Мировање (статика) флуида

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Мировање (статика) флуида"

Transcript

1 Мировање (статика) флуида Александар Ћоћић МФ Београд Александар Ћоћић (MФ Београд) MФБ-03 1 / 25

2 Увод Основни услов мировања материjалног система Подсетник - механика 1 (статика) Ако се материjални систем налази у стању мировања онда jе резултанта сила коjе на њега делуjу (њихов векторски збир) jеднак нули. F 1 G материjални систем - штап F 3 F 2 принцип ослобађања од веза F1 G F2 Jедначина равнотеже : F 3 # F i = F # 1 + F # 2 + F # 3 + G # = 0 i Александар Ћоћић (MФ Београд) MФБ-03 2 / 25

3 Мировање (статика) флуида Основни принцип анализе Флуид у стању мировања материjални систем - произвољно изабрана (идеjа: доћи до генералног облика jедначине) маса флуида у стању мировања ваздух V вода A Произвољно изабрана запремина V коjу ограничава површ A Александар Ћоћић (MФ Београд) MФБ-03 3 / 25

4 Мировање (статика) флуида Основни принцип анализе Флуид у стању мировања силе у флуиду: масене и површинске # # R m - резултуjућа масена сила R n - резултуjућа површинска сила d R n услов мировања: # R m + # R n = 0 A n f V ρ, dv елементарна масена сила d R # m : d R # m = ρ # f dv R # m = V ρ # f dv елементарна површинска сила d R # n : d R # n = # np da R # n = # np da Мировање - у флуиду не постоjе смицаjни напони! A Александар Ћоћић (MФ Београд) MФБ-03 4 / 25

5 Мировање (статика) флуида Основни принцип анализе Флуид у стању мировања силе у флуиду: масене и површинске # # R m - резултуjућа масена сила R n - резултуjућа површинска сила n d R n услов мировања, R # m + R # n = 0, се своди на: ρ # f dv + # np da = 0 V A }{{}}{{} # # R m R n A f V ρ, dv Површ A ограничава запремину V - важи теорема Гаус-Остроградског: # np da = p dv = # ı A x + # j y + # k z V "набла"оператор Александар Ћоћић (MФ Београд) MФБ-03 5 / 25

6 Мировање (статика) флуида Оjлерова jедначина мировања флуида Флуид у стању мировања - Оjлерова jедначина Услов мировања се даље своди на: ( ρ # ) f p dv = 0 V Како jе запремина V произвољно изабрана (да би претходна релациjа важила за сваку могућу запремину V - то jе физички услов, jер мируjе сваки део флуида), подинтегрална функциjа мора бити jеднака нули: ρ # f p = 0 p = ρ # f Оjлерова jедначина Основни задатак статике флуида: За задата поља густине ρ = ρ(x, y, z) и масених сила f = f(x, y, z) одредити поље притиска p = p(x, y, z)! Слаjд 11 Александар Ћоћић (MФ Београд) MФБ-03 6 / 25

7 Мировање (статика) флуида Укратко о Набла оператору Набла (Хамилтонов) оператор Веома важан оператор у теориjи поља - одређуjе важне карактеристике поља (градиjент, дивергенциjа, ротор...) Набла jе векторско-диференциjални оператор: операциjе векторске алгебре и диференцирања Примена оператора на скаларно поље даjе градиjент скаларног поља (векторска величина) p gradp = # ı p x + # j p y + # k p z На векторска и тензорска поља се може примењивати на више начина користећи и операциjе векторске алгебре (скаларни и векторски производ) # U grad # U, # U = div # U, # U = rot # U ( ) grad ( ) div, ( ) rot Александар Ћоћић (MФ Београд) MФБ-03 7 / 25

8 Мировање (статика) флуида Укратко о градиjенту скаларног поља Градиjент скаларног поља - неке важне особине вектор градиjента скаларног поља ϕ jе ортогоналан на eквискаларне површи (површи на коjима jе ϕ = const) када jе ϕ p, eквискаларне изобарске површи - површи на коjима притисак има константну вредност! p = p 1 = const p 2 > p 1 ϕ 2 p 3 > p 2 ϕ 1 ϕ 2 > ϕ 1 gradϕ gradp вектор градиjента скаларног поља показуjе правац и смер наjвеће промене у том пољу! Александар Ћоћић (MФ Београд) MФБ-03 8 / 25

