5. TRANSFORMATA LAPLACE ŞI ALGEBRA SCHEMELOR BLOC
|
|
- ÍΘεριστής Χρηστόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 5. TRSFORMT E ŞI EBR SHEMEOR BO 5.. Tafomaa alac Dmia afomaa alac aibiă î ooaa mamaiciali şi aoomli isimo alac, ca a iliza acaă afoma î lcaa a d oia obabiliăţilo. licabiliaa afomai alac xiă î div domii: mamaică, fizică, oică, igii lcică, aomaică, lcaa mallo, mcaoică. Î ama mamaicii miă aaliză fcţioală, afomaa alac, oao liia aa i fcţii f, miă fcţi oigial, d agm al,. c oao afomă oigiall îo ală fcţi F d agm comlx, miă fcţi imagi. Tafomaa alac o modă ca ilizază zolvaa caţiilo difţial liia c coficiţi coaţi, caţii c caacizază moa alicaţii di iml mcaic şi lcic. Î ţă, moda afomă caţiil difţial î caţii algbic, i iodca i oi vaiabil, d i comlx. S coidǎ o fcţi f î ca vaiabila im, şi f. Dacă fcţia f aifac măoal codiţii: f d oic R, aci afomaa alac a fcţii f xiă, ică şi dfiiă i igala: 5. f f d F 5.
2 6 TRSFORMT E ŞI EBR SHEMEOR BO 5 oaol alac, ia o vaiabilă comlxă, d foma. âd foloş xia afomaa alac, îţlg imlici afomaa alac ilaală. Tafomaa alac oa fi dfiiă şi ca afoma alac bilaală, i xida limilo d iga da lgl îgii ax al. Dacă fac aa, aci afomaa alac ilaală dvi doa caz aicla al afomai bilaal. Tafomaa alac bilaală dfiiă afl: f f d F 5. Dacă c o olţi î im, fcţii d îi alicaă o afoma ivă a obţi fcţia cozăoa î im. caă oaţi dmiă dmiaa oigialli baza imagiii alac. Oigiall f va obţi i afomaa alac ivă daă d măoa igală comlxă şi cocă b div m igala Bomwich, igala FoiMlli a fomla ivă a li Mlli: F f F d 5. caă afoma bicivă î maoiaa cazilo acic ia chil cozăoa f şi F ga î abl d afoma alac. Î cocodaţă c cl cifica aio oa că î cl doă domii, im şi comlx, xiă o laţi d ciocă: f F 5.5 doi afomaa alac iaă ca o afoma di domil im iăil şi işiil fcţii d im î domil comlx. caă afoma igală a mă d oiăţi ca o fac ilă î aaliza liiaă a imlo diamic. 5.. oiăţil afomai alac 5... oiaa d liiaia Dacă da fcţiil f, f,..., f c afomal alac c, c,... c chival F, F,... F şi coa aci oiaa d liiaia dfiş i laţia d chivalţă:
3 c 5.. oiăţil afomai alac f c f... c f c F c F... c F 5.6 S oa dmoa şo chivalţa aioaă i alicaa afomai alac: c f c f... c f... c c f f c F c d d c c f F... c c f f F d... c f d... c f 5... oiaa d amăa cala c f d d d 5. Fiid daă fcţia f, afomaa alac chivală F şi aaml α, oiaa d cala ximă i: f F 5.8 S oa dmoa şo chivalţa aioaă oid d la laţia d dfiiţi: 5.9 f f d şi iodcâd oaţiil: v ; v ; d dv. S obţi î fial: v f f v dv F oiaa dlaăii afomai Fiid daă fcţia f, afomaa alac chivală F şi aaml a, oiaa d cala ximă i: a f F a 5. oidâd dal d ia şi laţia d dfiiţi afomaa alac, oa ci:
4 8 TRSFORMT E ŞI EBR SHEMEOR BO 5 a a a f f d f d F a Talaţia î im Dacă F ziă afomaa alac a fcţii oigial f, aci: a f a F 5. a Talaţia î domil im cod îmlţiii c fcvţi comlx. Fcţia f a zaă î figa 5.. î domil f f a a a Fig. 5. Talaţia î im Toma valoii fial şi oma valoii iiţial Toma valoii fial şi oma valoii iiţial imoa î oia imlo aoma, miţâd dmiaa valoii fcţii d im la moml şi dic di afomal alac, făă a iliza afomaa ivă. ofom omi valoii iiţial: lim f F 5. lim ofom omi valoii fial: lim f lim F Toma cli d a doa vaiabil idd Dacă F, a ziă afomaa alac a li f, a, aci xiă măoaa laţi: lim f, a lim F, a 5.6 aa aa
