Copyright Dan Ben-David, All Rights Reserved. דן בן-דוד אוניברסיטת תל-אביב נושאים 1. מבוא 5. אינפלציה
|
|
- Φοίβος Πολίτης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 נושאים 1. מבוא 2. היצע קיינסיאני וקלאסי מאקרו בב' דן בן-דוד אוניברסיטת תל-אביב 3. המודל הקיינסיאני א. שוק המוצרים ב. שוק הכסף ג. מודל S-L במשק סגור ד. מודל S-L במשק פתוח שער חליפין נייד או קבוע עם או בלי ניידות הון 4. הקשר בין אינפלציה ואבטלה (עקומת פיליפס 5. אינפלציה
2 מקור: S-L 0 במודל שווי-משקל L 0 0 S (G 0, T 0 Q 0 Q Q בשוק המוצרים Q 0 בשוק הכסף כאשר: אז: הצבת הצבת זהו הזוג היחיד של Q, שנותן שווי משקל בשני השווקים בו-זמנית = 0 G = G 0 T = T 0 = 0. מודל S-L מאפשר בחינת ההשפעה של מדיניות פיסקאלית (G ו- T ושל מדיניות מוניטרית ( על Q ועל אך חשוב להדגיש שהמודל מתמקד רק בצד הביקושים ולוקח כקבוע את רמת המחירים.
3 מקור: 1. C = a C + a CQ (Q-T a C 2. = a a 3. G = G 0 E = C + + G E = Q יצירת משוואת S שימושים מקורות שוק המוצרים תצרוכת פרטית השקעות פרטיות הוצאות ממשלה סך ההוצאות שוויון בין הוצאות להכנסות Q = C + + G Q = [a C + a CQ (Q-T a C ] + [a a ] + G 0 = a CQ Q + (a C + a + (G 0 a CQ T (a C +a (1 a CQ Q = (a C + a + (G 0 a CQ T (a C +a Q = a C + a 1 a CQ 1 a C +a (G 1 a 0 a CQ T CQ 1 a CQ + משוואת :S
4 מקור: Q = m G Q = 1 1 a CQ G מכפיל קיינסיאני שוק המוצרים Q = a C + a 1 a CQ + 1 a C +a (G 1 a 0 a CQ T CQ 1 a CQ משוואת S
5 d = L Q Q L יצירת משוואת L שוק הכסף ביקוש ליתרות ריאליות *.4 5. s = 0 0 היצע של יתרות ריאליות 0 0 שווי משקל בשוק הכסף = L Q Q L L Q 1 = Q 0 L L 0 משוואת L L הינם פרמטרים קבועים. מקור: L Q ו- *
6 מקור: Q = a C + a 1 a CQ (AD הצבת L ב- S : (במקום יצירת הביקוש המצרפי 1 a C +a L (G 1 a 0 a CQ T Q 1 + Q 0 CQ 1 a CQ L L 0 ( 1 + a C +a L Q 1 a CQ L Q = = a C + a 1 + (G 1 a CQ 1 a 0 a CQ T + a C +a CQ 1 a CQ 1 L 0 0
7 מקור: Q = L (a C +a (1 a CQ L + (a C + a L Q + (AD משוואת AD L (1 a CQ L + (a C + a L Q (G 0 a CQ T חילוץ Q כדי לקבל את :AD יצירת הביקוש המצרפי + a C +a (1 a CQ L + (a C + a L Q 0 0
8 מקור: Q = L (a C +a (1 a CQ L + (a C + a L Q + L (1 a CQ L + (a C + a L Q (G 0 a CQ T + a C +a כיצד משפיעה רגישות הביקוש ליתרות הריאליות לשינויים בשער הריבית L על האפקטיביות של מדיניות פיסקאלית? x = L (1 a CQ L + (a C + a L Q משוואת AD (1 a CQ L + (a C + a L Q שאלה הגדירו מבחן רגישות בב- AD 0 0 x = L (a C + a L Q 2 > 0 (1 a CQ L + (a C + a L Q אזי כלומר, ככל שרגישות הביקוש ליתרות הריאליות לשינויים בשער הריבית נמוכה יותר, שינויים ב- G ו/או ב- T יגרמו לשינויים קטנים יותר ב- AD והיכולת של מדיניות פיסקאלית להשפיע על רמת התוצר יורדת.