9 Мировање (статика) флуида Анализа векторског облика Оjлерове jедначине Ojлерова jедначина - математичко-физичка анализа p = ρ # f gradp = ρ # f Вектори gradp и f су колинеарни вектори правац и смер наjвеће промене притиска jе одређен вектором (векторским пољем) jединичне масене силе f! вектор f jе управан на изобарске површи! Скаларни облик Оjлерове jедначине (проjекциjе на осе Декартовог координатног система) p = p p p ı + j + x y z k ρ # f = ρf x ı + ρf y j + ρf z k p x = ρf x p y = ρf y p z = ρf z Александар Ћоћић (MФ Београд) MФБ-03 9 / 25

10 Мировање (статика) флуида Скаларни облик Оjлерове jедначине Оjлерова jедначина - тотални прираштаj притиска M и N су две блиске тачке у пољу, на растоjању d r p = const Tотални (укупни) прираштаj dp притиска између тачака M и N dp = p x dx + p y p dy + dz, тj. z dp = p d r gradp d r gradp N M d r r + d r p + dp Aлтернативни скаларни облик Оjлерове jедначине dp = ρ( # f d r), тj. dp = ρ(f x dx + f y dy + f z dz) d r = dx ı + dy j + dz k Ово jе оперативна jедначина за решавање основног задатка статике флуида! Основни задатак Александар Ћоћић (MФ Београд) MФБ / 25

11 Мировање (статика) флуида Проблеми коjи се разматраjу Четири основна задатка коjи се разматраjу 1 Мировање нестишљивог, хомогеног флуида (ρ = const) - течности, у пољу силе Земљине теже ( f = g) 2 Мировање ваздуха (идеални гас, p = ρrt ) у пољу силе Земљине теже ( f = g) 3 Релативно мировање течности (ρ = const) при транслациjи суда константним убрзањем a = const ( f = g a) 4 Релативно мировање течности (ρ = const) при ротациjи суда око вертикалне осе константном угаоном брзином ω = const ( f = g + ω 2 r 0 ) Решења свих ових задатака jе поље притиска p = p(x, y, z) тj. одређена функционална зависност притиска од просторних кордината! Слаjд 4 Александар Ћоћић (MФ Београд) MФБ / 25

12 Мировање течности у пољу силе Земљине теже Поље притиска Мировање течности у пољу силе Земљине теже Разматрамо случаj: ρ = const (нестишљив флуид) и f = g ( g = const) Замењуjемо задате услове у jедначину dp = ρ(f x dx + f y dy + f z dz) ˆ z Oy A ρ x ˆ dp = h p = p a f = g B ˆ ρgdz + C p = ρg За усвоjени координатни систем: f x = f y = 0, f z = g Jедначина равнотеже се своди на dp = ρgdz Диференциjална jедначина коjа раздваjа промењиве - интегралимо леву и десну страну dz + C p = ρgz + C Гранични услов: z = 0: p = p a C = p a p = p a + ρgz Александар Ћоћић (MФ Београд) MФБ / 25

13 Мировање течности у пољу силе Земљине теже Поље притиска Мировање течности у пољу силе Земљине теже Расподела (поље) притиска: p = p a + ρgz Притисак линеарно расте са повећањем дубине (са порастом z)! p a - атмосферски притисак, ρgz - хидростатички притисак Oy z A x h p = p a f = g B Вектор g je управан на изобарске површи ( f = g) Jедначине изобарских површи z = const (хоризонталне равни) ρ Слободна површ течности изобарска површ p = p a p A = p B = p a + ρgh (z A = z B = h) Jеднакост притисака на хоризонталним (изобарским) површима, p A = p B : jедначина хидростатичке равнотеже Александар Ћоћић (MФ Београд) MФБ / 25

14 Мировање ваздуха у пољу силе Земљине теже Поље притиска Мировање ваздуха у пољу силе Земљине теже Разматрамо случаj: ρ const (стишљив флуид) и f = g ( g = const) И то посебан случаj: разматрамо ваздух у Земљиноj атмосфери! z Ваздух (атмосфера) k f = g ρ Земља (Earth) y За усвоjени координатни систем: f x = f y = 0, f z = g Jедначина равнотеже се своди на dp = ρgdz (ρ const!) ваздух се понаша као идеални гас: p = ρrt (jедначина стања) dp = ρgdz p = ρrt } dp p = gdz RT Диференциjална jедначина коjа раздваjа промењиве, али jе неопходно знати зависност T = T (z)! Александар Ћоћић (MФ Београд) MФБ / 25