5 5.. Tafomal alac al o fcţii şi oaţii 9 a o alicaţi a aci om, coidă afomaa alac cofom Tablli 5.: i 5. licâd oma aţaă, calclază limia aci câd aaml α id la zo şi va obţi o ală afomaă alac: i 5.8 Î mod imila c ca la limiă l.5.6 mi şi: Difţia î ao c aam a: d f, a d F, a 5.9 d a d a Igaa î ao c vaiabila iddă a: a a f, ad a F, ad a a a Tafomal alac al o fcţii şi oaţii Dacă alică igala 5. o fcţii difi oa ag la abla d afoma alac abll 5. coţiâd fcţia oigial şi fcţia imagi. xmlifica, coidă calcll afomai alac câva di fcţiil lma. S coidă fcţia aă iaă fig.5. dfiă i laţia:, ;, ; 5. Fig. 5. Fcţia aă iaă Rlaţia d dfiiţi a afomai alac l.5. dvi î ac caz:
6 TRSFORMT E ŞI EBR SHEMEOR BO 5 d 5. R. RT. 5 6 FUŢI DE TIM f,, f f,, TRSFORMT E F f { } { } f! f f f co 8 f i co a a 9 f co f { { a a iω} co ω} { } S coidă fcţia oigial f i a a a! Tabll 5., ca măş dmiaa afomai alac. oidâd laţiil li El, aaă că fcţia oigial oa ci şi b foma xoţială: f i 5.
7 5.. Tafomal alac al o fcţii şi oaţii baza laţii aioa, igala d dfiiţi a afomai alac dvi: d d d i 5. Î figa 5. ziă fcţia l şi modl d chivala baza fcţii aă. = Fig. 5. Fcţia l Fcţia l oa dfii mamaic i laţia: f 5.5 d o coaă R. ofom c cl za aio, fcţia aioaă oa dfii şi i difţa fcţiilo aă fig.5.:
8 TRSFORMT E ŞI EBR SHEMEOR BO 5 f 5.6 Tafomaa alac va fi î ac codiţii: 5. Fcţia iml oa dfii baza fcţii l l.5.5 i laţia: f lim 5.8 acaă fcţi, afomaa alac daă i laţia: d Fcţia d af Toia imlo ilizază î cocţia modllo mamaic laţia di măimil d ia şi d işi im liia ivaia î im, laţi ca mş fcţi d af a imli. Fi iml avâd măoaa caţi difţială ca laţi î măimil d ia şi d işi y, d y divaa d odil a măimii d işi y, ia i divaa d odil i a măimii d ia, : b b b y a y a y a m m m m 5. SISTEM y Fig. 5. Siml şi măima d ia şi işi d y d y,,..., 5.
9 5.5. lgba chmlo bloc i i d i,,..., m 5. i d S codiţiil iiţial, adică valoil î oa fcţiil, icliv dival lo, ca fiid l: y i i m Tafomaa alac a laţii di măimil d ia şi d işi oa ci, baza oiăţilo acia d liiaia şi a modli d calcl al afomai alac divaa i fcţii: a: a a... a m m bm U bm U... bu 5.5 Rlaţia aioaă mi ximaa afomai alac a măimii d işi: m m b b... b m m U a a... a 5.6 U 5. Fcţia fcţia d af a imli şi ziă ca o fcţi aţioală d. i iodca oţiii d fcţi d af, chmabloc a imli dvi mai cocă fig.5.: SISTEM y U Fig. 5.5 Schma bloc a i im, c vidţia fcţii d af 5.5. lgba chmlo bloc iciii al algbi chmlo bloc Fcţia d af ziă o oia a lmli / imli da. ombiaa mai mlo im î ig bloc zla oa fi xiă. Raaaa chmlo bloc i vda imlificăii, dmiă algba chmlo
10 TRSFORMT E ŞI EBR SHEMEOR BO 5 bloc. Î figil za cl mai imoa idiăţi al algbi chmlo bloc, ca iliza î imlificaa imlo. U U U U E U U U a b Fig. 5.6 Fcţia d af : a od; b mao U X U. Fig. 5. Fcţia d af a i ii d bim U U Fig. 5.8 Fcţia d af a i coxii d bim î aall U X U Fig. 5.9 Fcţia d af a coxiii c acţi gaivă U X U Fig. 5. Fcţia d af a coxiii c acţi oziivă
11 5.5. lgba chmlo bloc 5 Fig. 5. Modificaa cli d amificaţi U U U U Fig. 5. Modificaa oziţii i bloc faţă d mao U U Fig. 5. Idia î algba chmlo bloc Î cazl imlo c mai ml iăi MISO mlil i / igl o, oa dmia ăl imli ilizâd iciil oziţii: ăl imli iăi mlil imla ma ăilo idividal fica ia alicaă aa. Uilizâd hicil d imlifica a chmlo bloc, oa dc iml aaliza la ig lm c o fcţi d af chivală. Dacă di d imagia alac a i im, i fcţia F, oa dmia fcţia oigială, f c aol ivi afomai alac: 5.8 f F Î moa cazi, mai şo ă xim iva afomai alac a i fcţii î ao c ca a o fcţii iml, lma, ca acaa cocă. Modl d alica cific oii imlo.