9 1 0 A D C דוגמאות למדיניות L ( 0 / 1 B L ( 0 / 0 S(G 0, T 0 Q S(G 1, T 0 א. מדיניות פיסקאלית מרחיבה* G S Q d B d s S B המשך בטווח הקצר AS BK AD 1 0 A' D' C' L C D מקור: Q 0 Q 1 AD (G 1, T 0, 0 AD (G 0, T 0, 0 Q סיכום השפעת המדיניות בטווח הקצר Q * הנחה מפשטת: רק מושפע משינויים בשער הריבית
10 מקור: א. מדיניות פיסקאלית מרחיבה* דוגמאות למדיניות מכפיל קיינסיאני Q = 1 1 a CQ G ככל שהנש"צ גדול יותר, המכפיל גדול יותר. G S Q d B d s S B המשך בטווח הקצר AD L C D סיכום השפעת המדיניות בטווח הקצר Q
11 מקור: B A 1 0 s A יתרות ריאליות שוק הכסף B רגיש יותר לשינויים ב- Q L B C L B (Q 2 L A (Q 2 L(Q 1 א. מדיניות פיסקאלית מרחיבה* G S Q d B d s S B המשך בטווח הקצר דוגמאות למדיניות AD L C D סיכום השפעת המדיניות בטווח הקצר Q
12 מקור: B A 1 0 s A א. מדיניות פיסקאלית מרחיבה* רגיש יותר לשינויים ב- L A שוק הכסף B L A (Q 2 L B (Q 2 L A (Q 1 L B (Q 1 יתרות ריאליות G S Q d B d s S B המשך בטווח הקצר דוגמאות למדיניות AD L C D סיכום השפעת המדיניות בטווח הקצר Q
13 מקור: 2 א. מדיניות פיסקאלית מרחיבה* דוגמאות למדיניות רגיש יותר לשינויים ב- A שוק ההשקעות G S Q d B d s S B 1 המשך בטווח הקצר A B 1 B A AD L C D סיכום השפעת המדיניות בטווח הקצר Q
14 מקור: Y X 0 א. מדיניות פיסקאלית מרחיבה* שוק המוצרים A' Y G S Q d B d AD s S B המשך בטווח הקצר דוגמאות למדיניות X AS BK Y AS BK X AD (G 1, T 0, 0 AD (G 0, T 0, 0 L Q 0 Q Y Q X Q C D סיכום השפעת המדיניות בטווח הקצר Q
15 מקור:. עיבוד נתוני בנק ישראל הוצאות ציבוריות וחוב ציבורי, כאחוז מהתוצר הוצאות ציבוריות כאחוז מהתוצר חוב ציבורי ברוטו כאחוז מהתוצר השוואה ל- 23 מדינות ה- OECD (שנת סך הוצאות ציבוריות כאחוז מהתוצר חוב ציבורי ברוטו כאחוז מהתוצר OECD ישראל הוצאה ציבורית: חוב ציבורי:
16 תשלומי ריבית על החוב ציבורי, 6% כאחוז מהתוצר ישראל 5% 4% OECD 3% 2% 1% 0% מקור:. עיבוד נתוני בנק ישראל, וה- OECD
17 2010 תקציב המדינה*, במיליארדי ש"ח חינוך על-יסודי 11.7 חינוך יסודי תשלומי ריבית ועמלות תקציב משרד החינוך והתרבות מקור: דן בן-דוד, מרכז טאוב ואוניברסיטת תל-אביב נתונים ממשרד האוצר * נתוני ביצוע לפי דו"ח חשב
18 נטל המס בישראל לעומת ה נטל המס בישראל לעומת ה- OECD OECD
19 נטל המס בישראל לעומת הה- OECD סה "כ נטל המס בינוני מס הכנסה מיסים על סחורות ושירותים הגדרות גבוה = בינוני = בשליש העליון של ה- OECD בשליש האמצעי של ה- OECD
20
21 נטל המס בישראל לעומת הה- OECD סה "כ נטל המס בינוני מס הכנסה מיסים על סחורות ושירותים הגדרות גבוה = בינוני = בינוני בשליש העליון של ה- OECD בשליש האמצעי של ה- OECD
22 נטל המס בישראל לעומת הה- OECD העובדה שנטל מס ההכנסה אינו גבוה ביחס למדינות אחרות מטעה כי עיקר הנטל נופל על מעט כתפיים לעומת המצב במדינות מערב אחרות. מתוך דוח מינהל הכנסות המדינה, 2006 נטל מס ישיר גבוה ברמות הכנסה בינוניות וגבוהות מהווה תמריץ שלילי גדול לעבוד יותר (או לפחות לעבוד יותר באופן חוקי.
