u MOS traztoru Traztor u okoj oblat, terčk šu: Du kaal: d 4kT D d S T DS vds v v DS L d W v DS k ( v V ) v Traztor u oblat zaćeja, terčk šu: DS d 4kTγ k W W v V k v V D k S T S T d vs vs L L K d WLCox Traztor u oblat zaćeja, lcker šu: oy oele d C d V W k v V L d S T γ d 4 kt 3 3 V d d v d C V V F elektroka, 5 Kada u kratkopoje zlaz prključc,šu uoba kola treba da je t v v C V C V V d 4kTγ v o d v v v d d d 4kTγ d ox K WLC d o d jωc ω C V ω C ω d d ωt Kada je ω << ω T doata je apok eerator šua ω C v Zaearćeo Flcker šu, pošto je o doata a k učetaota Idukova šu u ejtu šu u dreju u korela chu chu ekorela deo korela deo chc Zbo kapactvot ejt-or, šu u kaalu u ejtu chc u korela chdrt eltd eltd chd D S B d F elektroka, 6
9 Va Der Zel Model: C V V d d 4kTδ Du kaal: δ 4 / 3 C ω 5 d c u Korelacja: * d c 395 j d c 4 δ u 4 δ ( ) kt c kt c v eq d eq C V V v eq v eq c u F elektroka, 7 Optzacja aktora šua MOS traztora Y c eq c c jωc veq veq v Y j C d eq c ω c d * * * * * c c d c d c d c d d c * d d d d d d d d d d d 5γ d d 5 d δω C ωc δ γ ωc δ δ Yc jωc c jωc α c α d 5γ 5γ d u C δω u 4kT 5 d Optal aktor šua: ( c ) Bopt Bc ωc α c δ 5γ δ c Bc ωc α c 5γ C δω u γ opt c c 5 α ω δγ F opt c c 5 ω T d γ γ α d c F ωt F Prer: γ, δ 4, c 395 ω ω T / 5 NF 6dB ω ω T / NF 9dB ω ω T / NF 5dB F elektroka, 8
10 Pave kopoete u F kola Otporc Kodezator Iduktvot Traorator Najaje 6 etalh lojeva za realzacju otporot, kapactvot, duktvot I traoh lja Otporc: Well Duzo l platra Pollkok Metal Vredot (AC,DC) Learot 3 Saa 4 Parazt eekt F elektroka, 9 MOS Dra/Source etor Polylco etor N-Well etor F elektroka,
11 Metal etor Th Fl etor NCr, SCr Alloy F elektroka, ρl L ρ ρ, ρ Ω / Wt W t ρ K ρ [ ] ρ K ρ K ρ ae Ab el Tepco F elektroka,
12 Sk eekat: duba prodraja ρ δ π µ ρl ρl δ Wt Wt W t ( δ )( δ ) Kodezator C Q aktor(dpato aktor) Q ω C ω P, D / Q Apoluta relatva tačot S 3 Površka uta C/area 4 Learot qcv 5 Odo Cax/C kada e kort kao proeljv C 6 Parazte kapactvot do ae F elektroka, 3 Polylco-oxd-polylco (Poly-Poly) Metal-Iulator-Metal (MIM) C C WL BICMOS: CMOS 35u: Aprox: ( W t )( L t ) C 9 F/µ C 46 F/µ C ε t ε ε ε 39ε 35 pf/c ox F elektroka, 4
13 Horzotal parallel plate (HPP) Parallel wre (PW) F elektroka, 5 MIM Fractal Capactor D: te area wth a ear te pereter 3D: te volue wth a ear te urace Koch curve F elektroka, 6
14 S Koch Ilad Fractal Capactor F elektroka, 7 PN Jucto Capactor MOSFET ate Capactor F elektroka, 8
15 F elektroka, 9 Sheld Paratc C/L! [H/] Typ H/ F elektroka, 3
16 Iterae duktvot traorator Spral Iductor: F elektroka, 3 Spral Iductor Moded Wheeler Forula: d av d d L Kµ dav K ρ Fll rato: d ρ d out out d d out EM: Curret heet wth uor curret dtrbuto davc c l 3ρ 4ρ µ L c c ρ F elektroka, 3
17 Sk: δ π σµ Model: ub 7 S/µ F elektroka, 33 Sheld Metal roud Sheld Mult-level pral Soleod F elektroka, 34
18 k ~ 3 5 ( c ) Itertwed (Frla) F elektroka, 35 Stacked Traorer k ~ 9 F elektroka, 36