12 6 TRSFORMT E ŞI EBR SHEMEOR BO 5 Î l clo za aio, im modl mamaic chm bloc, ziă î abll 5. câva xmlificăi giv ivid ac aallim. Tabll Exml d calcl a S coidă iml c chma zaă î figa 8.9. S c ă dmi işia imli î codiţiil i iăi U şi a i baţii x D. licâd iciil oziţii, işia imli dmiă ca fiid: 5.9 cozăo cazilo:
13 5.5. lgba chmlo bloc U D Fig. 5. Sim c baţi d ia baţi zo fig.5.5 U Fig. 5.5 Siml c baţi zo licâd hicil d imlifica, oa dmia işia imli: U 5. Ia zo fig.5.6 D Fig. 5.6 Siml c ia gală c zo Uilizâd aclaşi hici d imlifica oa dmia işia imli: D 5. vâd î vd laţiil 5. şi 5., oa dmia işia imli î codiţiil clo doă iăi imla:
14 8 TRSFORMT E ŞI EBR SHEMEOR BO 5 U D 5. b Să dcă iml, di figa 5. la ig lm, ilizâd hicil d imlifica a algbi chmlo bloc. U Fig. 5. Schma bloc comlxă a imli ocda alicaă zlă di figil măoa. Fica a a alocaă o figă. S idică d fica daă fcţia d af î blocl chival zla. / U Fig. 5.8 Modificaa oziţii cli d amificaţi U Fig. 5.9 Elimiaa bcli d alima dică şi imlificaa lmlo î i
15 5.6. Tafomaa alac ivă 9 U Fig. 5. Simlificaa bcli d acţi oziivă U Fig. 5. Simlificaa lmlo î i cala dică U Fig. 5. Simlificaa bcli d acţi gaivă 5.6. Tafomaa alac ivă iciii d calcl Dmiaa olţiilo dd d im caţiil difţial afoma ciă alicaa afomai alac iv F f. Fcţia imagi F oa za b a di foml: xia liiaă a i combiaţii d fcţii oliomial:... Z Z Z F 5. Î ac caz afomaa alac ivă va fi: Z Z Z Z Z Z F f 5.
16 TRSFORMT E ŞI EBR SHEMEOR BO 5 Oigiall cozăo ficăi m di laţia 5. oa dmia baza ablli 5. vzi şi xa 8 /ca. Solţia î im f calclază i îmaa oigiallo ficăi m di xia 5.. o fcţi aţioală î : K Q F 5.5 Î ac caz afomaa alac ivă va fi: K K F f 5.6 ima afomaă K calclază î cofomia c laţia 5.. calcll cli da doa afoma a î vd că cl doă fcţii ca o dfic a o fomă oliomială:... b b b b m m m m a a a a 5.8 c m. iciil d calcl bazază dcoma fcţii aţioal îo mă d fcţii aţioal i coaşa ădăciilo caţii oliomial. Î ac o vidţia mai ml cazi. a a mai ădăcii al diic. Î ac caz oa ci:..... a a a a 5.9 d.... Î ac codiţii laţia aioaă oa ci: ca bi dmiaţi coficiţii i : i i i 5.5 ocda ămâ chimbaă chia dacă a di ădăcii află î oigi.