23 נטל המס בישראל לעומת הה- OECD סה "כ נטל המס בינוני מס הכנסה מיסים על סחורות ושירותים הגדרות גבוה = בינוני = בינוני גבוה בשליש העליון של ה- OECD בשליש האמצעי של ה- OECD
24 נטל המס בישראל לעומת הה- OECD מתוך דוח מינהל הכנסות המדינה, 2006 מיסים עקיפים כמו מע"ם הינם רגרסיבים. ככל שהמע"ם גבוה יותר, הפגיעה בשכבות העניות גדולה יותר מהפגיעה בשכבות המבוססות.
25 מקור: G, T T 3 T 1 =G 1 Q 2 Q 1 Q 3 ב. מייצבים פיסקאליים דוגמאות למדיניות T G 1 T 2 G = G 1 Q 0 < α < 1 כאשר: T = αq במיתון 2,(Q ההכנסות ממסים יורדות ל-. T 2 הגרעון התקציבי שנוצר 2 G 1 T- ממתן את הירידה ב- AD. בגאות 3,(Q ההכנסות ממסים עולות ל-. T 3 העודף התקציבי שנוצר 1 T 3 G- ממתן את AD ומקטין לחצים אינפלציוניים. לכן, G 1 צריך לשקף הכנסות ממוצעות ממסים לאורך מחזור עסקים. בשנים "טובות" צוברים כדי שיהיו דרגות חופש למדיניות בשנים "קשות".
26 מקור: A A' C C' Q 0 Q 1 L ( 0 / 0 B S(G 0, T 0 Q AS BK L ( 1 / 1 L ( 1 / 0 B' AD (G 0, T 0, 1 AD (G 0, T 0, 0 Q ג. מדיניות מוניטרית מרחיבה* s d B d s A L B המשך בטווח הקצר AD L B C סיכום השפעת המדיניות בטווח הקצר Q D B, Q * הנחה מפשטת: רק מושפע משינויים בשער הריבית דוגמאות למדיניות
27 מקור: 1 A s A ג. מדיניות מוניטרית מרחיבה* המשך בטווח הקצר דוגמאות למדיניות רגיש יותר לשינויים ב- L A שוק הכסף B L A (Q 1 L B (Q יתרות ריאליות 0 0 s s B d d AD L s A L B D B, Q B C סיכום השפעת המדיניות בטווח הקצר Q
28 מקור: 1 2 שוק ההשקעות 1 B A רגיש יותר לשינויים ב- A B דוגמאות למדיניות A ג. מדיניות מוניטרית מרחיבה* s B d d AD L s A L B D B, Q המשך בטווח הקצר B C סיכום השפעת המדיניות בטווח הקצר Q
29 מקור: Y X 0 דוגמאות למדיניות שוק המוצרים A' Q 0 Y X Q Y Q X AS BK Y AS BK X AD (G 0, T 0, 1 AD (G 0, T 0, 0 Q ג. מדיניות מוניטרית מרחיבה* s B d d AD L s A L המשך בטווח הקצר B D B B, Q C סיכום השפעת המדיניות בטווח הקצר Q
30
קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד
גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
מבוא לכלכלה מאקרו כלכלה
חלק 2 מבוא לכלכלה מאקרו כלכלה סיכום החומר בקורס "מבוא לכלכלה" בטכניון (חלק 2) סיכם: אור גלעד המרצה: ד"ר מירה ברון מסמך זה הורד מהאתר. אין להפיץ מסמך זה במדיה כלשהי, ללא אישור מפורש מאת המחבר. מחברי המסמך
גמישויות. x p Δ p x נקודתית. 1,1
גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
סיכום: מאקרו כלכלה ב פרופ' דביר צנוע ליאו ליידרמן / סמסטר ב' תש
פרופ' סיכום: ליאו ליידרמן דביר צנוע מאקרו כלכלה ב ' / סמסטר ב' תש "ע הקדמה הדפים שלפניכם מהווים סיכום של קורס מיקרו כלכלה 3, אשר הועבר באוניברסיטת תל-אביב ע"י פרופ' ליאו ליידרמן בסמסטר ב' תש"ע. הסיכום
הכנסה במוצרים היצע העבודה ופנאי תצרוכת על פני זמן נושאי השיעור קו התקציב, פונקציות הביקוש, היצע וביקוש הפרט סטאטיקה השוואתית
הכנסה במוצרים היצע העבודה ופנאי תצרוכת על פני זמן נושאי השיעור הכנסה במוצרים קו התקציב פונקציות הביקוש היצע וביקוש הפרט סטאטיקה השוואתית היצע העבודה ופנאי קו התקציב היצע העבודה תרחישים שונים תצרוכת על
(Augmented Phillips Curve