15 Мировање ваздуха у пољу силе Земљине теже Стандардна атмосфера Стандардна атмосфера ISA (International Standard Atmosphere): T = T (z) Разматрамо расподелу притиска у тропосфери и делу стратосфере где jе T = const. Тропосфера: T = T 0 γz (γ = 6.5 K/km) Стандардни услови: T 0 = 288 K, p 0 = Pa Део стратосфере (T = T s ) T s = T 0 γz s, z s 11 km T s = = K z [km] термосфера мезопауза мезосфера стратопауза стратосфера тропопауза тропосфера t s = 56.5 C T [K] Александар Ћоћић (MФ Београд) MФБ / 25

16 Мировање ваздуха у пољу силе Земљине теже Стандардна атмосфера Расподеле притиска у тропосфери и стратосфери Тропосфера (T = T 0 γz) dp p = gdz R(T 0 γz) ( p = p 0 1 γz ) g γr T 0 ˆ p p 0 dp p = g ˆ z dz R 0 T 0 γz степени закон расподеле Стратосфера (T = T s = const): dp p = gdz RT s [ p = p s exp g(z z ] s) RT s ˆ p p s dp p = g RT s ˆ z z s dz експоненциjални закон расподеле ps - притисак на месту на коме почиње стратосфера ) g p s = p 0 (1 γzs γr T 0 = Pa Александар Ћоћић (MФ Београд) MФБ / 25

17 Мировање ваздуха у пољу силе Земљине теже Стандардна атмосфера Расподеле притиска у тропосфери и стратосфери z [km] z [km] стратосфера 15 експоненциjална функциjа тропосфера 5 степена функциjа T [K] p [kpa] Притисак опада са висином (у сваком слоjу Земљине атмосфере; овде су разматрана тропосфера и део стратосфере) Александар Ћоћић (MФ Београд) MФБ / 25

18 Мировање ваздуха у пољу силе Земљине теже Стандардна атмосфера Промене густине ваздуха у Земљиноj атмосфери Могу се врло лако одредити користећи jедначину стања идеалног гаса и расподеле температуре и притиска Тропосфера: ρ(z) = p(z) ( RT (z) = ρ 0 1 γz ) g γr 1 T 0 Стратосфера: где jе ρ s = [ ρ(z) = ρ s exp g(z z ] s) RT s p(z) ( RT (z) = ρ 0 1 γz ) g γr s 1 T 0 Александар Ћоћић (MФ Београд) MФБ / 25

19 Мировање ваздуха у пољу силе Земљине теже Стандардна атмосфера Анализа добиjених jедначина за p(z) и ρ(z) Броjне вредности за ваздух (R = 287 J/kgK) и z = 10 m (висинска разлика): Тропосфера: p = p 0 ; ρ = 0.999ρ 0 Стратосфера: p = p s ; ρ s = ρ s (за T s = K) p = const ваздух Технички системи - резервоари са ваздухом (или неким другим гасом) - z jе мала величина (пар метара максимално) H 1 H 2 ρ 2 ρ Поље притиска у гасу коjи мируjе се може сматрати хомогеним (притисак има исту вредност у свакоj тачки поља, p = const)! У течностима у стању мировања важи хидростатички закон расподеле притиска Александар Ћоћић (MФ Београд) MФБ / 25

20 Релативно мировање флуида Релативно мировање при транслациjи Релативно мировање при транслациjи Суд са течношћу (ρ = const) коjи се креће транслаторно константним убрзањем a = const! У односу на координатни систем Oxyz везан за суд течност мируjе! z α H a in f g p = const x a Поље масене силе: f = g + a in ( a in - jединична инерциjална сила, инерциjално убрзањe) f x = a, f y = 0, f z = g Александар Ћоћић (MФ Београд) MФБ / 25

21 Релативно мировање флуида Релативно мировање при транслациjи Релативно мировање при транслациjи Поље притиска: dp = ρ( adx gdz) p = ρ(ax + gz) + C Гранични услов: x = 0, z = 0 : p = p a p = p a ρ(ax + gz) z α H a in f g p = const x a Притисак jе линеарна функциjа координата x и z изобарске површи су паралелне равни нагнуте под углом α у односу на хоризонталу (tgα = a/g); f jе управан на изобарске површи! Александар Jедначина Ћоћић (MФ Београд) MФБ / 25

22 Релативно мировање флуида Релативно мировање при транслациjи Релативно мировање при транслациjи Поље притиска: dp = ρ( adx gdz) p = ρ(ax + gz) + C Гранични услов: x = 0, z = 0 : p = p a p = p a ρ(ax + gz) z α H a in f g p = const x a Jедначина слободне површи (p = p a ): z = a g x Наjвећи притисак: тачка лево на дну суда Александар Ћоћић (MФ Београд) MФБ / 25