17 5.6. Tafomaa alac ivă b a ădăcii al mlil. Î ac caz oa ci: d ădăcii al diic şi a a gadl d mlilicia. Exia aioaă oa dcom îo mă d facţii aţial: oficiţii,,..., dmiă i ocdl za aio la cl a. Rl coficiţilo,..., dmiă i laţiil:!......! d d d d d d 5.55 Oigiall cozăo ficăi m di laţia 5.5 oa dmia baza ablli 5.. Solţia î im f calclază i îmaa oigiallo ficăi m di xia 5.5. c a ădăcii comlx. oliom c coficiţi ali. Î ac codiţii caţia oliomială a aâ ădăcia b a câ şi ădăcia cogaă b a şi afl olioml
18 TRSFORMT E ŞI EBR SHEMEOR BO 5 oa fi ci: i i b a 5.56 d i ădăcii al. Î ac caz xia aţioală oa ci: i i i b a 5.5 oficiţii i i =,, dmiă iciil za aio.6, c.a. dmiaa clolalţi doi coficiţi şi im afomăi aa xii 5.5 şi idificaa clo doi coficiţi di iml d caţii zla. Solţia î im f dmiă iciil claic ilizâd abll 5.: i i i a F f Exml d calcl Exmll S coidă fcţia d af: 5.59 şi c dcoma î facţii iml şi calcll fcţii dd d im y. Fcţia d af oa dcom î facţii iml: B 5.6 oficiţii, B, dmiă î cofomia c cl za la.6, c.a: B 5.6
19 5.6. Tafomaa alac ivă Î ac caz: y Exmll fcţia d af: 5.65 c ă dmi fcţia d im y. Fcţia d af dcom î facţii iml : 5.66 oficiţii calclază î cofomia c cl ciza.6, c.b: ] [ d d d d 5.
20 TRSFORMT E ŞI EBR SHEMEOR BO 5 8!! d d d d 5. Exia fcţii d af va fi: 5. ia fcţia d im î mod cozăo: y Exmll S coidă fcţia d af 9 5. şi c ă dmi fcţia d im y. Fcţia d af dcom î facţii iml : 9 9 B 5.5 oficil dmiă ca fiid : oficiţii B, dmiă di idificaa: 8 6 B B 5. chivală imli:
21 5.6. Tafomaa alac ivă B B 5.8 Di iml 5.8 obţi coficiţii: B ;. Î fial, obţi: y i co Exmll S coidă fcţia d af 5.9 şi c ă dmi fcţia d im y. Fcţia d af dcom î facţii iml: B 5.8 a fl ca î xmll aioa, dmiă coficiţii: lim 5.8 lim B 5.8
22 TRSFORMT E ŞI EBR SHEMEOR BO 5 6 lim 5.8 Î fial, oa obţi: y 5.8 Foma d vaiaţi î im a fcţii y oa obţi alâd la mdil Malab fig.5.. aficl za î figa 5. Fig. 5. Fişi zaa fcţii y Fig. 5. aficl fcţii y
23 5.. Malab şi algba chmlo bloc 5.. Malab şi algba chmlo bloc 5... Fcţii d comadă Mdil Malab / ool Sym Toolbox faciliază oaţii di algba chmlo bloc [5.]. omada fdbac mi cocaa a doă modl liia îo coxi c acţi. Siaxa ilizaă : y = fdbac y,y y_f = fdbac fm_,d_, fm_, d_ ia zlal fcţia d af a imli î coxi c acţi. Î mod imlici iaxa zaă acţia gaivă. Dacă doş idicaa ili d acţi gaivă a oziivă im modificaa iaxi: y = fdbac y,y, y = fdbac y,y, Î figa 5.5 ziă fişil cool_.m ca mi cocaa a doă modl liia îo coxi c acţi. Fig.5.5 Fişi *m calcll i coxii c acţi Fig.5.6 Fcţia d af chivală zlaă di calcl ocaa î aall a doă im fig.5. şi aa fcţii d af a imli chival faciliaă d fcţia Malab aalll. U Fig. 5. ocaa î aall a doă im
24 8 TRSFORMT E ŞI EBR SHEMEOR BO 5 Fişil cool_.m vidţiază iaxa ilizaă î xml coc ia zlal obţi za î figa 5.8. Fig.5.8 alcll i coxii aall ocaa î i a doă im fig.5.9 şi aa fcţii d af a imli chival faciliaă d fcţia Malab i. U X Fig.5.9 Sim î coxi i Fişil *.m fig.5.a vidţiază iaxa ilizaă î xml coc şi zlal obţi za î figa 5.b. a b Fig.5. Fişil *m şi zlal calclli
25 5.. Malab şi algba chmlo bloc Exml d calcl U im com di doă lm, coca î i, c fcţiil d af: S c ă dmi ilizâd fcţia Malab chivalţa imli. U U X [ y] i y, y Fig.5. Fcţia i Fig. 5. Fişil şi zlal obţi calcll coxiii i