עקומת פיליפס W W u בשנת 958 הכלכלן האנגלי hllps פירסם עבודה שבה חקר את הקשר בין שיעור השינוי בשכר הנומינלי לבין שיעור האבטלה באנגליה בין השנים 86 עד 9. התוצאות הראו א קשר הפוך בין שני המשתנים, כלומר ציצמום
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
איך אומדים שוויון חברתי במונחים כלכליים?
איך אומדים שוויון חברתי במונחים כלכליים? ד"ר אביעד טור-סיני יום העיון מתקיים במסגרת שיתוף פעולה בין המשרד לשוויון חברתי למרכז הידע לחקר הזדקנות האוכלוסייה בישראל על מה נדבר: שוויון חברתי אי שוויון כלכלי
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
פרק 9. . AE(Y) = AE 0 + h Y
461 מישר יסודות המקרו- כלכלה של ישראל. כל הזכויות שמורות. פרק 9 בפרק זה נשלים את הצגת המודל הקיינסיאני של מקרו-כלכלה בזמן הקצר ונדון בעקרונות של מדיניות מקרו-כלכלית לייצוב המשק. בפרט נתמקד כאן בהשלכותיו
ה לכלכל גוחה ' ב הלכלכל אובמ ם יליגרת תרבוח 1 ליגרת
לכלכלה החוג לכלכלה ב' מבוא תרגילים חוברת 1 תרגיל 1 לאומית ומדידת ההכנסה הלאומית במשק חשבונאות 2000 2 שאלה 1 במשק פועלות פירמות. להלן חשבונות רווח והפסד שלהן לשנת בזוזים: פדיון קניות מלאי בתחילת השנה מלאי
ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (
תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
(ספר לימוד שאלון )
- 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:
' - OECD-
פרק ח' סוגיות במדיניות הרווחה העוני על בסיס ההכנסה הכלכלית (ההכנסה מעבודה ומהון לפני תשלום מסים) אינו גבוה בישראל. תרומת הממשלה להפחתתו עומדת על %, ואילו הממוצע ב- OECD עומד על כ- 6%. על כן תחולת העוני
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
תכנית הכשרה מסחר באופציות
תכנית הכשרה מסחר באופציות שיעור 5 B&S)) Black - Scholes מודל B&S תכונות אופציות מודל בלק ושולס B&S מודל כלכלי לתמחור אופציות שפותח ע"י צמד המתמטיקאים פישר בלאק ומיירון שולס בתחילת שנות ה- 70 וזיכה את המחברים
Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.
Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.
עקומת שווה עליות איזוקוסט Isocost
עקומת שווה עליות איזוקוסט Isocost כפי שראינו בפרק הקודם, אומנם נוכל לראות את הבחירה האלטרנטיבית של היצרן אך לא נוכל לקבל תשובה מהו הייצור האופטימאלי של היצרן. ישנם גורמים טכניים רבים מידי כדי לקבל החלטה
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ
- 41 - פרק ג' התנהגות צרכן פונקצית הביקוש(עקומת הביקוש ( - 42 - פרק 3: תחרות משוכללת: התנהגות צרכן מתארת את הקשר שבין כמות מבוקשת לבין מחיר השוק. שיפועה השלילי של עקומת הביקוש ממחיש את הקשר ההפוך הקיים
ב ה צ ל ח ה! /המשך מעבר לדף/
בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"א, מועד ב מועד הבחינה: משרד החינוך 035804 מספר השאלון: דפי נוסחאות ל 4 יחידות לימוד נספח: מתמטיקה 4 יחידות לימוד שאלון ראשון תכנית ניסוי )שאלון
הכנסה במוצרים היצע העבודה ופנאי
הכנסה במוצרים היצע העבודה ופנאי נושאי השיעור הכנסה במוצרים קו התקציב פונקציות הביקוש היצע הפרט סטאטיקה השוואתית היצע העבודה ופנאי קו התקציב היצע העבודה תרחישים שונים דיון קצר האם מודל ההכנסה במוצרים סביר?