23 Релативно мировање флуида Релативно мировање при ротациjи Релативно мировање при транслациjи Суд са течношћу (ρ = const) коjи ротира константном угаоном брзином ω = const око своjе вертикалне осе У односу на координатни систем Oxyz везан за суд течност мируjе! ω = const z флуидни делић f c r f c z r0 r 0 y H 0 D g f c f ω = const r x Поље масене силе: f = g + f c, где jе f c = ω 2 r r 0 центрифугална сила f x = ω 2 x, f y = ω 2 y, f z = g Александар Ћоћић (MФ Београд) MФБ / 25

24 Релативно мировање флуида Релативно мировање при ротациjи Релативно мировање при ротациjи Поље притиска: dp = ρ(ω 2 xdx + ω 2 ydy gdz) p = 1 2 ρω2 (x 2 + y 2 ) ρgz + C }{{} r 2 Гранични услов: x = y = z = 0 : p = p a z p = p a ρω2 r 2 ρgz f c Jедначина слободне површи (p = p a ): H 0 D g f r z = ω2 2g r2 = ω2 2g (x2 + y 2 ) ω = const Притисак jе нелинеарна функциjа просторних кордината - изобарске површи су закривљене површи у простору - обртни параболоиди Александар Ћоћић (MФ Београд) MФБ / 25

25 Релативно мировање флуида Релативно мировање при ротациjи Релативно мировање при ротациjи На основу jеднакости запремина у стању мировања (суд напуњен до висине H) и током обртања следи D 2 π 4 h 1 = 1 D 2 π 2 4 (h 1 + h 2 ) h 1 = h 2 Тачка М се налази на слободноj површи z M = ω2 2g r2 M 2h 1 = ω2 2g ( ) 2 D 2 z M h 2 h 1 = h 2 = ω2 D 2 16g При коjоj вредности ω ће теме параболе бити у центру дна суда? H 0 D h 1 ω = const r Одговор: ω = 4 D gh 000 Видео клип (YouTube) Александар Ћоћић (MФ Београд) MФБ / 25

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

Механика флуида Б - уводни поjмови

Механика флуида Б - уводни поjмови Механика флуида Б - уводни поjмови Александар Ћоћић Машински факултет Београд Александар Ћоћић (MФ Београд) MФБ-01 1 / 11 Информациjе o предмету, професору, итд. Александар Ћоћић, доцент email: acocic@mas.bg.ac.rs

Διαβάστε περισσότερα

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Статика флуида. Хидростатички притисак

Статика флуида. Хидростатички притисак Статика флуида Проучавање флуида у стању мировања најстарија је дисциплина механике флуида, што обавезује на познавање свих проблема ове области. Појмови уведени у статици флуида: спољашње силе, притисак

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

МЕХАНИКА ФЛУИДА Б - проблеми и задаци из прве области

МЕХАНИКА ФЛУИДА Б - проблеми и задаци из прве области Машински факултет Београд Катедра за механику флуида МЕХАНИКА ФЛУИДА Б - проблеми и задаци из прве области. Наjдубља тачка у океанима jе 0m, измерена у Мариjанскоj бразди у близини острва Гвам у Тихом

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИJА. Владица Андреjић ( ) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2015.

АНАЛИТИЧКА ГЕОМЕТРИJА. Владица Андреjић ( ) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2015. АНАЛИТИЧКА ГЕОМЕТРИJА Владица Андреjић (01-03-2015) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2015. Глава 1 Вектори у геометриjи 1.1 Увођење вектора Поjам вектора у еуклидскоj геометриjи можемо

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

Закони термодинамике

Закони термодинамике Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

У к у п н о :

У к у п н о : ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Седми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. КРЕТАЊЕ И

Διαβάστε περισσότερα

Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q

Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q Разлика потенцијала Разлика потенцијала између тачака A и B се дефинише као промена потенцијалне енергије (крајња минус почетна вредност) када се наелектрисање q помера из тачке A утачку B подељена са

Διαβάστε περισσότερα

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2015/2016. ГОДИНЕ

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2015/2016. ГОДИНЕ ШКОЛСКЕ 015/016. ГОДИНЕ ЗАДАЦИ ФЕРМИОНСКА КАТЕГОРИJА 13.03.016. 1. Честица се креће у xy равни у хомогеном магнетном пољу чиjи jе правац нормалан на раван кретања честице. Дозвољене енергиjе овакве честице

Διαβάστε περισσότερα

Логистичка регресиjа

Логистичка регресиjа Логистичка регресиjа 4.час 22. март 2016. Боjана Тодић Статистички софтвер 4 22. март 2016. 1 / 26 Логистичка расподела Логистичка расподела jе непрекидна расподела вероватноће таква да jе њена функциjа

Διαβάστε περισσότερα

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z.