26 5 TRSFORMT E ŞI EBR SHEMEOR BO Bibliogafi [5.] Babţia, I., c, M., omaizăi lcoic î cocţia d maşii, Edia Facla, Timişoaa, 98 [5.] Ba, I., Balaba,., omaizăi şi lcomzi î lcogică, ED Bcşi, 96 [5.]Bolo, W., Mchaoic, ao Edcaio imid, [5.] Dolga, V., oicaa imlo mcaoic, Ed. olihica, Timişoaa, 8 [5.5]Dof, R.., Biho, R.H., Mod ool Sym, ao Sdim, ISB 86, 6 [5.6]Ima, R., Mchaoich Sym, SigVlag, Bli, ISB , 8 [5.]aim, K., ool of oio ia Sym, ISTD d, 6 [5.8] Sava,.J. J, alcll imlo aoma, Edia Thică, Bcşi, 96 [5.9] Sbaia,., omaica, ED Bcşi, 9 [5.] ***, ool Sym Toolbox, Vio, Th MahWo, Ic, 6
Capitolul I ECUAŢII DIFERENŢIALE. 1 Matematici speciale. Probleme. 1. Să de integreze ecuaţia diferenţială de ordinul întâi liniară
Mamaici spcial Problm c solţia apioll I EUAŢII DIFERENŢIALE Să d ingrz caţia difrnţială d ordinl înâi liniară g cos d Solţi: Ecaţia omognă aaşaă s: - g sa g d ln - ln cos ln sa Pnr rzolvara caţii cos nomogn
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
CAPITOLUL I ECUAŢII DIFERENŢIALE. α, astfel că tgα=f(x,y).
APITOLUL I EUAŢII DIFERENŢIALE Ecuaţii difţial Soluţia gală Soluţii aticula Ittaa gotică El Pobla auch Dfiiţi Fi F o fucţi ală dfiită [ab] YY R avâd agut vaiabila ală [ a b ] şi fucţia ală îuă cu divatl
Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.
Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH
!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-
!"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1
Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò
Teorema Rezidurilor şi Bucuria Integralelor Reale
Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia
SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %
!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-
!!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8
Erkki Mäkinen ja Timo Poranen Algoritmit
rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D;
Limit d fucńii Aliz mtmtică, cls XI- Limit d fucńii NotŃii: f :D R, D R, α - puct d cumulr lui D DfiiŃii l iti DfiiŃi f ( = l, l R, dcă ptru oric vciătt V lui l istă o vciătt α U lui α stfl îcât D U, α,
I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h
A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M
6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )
!! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Seminar 6.Integrarea ecuațiilor diferențiale
Sema.Iegaea ecațlo deețale Resosabl: Maela Vasle maela.a.vasle@gmal.com Cosm-Șea Soca cosm.soca9@gmal.com Obecve Î ma acge aces laboao sdel va caabl să: ezolve ssem de eca deeale dee meode. să ezolve obleme
SONATA D 295X245. caza
SONATA D 295X245 caza 01 Γωνιακός καναπές προσαρμόζεται σε όλα τα μέτρα σε όλους τους χώρους με μηχανισμούς ανάκλησης στα κεφαλάρια για περισσότερή αναπαυτικότητα στην χρήση του-βγαίνει με κρεβάτι η χωρίς
! " # " $ #% $ "! #&'() '" ( * / ) ",. #
Ψ ƒ! " # " $ #% $ "! #&'() '" ( * +",-.'!( / ) ",. # 0# $"!"#$%# Ψ 12/345 6),78 94. ƒ 9)")1$/):0;3;::9 >'= ( ? 9 @ '&( % A! &*?9 '( B+)C*%++ &*%++C 0 4 3'+C( D'+C(%E $B B - " % B
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
Da se podsetimo Algoritam optimizacije. Odrediti vrednosti parametara kola koje će garantovati da odziv F(x, p) ima željenu vrednost F * (x).