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων
HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων «Ηλεκτρικός Θόρυβος» Φώτης Πλέσσας fplessas@e-ce.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Δομή Παρουσίασης Εισαγωγή Στατιστικά Χαρακτηριστικά
Ηλεκτρονικά Στοιχεία και Κυκλώματα ΙΙ. Ανασκόπηση Κεφαλαίου «Ηλεκτρικός Θόρυβος»
Ηλεκτρονικά Στοιχεία και Κυκλώματα ΙΙ Εισαγωγή στα Ολο. Κυκλ. Βασική Φυσική MOS Ενισχυτές ενός σταδίου Διαφορικοί Ενισχυτές Καθρέφτες Ρεύματος Απόκριση Συχνότητας Ηλεκτρικός Θόρυβος Ανατροφοδότηση Σχεδιασμός
2 η ενότητα ΤΑ ΤΡΑΝΖΙΣΤΟΡ ΣΤΙΣ ΥΨΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ
ρ. Λάμπρος Μπισδούνης Καθηγητής 2 η ενότητα ΤΑ ΤΡΑΝΖΙΣΤΟΡ ΣΤΙΣ ΥΨΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ T.E.I. ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 1 Περιεχόμενα 2 ης ενότητας Στην δεύτερη ενότητα θα ασχοληθούμε
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Εισαγωγή στη Σχεδίαση RF Κυκλωμάτων
Εισαγωγή στη Σχεδίαση F Κυκλωμάτων Κεφάλαιο,.3 Βασικές έννοιες Σχεδίασης F Κυκλωμάτων Σωτήριος Ματακιάς, 0-3, Σχεδίαση Τηλεπικοινωνιακών LI Κυκλωμάτων, Κεφάλαιο /34 Φασματική πυκνότητα ισχύος Power pectral
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET)
Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET) Χρησιµοποιούνται σε κλίµακα υψηλής ολοκλήρωσης VLSI Χρησιµοποιούνται και σε αναλογικούς ενισχυτές καθώς και στο στάδιο εξόδου ενισχυτών Ισχύος-
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
10.1. Bit Error Rate Test
.. Bt Error Rat Tst.. Bt Error Rat Tst Zadata. Izračuat otrba broj rth formacoh bta u BER tstu za,, ogršo dttovaa bta a rjmu, tao da s u sstmu sa brzoom sgalzacj od Mbs mož tvrdt da j vrovatoća grš rosa
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4
Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4 Ε Π Ι Σ Τ Ο Λ Η Δ Ι Ο Ι Κ Η Τ Η Α Υ Γ Ο Υ Σ Τ Ο Σ Μ η ν ι α ί α Ε π ι σ τ ο λ ή ι ο ι κ η τ ή 1 Π ε ρ ι ε χ ό μ ε ν α Σ ε λ ί δ ε ς Τ ο μ ή ν υ μ α τ
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije
promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (
Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική
Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 5: Τρανζίστορ Επίδρασης Πεδίου (MOS-FET, J-FET) Δρ. Δημήτριος Γουστουρίδης Τμήμα
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%
" #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @
ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Τρανζίστορ Μετάλλου Οξειδίου MOSFET
ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Τρανζίστορ Μετάλλου Οξειδίου MOSFET Recommended Text: Microelectronic Devices, Keith Leaver (4 th Chapter) Design of Analog CMOS Integrated Circuits, Behzad Razavi ( nd Chapter)
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΗΛΕΚΤΡΟΝΙΚΗ ΙI. Ασκήσεις. Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Α.Π.Θ.