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z. Дефиниција функције више променљивих Околина тачке R График и линије нивоа функције : Дефиниција Величина се назива функцијом променљивих величина и на скупу D ако сваком уређеном пару D по неком закону

Διαβάστε περισσότερα

Стања материје. Чврсто Течно Гас Плазма

Стања материје. Чврсто Течно Гас Плазма Флуиди 1 Стања материје Чврсто Течно Гас Плазма 2 Чврсто тело Има дефинисану запремину Има дефинисан облик Молекули се налазе на специфичним локацијама интерагују електричним силама Вибрирају око положаја

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

Одређивање специфичне тежине и густине чврстих и течних тела. Одређивање специфичне тежине и густине чврстих и течних тела помоћу пикнометра

Одређивање специфичне тежине и густине чврстих и течних тела. Одређивање специфичне тежине и густине чврстих и течних тела помоћу пикнометра Одређивање специфичне тежине и густине чврстих и течних тела Густина : V Специфична запремина : V s Q g Специфична тежина : σ V V V g Одређивање специфичне тежине и густине чврстих и течних тела помоћу

Διαβάστε περισσότερα

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу

Διαβάστε περισσότερα

ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент

ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент Техничка Механика ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент Техничка Механика ОСНОВНИ ПОЈМОВИ МЕХАНИКЕ ПОДЕЛА МЕХАНИКЕ Процеси у Васељени (Универзуму) представљају непрекидно

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Кинематика флуида и напонско стање

Кинематика флуида и напонско стање Кинематика флуида и напонско стање У механици флуида решавају се динамичке једначине кретања за разна струјања која су присутна у техничким, физичким, биолошким и другим областима. При томе упознају се

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

1 Неодрђеност и информациjа

1 Неодрђеност и информациjа Теориjа информациjе НЕОДРЂЕНОСТ И ИНФОРМАЦИJА Неодрђеност и информациjа. Баца се фер новичић до прве поjаве писма. Нека jе X случаjна величина коjа представља броj потребних бацања. Наћи неодређеност случаjне

Διαβάστε περισσότερα

Нелинеарни регресиони модели и линеаризациjа

Нелинеарни регресиони модели и линеаризациjа Нелинеарни регресиони модели и линеаризациjа 3.час 15. март 2016. Боjана Тодић Статистички софтвер 4 15. март 2016. 1 / 23 Регресионa анализа Регресиона анализа jе скуп статистичких метода коjима се открива

Διαβάστε περισσότερα

РИЗИК ОД МЕХАНИЧКИХ ДЕЈСТАВА

РИЗИК ОД МЕХАНИЧКИХ ДЕЈСТАВА Ризик од механичких дјстава Увод РИЗИК ОД МЕХАНИЧКИХ ДЕЈСТАВА Ризик је вероватноћа настанка повреде, обољења или оштећења здравља запосленог услед опасности; ризик на раду се односи на могућност и на тежину

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

Монте Карло Интеграциjа

Монте Карло Интеграциjа Монте Карло Интеграциjа 4.час 22. март 2016. Боjана Тодић Статистички софтвер 2 22. март 2016. 1 / 22 Монте Карло методе Oве нумеричке методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

Структура атмосфере. Атмосфера. Звездана атмосфера

Структура атмосфере. Атмосфера. Звездана атмосфера Структура атмосфере Атмосфера реч атмосфера? ατµοσ(=пара)+ σφαιρα(=лопта) гасовити омотач око небеских тела (и Земље) атмосфера планете атмосфера звезде Танки омотач ваздуха око (наше) планете који гравитација

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

ФИЗИКА. Динамика. Силе су вектори. Динамика

ФИЗИКА. Динамика. Силе су вектори. Динамика ФИЗИКА Динамика Сила Њутнови закони кретања Тежина, трење и друге силе Основне силе у природи Статика 1 Динамика При описивању кретања се користе још две величине, маса и сила. Даје везу између кретања

Διαβάστε περισσότερα

Флукс, електрична енергија, електрични потенцијал

Флукс, електрична енергија, електрични потенцијал Флукс, електрична енергија, електрични потенцијал 1 Електрични флукс Ако линије поља пролазе кроз површину A која је нормална на њих Производ EA је флукс, Φ Генерално: Φ E = E A cos θ 2 Електрични флукс,

Διαβάστε περισσότερα

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

Решења задатака са првог колоквиjума из Математике 1Б II група задатака

Решења задатака са првог колоквиjума из Математике 1Б II група задатака Решења задатака са првог колоквиjума из Математике Б II група задатака Пре самих решења, само да напоменем да су решења детаљно исписана у нади да ће помоћи студентима у даљоj припреми испита, као и да