Aotam otmzac Da s odstmo Aotam otmzac Aotam otmzac Aotam otmzac : Oddt vdost aamtaa oa [,... ] o ć aatovat da odzv (x, ma žu vdost * (x. Mtod: až mmuma fuc š E(x,; (oma za vattatvu ocu odstuaa dobo od
/&25*+* 24.&6,2(2**02)' 24
!! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &
Batigoal_mathscope.org ñược tính theo công thức
SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa
#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436
! "#$$% #& ()* #+#, -./0*1 2 ) #$+34 4 )! 35+,6 5! *,#+#26 37)*! #2#+#42 %8)* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :& 2#3+23- ##) :* 232+464 #-) 7 465+436 .* &0* 0!*07 ;< =! ))* *0*>!! #6&? @ 8 (? +
! " #$% & '()()*+.,/0.
! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε.
ΑΣΚΗΣΗ 1 ΟΜΑ Α 2 Στην ακόλουθη άσκηση σας δίνονται τα έξοδα ανά µαθητή και οι ετήσιοι µισθοί (κατά µέσο όρο) των δασκάλων για 51 πολιτείες της Αµερικής. Τα δεδοµένα είναι για τη χρονιά 1985. Οι µεταβλητές
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.
TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA,
TEORIA SISTEMELOR AUTOMATE Prof. dr. ig. Vler DOLGA, Curi_7_ Aliz i ruul iemelor liire i domeiul im II. Sieme de ordiul. Ruul iemului l emle drd imul uir re uir rm 3. Noiui rivid clie iemului de ordiul
ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a
Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)
COMPLICITY COLLECTION autumn / winter
COMP LI C I TY COLLE C TI ON a ut umn / winte r 2 0 1 7 1 8 «T o ρ ο ύ χ ο ε ί ν α ι τ ο σ π ί τ ι τ ο υ σ ώ μ ατ ο ς». Τ ο σ ώ μ α ν τ ύ ν ε τα ι μ ε φ υ σ ι κ ά ν ή μ ατα κ α ι υφά σ μ ατα α π ό τ η
(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n
Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
3.5. Forţe hidrostatice
35 oţe hidostatice 351 Elemente geneale lasificaea foţelo hidostatice: foţe hidostatice e suafeţe lane Duă foma eeţilo vasului: foţe hidostatice e suafeţe cube deschise foţe hidostatice e suafeţe cube
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
!!"#$"%&'()%*$& !! )!+($,-./,0. !! )!"% $&)#$+($1$ !!2)%$34#$$)$ !!+(&%#(%$5$( #$%
!!"#$"%&'()%*$&!! )!+($,-./,0.!"#!! )!"% $&)#$+($1$!!2)%$34#$$)$!!+(&%#(%$5$( #$% & !"# $ $ % # &#$ '()*+, -,./ $* 0" 10#')230##445$&% ##* % 0# ' 4#, ) 0# $, 0# 6 7% % # #* # 8#10&29,:# )) )# )#
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Πίνακας ρυθμίσεων στο χώρο εγκατάστασης
1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*
!"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"
tel , version 1-7 Feb 2013
!"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 Y% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4
Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4 Ε Π Ι Σ Τ Ο Λ Η Δ Ι Ο Ι Κ Η Τ Η Α Υ Γ Ο Υ Σ Τ Ο Σ Μ η ν ι α ί α Ε π ι σ τ ο λ ή ι ο ι κ η τ ή 1 Π ε ρ ι ε χ ό μ ε ν α Σ ε λ ί δ ε ς Τ ο μ ή ν υ μ α τ
Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.
Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Supporting Information
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Synthesis of 3-omosubstituted Pyrroles via Palladium- Catalyzed Intermolecular Oxidative Cyclization
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
Επίσηµη Εφηµερίδα της Ευρωπαϊκής Ένωσης
L 105/14 EL ΕΚΤΕΛΕΣΤΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) 2018/634 ΤΗΣ ΕΠΙΤΡΟΠΗΣ της 24ης Απριλίου 2018 για την τροποποίηση του εκτελεστικού κανονισμού (ΕΕ) 2016/1799 όσον αφορά τους πίνακες κατάταξης στους οποίους καθορίζεται
7. INTEGRALA IMPROPRIE. arcsin x. cos xdx
7 INTEGRALA IMPROPRIE 7 Erciţii rzolv Erciţiul 7 Să s sudiz nur urăorlor ingrl irorii şi să s drin vloril csor în cz d convrgnţă: d c sin d 3 / rcsin d cos d d sin d > R Soluţii Funcţi f : - R f s ingrilă
Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
cz+d d (ac + cd )z + bc + dd c z + d
T (z) = az + b cz + d ; a, b, c, d C, ad bc 0 ( ) a b M T (z) = (z) az + b c d cz + d (T T )(z) = T (T (z) (T T )(z) = az+b a + cz+d b c az+b + = (aa + cb )z + a b + b d a z + b cz+d d (ac + cd )z + bc
Π Α Ρ Α Ρ Τ Η Μ Α ΠΑΙΧΝΙΔΙΑ ΜΕ ΤΟΥΣ ΜΟΥΣΙΚΟΥΣ ΣΩΛΗΝΕΣ BOOMWHACKERS
Π Α Ρ Α Ρ Τ Η Μ Α ΠΑΙΧΝΙΔΙΑ ΜΕ ΤΟΥΣ ΜΟΥΣΙΚΟΥΣ ΣΩΛΗΝΕΣ BOOMWHACKERS Ελισσάβετ Περακάκη & Μαρίνα Μίντζα 1 σελ. 18 Δαχτυλίδι Παιδικό τραγούδι 2 2 σελ. 19 Twinkl Twinkl Παιδικό τραγούδι 3 3 σελ. 20 Frèr Jacqus
( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]
1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"
! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
PHÉP TÍNH VI PHÂN HÀM MỘT BIẾN
9//6 CHƯƠNG Đạo hàm ại mộ điểm PHÉP TÍNH VI PHÂN HÀM MỘT BIẾN Địh ghĩa: Đạo hàm của hàm f ại điểm a, ký hiệ f (a) là: f ' a lim a f f a (ế giới hạ à ồ ại hữ hạ). Chú ý: đặ h=-a, a có: f ' a a f a h f a
Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
4. Analiza în timp a sistemelor liniare continue şi invariante
RA C5 4. Aaliza î im a iemelor liiare coiue şi ivariae Aaliza î im rereziă deermiarea răuului î im a iemelor coiderae, la divere iuri de emale de irare şi deermiarea ricialelor rorieăţi (abiliae, erformaţe
Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU:
Ch : HÀM S LIÊN TC Ch bám sát (lp ban CB) Biên son: THANH HÂN - - - - - - - - A/ MC TIÊU: - Cung cp cho hc sinh mt s dng bài tp th ng gp có liên quan n s liên tc cu hàm s và phng pháp gii các dng bài ó
4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire
4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
ΤΥΠΟΛΟΓΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι
ΤΥΠΟΛΟΓΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΣΥΓΚΟΛΛΗΣΕΙΣ 1 M σ = W b w σ επιτρεπ όµενη σ max = σ κάµψη + σ εφελκυστική σ επιτρεπόµενη ΣΥΓΚΟΛΛΗΣΕΙΣ 2 ΣΥΓΚΟΛΛΗΣΕΙΣ 3 Συγκόλληση σηµείων τ F A n m F n d s = τ επιτρεπ όµενη
Problemas resueltos del teorema de Bolzano
Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
March 14, ( ) March 14, / 52
March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a
! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$
"#$" &""'(() *+ , -------------------------------------------------------------------------------------------------------------------. / 0-1 2 $1 " 1 /& 1------------------------------------------------------------------------------------------------------------------------3
C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ
»»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
ABCDA EF A A D A ABCDA CA D ABCDA EF
ABCDAEF BABC FDDDDABCBABAC BBCABCADB AADAABCDACAD ABBFADAABA ABBFA AAFAB ABCDAEF AAABBA AA CADA BABA AA DA ABCDAEF BABC FDDDDABCBABAC BBCABCADB AADAABCDACAD ABBFADAABA CAA BABADFAAFAB BCAFAB ABCDAEF AAABBA
ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ
Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ
Florida State University Libraries