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΗΛΕΚΤΡΟΝΙΚΗ ΙI Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Α.Π.Θ. Θεσσαλονίκη, Σεπτέμβριος 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa
.vježba iz Terodiaike rješeja zadataka 1. Zadatak Kopresor usisava 0,5 kg/s zraka tlaka 1 bar i 0 o C, tlači ga i istiskuje u eizolirai tlači cjevovod. Na ulazo presjeku usise cijevi brzia je 15 /s. Izlazi
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
& : $!" # RC : ) %& & '"( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( :
: : C : : C : : : .. ).. (................... ٢ ( - ). :.... S MP. T S..... -. (... ) :. :. : :. - - - - ٣ sweep :X. :Y. :. CCD.. ( - ) ( - ) ( - ) ( ) ( ) ( ) X : gnd -.... ٤ DC AC - AC DC DC - Y ( )
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
Aritmetički i geometrijski niz
Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.
TeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
Χαρακτηρισµός Κυκλώµατος και Εκτίµηση Απόδοσης 2. Χαρακτηρισµός Κυκλώµατος
4 η Θεµατική Ενότητα : Χαρακτηρισµός Κυκλώµατος και Εκτίµηση Απόδοσης Επιµέλεια διαφανειών:. Μπακάλης Εισαγωγή Μια δοµή MOS προκύπτει από την υπέρθεση ενός αριθµού στρώσεων από µονωτικά και αγώγιµα υλικά
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku
Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom
Εισαγωγή στη Σχεδίαση RF Κυκλωμάτων
Εισαγωγή στη Σχεδίαση F Κυκλωμάτων Βασικές έννοιες Σχεδίασης F Κυκλωμάτων Σωτήριος Ματακιάς, 0-, Σχεδίαση Τηλεπικοινωνιακών I Κυκλωμάτων, Κεφάλαιο /9 Εικόνα θορύβου Παράδειγμα Ενισχυτής MO και ισοδύναμο
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)
PVWW!"#$ PVWW!"#$%&'()*+!"#$% 12!"#$%&'()*!!"#$%&'(!"#$!"#$%&'()*+!"#$%!!"#!$%&'()*+!"#$%!"!"#$%&'!"#$%&'!"#!"#$%!" SE!"!"#$%&'!"#!"#$%&'!"#$%&'!"#$!"#$!"#$%&'!"#$%&'!"#$%&!"#$%&'!"!"#$%&!"#$%&!"!"#$%!"#$%!"#$%&'(!"#$%&'!!"#!"#!"#$%&!"#$%&'(
Ανάλυση Θορύβου Σε Γραμμικά Κυκλώματα
AO Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης Ανάλυση Θορύβου Σε Γραμμικά Κυκλώματα Θεωρία, Εξαρτήματα και ιατάξεις Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Άδεια
= 0.927rad, t = 1.16ms
P 9. [a] ω = 2πf = 800rad/s, f = ω 2π = 27.32Hz [b] T = /f = 7.85ms [c] I m = 25mA [d] i(0) = 25cos(36.87 ) = 00mA [e] φ = 36.87 ; φ = 36.87 (2π) = 0.6435 rad 360 [f] i = 0 when 800t + 36.87 = 90. Now
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3
CD-308MP/FM. Service Manual - CD-308MP/FM
CD-308MP/FM R Service Manual - CD-308MP/FM Bill of Materials NO ITEM CODE DESCRIPTION QTY SYMBOL 1 001-3300D-A90 P.C.B ISO BOARD 1 2 001-3912S-W00 P.C.B MAIN BOARD 1 3 002-01140-A09 I.C LA1140 IF SIP 1
16 Electromagnetic induction
Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Chương 2: Đại cương về transistor
Chương 2: Đại cương về transistor Transistor tiếp giáp lưỡng cực - BJT [ Bipolar Junction Transistor ] Transistor hiệu ứng trường FET [ Field Effect Transistor ] 2.1 KHUYẾCH ĐẠI VÀ CHUYỂN MẠCH BẰNG TRANSISTOR
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-
!!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.
VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 2 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών
AO Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης Επανάληψη μέρος 2 ο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ
Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
0CHIPSTAR MICROELECTRONICS 5.5W CS8571E CS8571E. Chipstar Micro-electronics. 470uF. 0.39uF 4 IN MODE: 0----AB CS8571 CS8571E FM AB D CS8571E
AB/D, 5.2W FM ABD 5.5W AERC( Adaptive Edge Rate Control), EMI,,FCC Part5 Class B2dB. PWM PCB, 9%,,, ESOP8,-4 85 ESOP8 IN.39uF 4 IN 6 PO at % THD+ N, VDD = 5V RL = 4 Ω 3.45W() RL = 2 Ω 5.2W() PO at % THD+
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε.
ΑΣΚΗΣΗ 1 ΟΜΑ Α 2 Στην ακόλουθη άσκηση σας δίνονται τα έξοδα ανά µαθητή και οι ετήσιοι µισθοί (κατά µέσο όρο) των δασκάλων για 51 πολιτείες της Αµερικής. Τα δεδοµένα είναι για τη χρονιά 1985. Οι µεταβλητές
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
μ μ dω I ν S da cos θ da λ λ Γ α/β MJ Capítulo 1 % βpic ɛ Eridani V ega β P ic F ormalhaut 10 9 15% 70 Virgem 47 Ursa Maior Debris Disk Debris Disk μ 90% L ac = GM M ac R L ac R M M ac L J T
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΗΛΕΚΤΡΟΝΙΚΗ ΙII. Ασκήσεις. Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Α.Π.Θ.
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΗΛΕΚΤΡΟΝΙΚΗ ΙII Ασκήσεις Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Α.Π.Θ. Θεσσαλονίκη, Ιούνιος 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό
ITU-R P (2009/10)
ITU-R.38-6 (009/0 $% #! " #( ' * & ' /0,-. # GHz 00 MHz 900 ITU-R.38-6 ii.. (IR (ITU-T/ITU-R/ISO/IEC.ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M
Parts Manual. Wide Transport Stretcher Model 738
Wide Transport Stretcher Model 738 Modèle 738 De Civière Large Pour Le Transport Breites Transport-Bahre-Modell 738 Breed Model 738 van de Brancard van het Vervoer Modello Largo 738 Della Barella Di Trasporto
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
!"#$%#&'(#)*+,$-.#/ 0%%&%#)*2!1/&%3) 0&/(*+"45 64.%*)52(/7
!"#$%#&'(#)*+,$-.#/ 0%%&%#)*2!1/&%3) 0&/(*+"45 64.%*)52(/7 2010 2012 !"#$%!&'()$!!"#$% &!#'()* +(, $-(./!'$% $+0 '$ 1!")& '(, 2,3!4#*'& '&5 67µ3(, 0'$# (%!)%/µ(" '&5 $+849!:5 ()(-)&4:;(.# -$% & +4
Electronic Supplementary Information
Electronic Supplementary Information The preferred all-gauche conformations in 3-fluoro-1,2-propanediol Laize A. F. Andrade, a Josué M. Silla, a Claudimar J. Duarte, b Roberto Rittner, b Matheus P. Freitas*,a
«Ενισχυτές με διπολικό transistor»
ΗΥ335: Προχωρημένη Ηλεκτρονική «Ενισχυτές με διπολικό transistor» Φώτης Πλέσσας fplessas@inf.uth.gr ΤΗΜΜΥ Δομή Πόλωση Αρχές ενίσχυσης Μοντέλα και υλοποιήσεις μικρού σήματος για BJT ΤΗΜΜΥ 2 Σκοπός αυτής
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
2 η ενότητα ΤΑ ΤΡΑΝΖΙΣΤΟΡ ΣΤΙΣ ΥΨΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ
ρ. Λάμρος Μισδούνης Καθηγητής 2 η ενότητα ΤΑ ΤΡΑΝΖΙΣΤΟΡ ΣΤΙΣ ΥΨΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ T.E.I. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 1 Περιεχόμενα 2 ης ενότητας Στην δεύτερη ενότητα θα ασχοληθούμε με
! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.
! " #! $ %&! '( #)!' * +#, " -! %&! "!!! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / 0123 4 # ' -. + &' (, % #. -5 0126, 2**., 2, + &' %., 0, $!, 3,. 7 8 ', $$, 9, # / 3:*,*2;
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο
15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34