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте

Διαβάστε περισσότερα

p /[10 Pa] 102,8 104,9 106,2 107,9 108,7 109,4 r / 1,1 1,3 1,5 2,0 2,5 3,4

p /[10 Pa] 102,8 104,9 106,2 107,9 108,7 109,4 r / 1,1 1,3 1,5 2,0 2,5 3,4 . РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 9/. ГОДИНЕ II РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Србије ЗАДАЦИ ГИМНАЗИЈА ВЕЉКО ПЕТРОВИЋ СОМБОР,.... Хомогена кугла

Διαβάστε περισσότερα

T. max Т / [K] p /[ 10 Pa] 1,01 1,23 1,74 2,39 3,21 4,42 5,87 7,74 9,35 11,60

T. max Т / [K] p /[ 10 Pa] 1,01 1,23 1,74 2,39 3,21 4,42 5,87 7,74 9,35 11,60 II РАЗРЕД 49. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ /. ГОДИНЕ Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ ФИЗИЧКИ ФАКУЛТЕТ БЕОГРАД 9.4... Малу плочицу,

Διαβάστε περισσότερα

Писмени испит из Метода коначних елемената

Писмени испит из Метода коначних елемената Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Прост случаjан узорак (Simple Random Sampling)

Прост случаjан узорак (Simple Random Sampling) Прост случаjан узорак (Simple Random Sampling) 3.час 10. март 2016. Боjана Тодић Теориjа узорака 10. март 2016. 1 / 25 Прост случаjан узорак без понављања Random Sample Without Replacement - RSWOR Ово

Διαβάστε περισσότερα

УНУТРАШЊЕ И СПОЉАШЊЕ СИМЕТРИЈЕ У РИМАНОВОЈ ГЕОМЕТРИЈИ

УНУТРАШЊЕ И СПОЉАШЊЕ СИМЕТРИЈЕ У РИМАНОВОЈ ГЕОМЕТРИЈИ УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Александар Шебековић УНУТРАШЊЕ И СПОЉАШЊЕ СИМЕТРИЈЕ У РИМАНОВОЈ ГЕОМЕТРИЈИ Докторска дисертација Крагујевац, 2016. година I. Аутор Име и презиме:

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

Задатак 1: Скиjашко путовање (10 поена)

Задатак 1: Скиjашко путовање (10 поена) ЗАДАЦИ Задатак 1: Скиjашко путовање (10 поена) У овом задатку ћемо разматрати физичке проблеме коjи се могу приметити током скиjашког одмора на планини. Скиjаш jе кренуо на путовање аутомобилом из Нишке

Διαβάστε περισσότερα

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКА 2017/18. ГОДИНА

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКА 2017/18. ГОДИНА ШКОЛСКА 017/18. ГОДИНА ЗАДАЦИ ФЕРМИОНСКА КАТЕГОРИJА III разред.03.018. 1. Хомоген балван дужине се креће у хоризонталноj равни и нормално на два jеднака и паралелна ваљка. Изглед система нормално на осе

Διαβάστε περισσότερα

ГЕОМЕТРИJСКА СВОJСТВА АНАЛИТИЧКИХ ФУНКЦИJА

ГЕОМЕТРИJСКА СВОJСТВА АНАЛИТИЧКИХ ФУНКЦИJА УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАСТЕР РАД ГЕОМЕТРИJСКА СВОJСТВА АНАЛИТИЧКИХ ФУНКЦИJА Аутор Бобан Карапетровић Ментор проф. Миодраг Матељевић Jул, 04. Садржаj Увод Ознаке Schwarz-ова лема на

Διαβάστε περισσότερα

Ветар. Зашто ветар дува? Настанак ветра. гравитационе) тело остаје у стању мировања или раномерног праволинијског сила. 1. Њутнов закон: Свако

Ветар. Зашто ветар дува? Настанак ветра. гравитационе) тело остаје у стању мировања или раномерног праволинијског сила. 1. Њутнов закон: Свако Ветар Зашто ветар дува? 1. Њутнов закон: Свако тело остаје у стању мировања или раномерног праволинијског кретања док год на њена не делује нека сила. 2. Њутнов закон: 3. Њутнов закон: При При интеракцији

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

g 10m/s. (20 п) . (25 п)

g 10m/s. (20 п) . (25 п) II РАЗРЕД Група П 5. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ /. ГОДИНЕ. Друштво Физичара Србије Министарство Просвете и Науке Републике Србије ЗАДАЦИ. На дугачком глатком хоризонталном