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2005 A New Examination of Service Loyalty: Identification of the Antecedents and Outcomes of an Attitudinal
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
LAPLACE TRANSFORM TABLE
LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mil: info@iliskos.gr www.iliskos.gr Fl] = f]! D G] = F]
الهندسة ( )( ) مذكرة رقم 14 :ملخص لدرس:الجداءالسلمي مع تمارين وأمثلةمحلولة اھافواراتاة ارس : ( ) ( ) I. #"ر! :#"! 1 :ااءا&%$: v
الهندسة مذكرة رقم :ملخص لدرس:الجداءالسلمي مع تمارين أمثلةمحللة اھافاراتاة ارس : EFiEG EF EG ( FEG) 6 EF EG ( FEG) 6 FEG 6 ( FEG ) 6 I. #"ر! :#"! :ااءا&%$: u u : اى.( ) H ا ادي C ا u ا#اءا! ھا#د ا! ا(ي
Marin Chirciu INEGALITĂŢI TRIGONOMETRICE DE LA INIŢIERE LA PERFORMANŢĂ EDITURA PARALELA 45
Main Chiiu INEGLITĂŢI TIGONOMETICE DE L INIŢIEE L PEFOMNŢĂ Cuins Consideații eliminae... 7 Soluţii Caitolul Inegalități u unghiui. Inegalitatea lui Jensen... 4 4 Caitolul Funții tigonometie ale jumătății
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
TIPURI DE DEZINTEGRĂRI NUCLEARE. Dezintegrarea α
TIPURI D DZINTGRĂRI NUCLR Dzitgaa -mita d căt ul ucl adioactiv, stuctui compact d doi potoi şi doi utoi (ucl d hliu şi a ui catităţi apciabil d gi Q Z X 4 Z Y Q 38 9 4.47 ai U 9 34 9 Th Q (4.7 V s îtâlşt
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ. Δίνονται τα στοιχειά 13 Αl και 19 Κ. Να βρεθεί σε ποια περίοδο και σε ποια ομάδα του Π.Π. είναι τοποθετημένα τα στοιχειά αυτά:
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ Για να βρούμε τη θέση ενός στοιχείου μιας κύριας ομάδας στον Περιοδικό Πίνακα (Π.Π.) γράφουμε την ηλεκτρονιακή δομή οπότε ο αριθμός των στοιβάδων μας δίνει την περίοδο και ο αριθμός
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr 4 - - 75 - true true - false
Κεφάλαιο 2 Πίνακες - Ορίζουσες
Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
Supporting Information
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Domino reaction of cyclic sulfamidate imines with
ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Γ
ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Γ ΜΑΘΗΜΑ 2 Ισοδύναμο Ηλεκτρικό Κύκλωμα Σύγχρονων Μηχανών Ουρεϊλίδης Κωνσταντίνος, Υποψ. Διδακτωρ Υπολογισμός Αυτεπαγωγής και αμοιβαίας επαγωγής Πεπλεγμένη μαγνητική ροή συναρτήσει των
Li % % % % % % % % % % 3d 4s V V V V d V V V n O V V V O V n O V n O % % X X % % % 10 10 cm Li Li Li LiMO 2 Li 1 x MO 2 + xl + 1 + xe C + xl + 1 + xe Li x C LiMO 2 +C Li x C + Li 1 x MO 2
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
Supplemental file 3. All 306 mapped IDs collected by IPA program. Supplemental file 6. The functions and main focused genes in each network.
LIST OF SUPPLEMENTAL FILES Supplemental file 1. Primer sets used for qrt-pcr. Supplemental file 2. All 1305 differentially expressed genes. Supplemental file 3. All 306 mapped IDs collected by IPA program.
HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:
. Định nghĩa Hàm biến. f : D M (, ) z= f( M) = f(, ) Miền ác định của hàm f(,) là miền VD: f : D HÀM NHIỀU BIẾN M (, ) z= f(, ) = D sao cho f(,) có nghĩa. Miền ác định của hàm f(,) là tập hợp những điểm
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια Συνέχεια ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ mail: info@iliaskosgr wwwiliaskosgr f] g,! R f] g,, f] g
. visual basic. int sum(int a, int b){ return a+b;} : : :
: : : : (),, : (),( )-,() - :,, -,( ) -1.... visual basic int sum(int a, int b){ return a+b; float f=2.5; main(){ float A[10]; A[f]=15; int x=sum(int(f), 10, A[2]);. -2.... -3.foolowpos(3) * ( a b c) (
Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα
Κεφάλαιο 8 Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα 1. H απαγορευτική αρχή του Pauli 2. Η αρχή της ελάχιστης ενέργειας 3. Ο κανόνας του Hund H απαγορευτική αρχή του Pauli «Είναι αδύνατο να υπάρχουν