Διαβάστε περισσότερα

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

U = ax i by j. u = U x ) , v = w = 0. ρ = ρ x ) 1. T = T 0 e x/l sin,

U = ax i by j. u = U x ) , v = w = 0. ρ = ρ x ) 1. T = T 0 e x/l sin, Å Ü Ò ÙÐØ Ø Ó Ö Ã Ø Ö Þ Ñ Ò Ù ÐÙ Å À ÆÁà ÄÍÁ ¹ II Ø Ø ¾¼º Ñ Ö ¾¼¼ º Ó º 1. ÖÙÔ ½º ÈÓ ÖÞ Ò ÔÖ Ö Ú Ò ÓÑ ØÖÙ Ù ÐÙ Ù a b ÔÓÞ Ø ÚÒ ÓÒ Ø ÒØ º U = ax i by j Ç Ö Ø Ó Ù ÐÓÚ ÑÓÖ Ù Þ ÓÚÓ ÓÒ Ø ÒØ a b ØÖÙ ÐÙ ÐÓ Ò Ø

Διαβάστε περισσότερα

ФИЗИКА Час број 11 Понедељак, 8. децембар, Aвогадров закон. Увод. Авогадров закон. Гасовито агрегатно стање

ФИЗИКА Час број 11 Понедељак, 8. децембар, Aвогадров закон. Увод. Авогадров закон. Гасовито агрегатно стање ФИЗИКА Час број Понедељак, 8. децембар, 008 Једначина стања идеалног и реалног гаса Притисак и температура гаса Молекуларно кинетичка теорија идеалног гаса Болцманова и Максвелова расподела Средњи слободни

Διαβάστε περισσότερα

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2015/2016. ГОДИНЕ. Друштво физичара Србије. Министарство просвете и науке Републике Србије

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2015/2016. ГОДИНЕ. Друштво физичара Србије. Министарство просвете и науке Републике Србије Друштво физичара Србије ДРЖАВНИ НИВО II РАЗРЕД Министарство просвете и науке Републике Србије 22.04.2016. ЗАДАЦИ Фермионска категорија 1. На слици је приказан електрично изолован систем који се налази

Διαβάστε περισσότερα

Параметарски и непараметарски тестови

Параметарски и непараметарски тестови Параметарски и непараметарски тестови 6.час 12. април 2016. Боjана Тодић Статистички софтвер 4 12. април 2016. 1 / 25 Поступци коjима се применом статистичких метода утврђуjе да ли се, на основу узорка

Διαβάστε περισσότερα

Висока техничка школа струковних студија Београд Математика 2 Интервали поверења и линеарна регресија предавач: др Мићо Милетић

Висока техничка школа струковних студија Београд Математика 2 Интервали поверења и линеарна регресија предавач: др Мићо Милетић Математика Интервали поверења и линеарна регресија предавач: др Мићо Милетић Интервали поверења Тачкасте оцене параметара основног скупа могу се сматрати као приликом обраде узорка. Њихов недостатак је

Διαβάστε περισσότερα

Ознаке: f и. Парцијални изводи, парцијалних извода су парцијални изводи другог реда функције z = f (x, y): 2. извод другог реда по x 2 2

Ознаке: f и. Парцијални изводи, парцијалних извода су парцијални изводи другог реда функције z = f (x, y): 2. извод другог реда по x 2 2 Довољан услов за M M Дефинисати парцијалне изводе I реда и II реда функције I реда: Ако постоје коначне граничне вредности количника парцијалних прираштаја функције у тачки са одговарајућим прираштајима

Διαβάστε περισσότερα

Осцилације система са једним степеном слободе кретања

Осцилације система са једним степеном слободе кретања 03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)

Διαβάστε περισσότερα

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/

Διαβάστε περισσότερα

Ваздух, његов значај и физичке особине

Ваздух, његов значај и физичке особине Алексинац, 9-11. март 018. Ваздух, његов значај и физичке особине Миодраг К. Радовић, Драган Ђ. Радивојевић Природно-математички факултет у Нишу, Вишеградска 33, 18000 Ниш Апстракт. Ваздух који нас окружује

Διαβάστε περισσότερα

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016. ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним

Διαβάστε περισσότερα

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km)

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km) ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>1 km) Οι αποστάσεις μεταξύ των μορίων είναι πολύ μεγάλες σχετικά με τον όγκο που κατέχουν Οι συγκρούσεις μεταξύ τους

Διαβάστε περισσότερα

КОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z

КОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z КОМПЛЕКСНИ БРОЈЕВИ z ib, Re( z), b Im( z), z ib b b z r b,( ) : cos,si, tg z r(cos i si ) r r k k z r (cos i si ), z r (cos i si ) z r (cos i si ), z r (cos i si ) z z r r (cos( ) i si( )), z z r (cos(

Διαβάστε περισσότερα

Задатак 1: Систем аутоматског навођења ракете (10 поена)

Задатак 1: Систем аутоматског навођења ракете (10 поена) ЗАДАЦИ Задатак 1: Систем аутоматског навођења ракете 10 поена) У овом задатку ћемо се бавити поjедностављеним моделом система аутоматског навођења ракета. Оптичка схема система jе приказана на слици 1.

Διαβάστε περισσότερα

Температура. везана за топло и хладно ово није једнозначно у субјективном смислу

Температура. везана за топло и хладно ово није једнозначно у субјективном смислу ФИЗИКА 2010 Понедељак, 15. новембар и 22. новембар 2010 Температура Топлотно ширење чврстих тела и течности Закони који важе за идеални гас Кинетичка теорија Фазне трансформације Влажност, испаравање,

Διαβάστε περισσότερα

Конструкциjе Адамарових матрица

Конструкциjе Адамарових матрица Математички факултет Универзитета у Београду Конструкциjе Адамарових матрица Мастер pад Сенад Ибраимоски Чланови комисиjе: проф. др. Миодраг Живковић - ментор проф. др. Предраг Jаничић проф. др. Филип

Διαβάστε περισσότερα

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( ) Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

ФИЗИКА Појам флуида. Агрегатна стања. ваздух, вода, крв,... гасови и течности три агрегатна стања материје

ФИЗИКА Појам флуида. Агрегатна стања. ваздух, вода, крв,... гасови и течности три агрегатна стања материје ФИЗИКА 2010. Понедељак, 1. новембар 2010. године Статика флуида Густина и притисак флуида Промена притиска са дубином флуида Паскалов принцип Калибрација, апсолутни притисак и мерење притиска Архимедов

Διαβάστε περισσότερα

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,

Διαβάστε περισσότερα

Енергетски трансформатори рачунске вежбе

Енергетски трансформатори рачунске вежбе 16. Трофазни трансформатор снаге S n = 400 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем Â " =14 и максимални степен искоришћења

Διαβάστε περισσότερα

σ d γ σ M γ L = ЈАКОСТ 1 x A 4М21ОМ02 АКСИЈАЛНИ НАПРЕГАЊА (дел 2) 2.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба

σ d γ σ M γ L = ЈАКОСТ 1 x A 4М21ОМ02 АКСИЈАЛНИ НАПРЕГАЊА (дел 2) 2.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба 4МОМ0 ЈАКОСТ АКСИЈАЛНИ НАПРЕГАЊА (дел ) наставник:.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба γ 0 ( специфична тежина) 0 ak() G γ G ΣX0 ak() G γ ak ( ) γ Аксијалната сила и напонот, по

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Задатак 1: Муње из ведре главе (10 поена)

Задатак 1: Муње из ведре главе (10 поена) ЗАДАЦИ Задатак 1: Муње из ведре главе (10 поена) У овом задатку ћемо разматрати кружење наелектрисања у атмосфери укључуjући муње праћене грмљавином. Jоносфера jе горњи слоj атмосфере коjи jе услед космичког

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

ЈАКОСТ НА МАТЕРИЈАЛИТЕ

ЈАКОСТ НА МАТЕРИЈАЛИТЕ диј е ИКА ски ч. 7 ч. Универзитет Св. Кирил и Методиј Универзитет Машински Св. факултет Кирил и Скопје Методиј во Скопје Машински факултет МОМ ТЕХНИЧКА МЕХАНИКА професор: доц. др Виктор Гаврилоски. ТОРЗИЈА

Διαβάστε περισσότερα

4.1 Површи другог реда Класификација површи другог реда... 31

4.1 Површи другог реда Класификација површи другог реда... 31 1.1 Увођење вектора....................................... 1 1.2 Векторски простор...................................... 2 1.3 Линеарна независност вектора............................... 4 1.4 Скаларни

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3 МАТЕМАТИЧКИ ЛИСТ 07/8. бр. LII- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ . III разред. Обим правоугаоника је 6cm + 4cm = cm + 8cm = 0cm. Обим троугла је 7cm + 5cm + cm =

Διαβάστε περισσότερα

L кплп (Калем у кплу прпстпперипдичне струје)

L кплп (Калем у кплу прпстпперипдичне струје) L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве

Διαβάστε περισσότερα