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME
הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי
בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב
תנאי ראשון - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות 1) MRS = = שיווי המשקל של הצרכן - מציאת הסל האופטימלי = (, בסל רמת התועלת היא: ) = התועלת השולית של השקעת שקל (תועלת שולית של הכסף) שווה בין המוצרים
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
b 1 b 2 c 0 > c 1 > c 2 רציונל הפתרון: הגדרות: G j b j b j+1 *Q -גודל מנה אופטימלית.
תרגול - IV מודלים עם הנחה לכמויות הנחה על כל הכמות: המשמעות: בהתאם לגודל המנה, נקבע מחיר ליחידה c, ובמחיר זה נרכשת כל הכמות. TC מבחינה גרפית: b b b תחום תחום תחום c > c > c רציונל הפתרון: לכל תחום מחשבים
תרגיל 1 נתונים = 2 ו- = 1
תורת המחירים א' 213-66 תרגיל 1 מרחב האפשרויות Y ו- X צרכן מוציא את כל הכנסתו הכספית ) 200 = I )על שני מוצרים בלבד,, ורואה לפניו מחירים. P Y P X נתונים = 2 ו- = 1 תאר את מרחב אפשרויות הצריכה של הצרכן בכל
תמונת המאקרו של המשק גלעד ברנד, אבי וייס ואסף צימרינג מתוך "דוח מצב המדינה 2017"
תמונת המאקרו של המשק בשנת 2017 גלעד ברנד, אבי וייס ואסף צימרינג מתוך "דוח מצב המדינה 2017" ירושלים, טבת תשע"ח, דצמבר 2017 מרכז טאוב לחקר המדיניות החברתית ב מרכז טאוב נוסד ב- 1982 ביוזמתם של הרברט מ' סינגר,
תרגילים בנושא משתנה דמי:
תרגילים בנושא משתנה דמי: שאלה 1 נתונה המשוואה הבאה: sahar 0 1 D1 2 D2 3 D3 1 EDA U )1( המשוואה מתוארת בפלט מס' 1. = D 1 משתנה דמי : 1= עבור נשים בעלות תואר, 0 =אחרת כאשר : = D 2 משתנה דמי : 1= עבור נשים
TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים
TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
סטודנטים יקרים. לפניכם ספר מבחנים בקורס ניהול ובחירת תיקי השקעות. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.
סטודנטים יקרים לפניכם ספר מבחנים בקורס ניהול ובחירת תיקי השקעות. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line הקורס באתר כולל פתרונות מלאים לספר התרגילים, וכן את התיאוריה
שווי משקל תחרותי עם ייצור
שווי משקל תחרותי עם ייצור 1 התנהגות היצרן )תזכורת מחירים ב'( ma π = p -p s.t. = ƒ)( ma p ƒ)(-p בעיית הפירמה: או: 2 1 3 התנהגות היצרן )תזכורת מחירים ב'( * רווח במונחי p Slopes p * f ' p p f () תמונת ראי
תרגול מס' 6 פתרון מערכת משוואות ליניארית
אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית
על הקשר בין אי שוויון לצמיחה כלכלית יוסף זעירא
על הקשר בין אי שוויון לצמיחה כלכלית יוסף זעירא א. הקדמה מאמר זה דן בשאלה אם אי השוויון משפיע על הצמיחה הכלכלית ואם כן באילו אופנים. המאמר עוסק בשאלה זו בשלושה מישורים: (א) תיאורטי; (ב) אמפירי; (ג) יישומי
שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18
שם התלמיד/ה הכיתה שם בית הספר ה Page of 8 0x = 3x + שאלה פ תרו את המשוואה שלפניכם. x = תשובה: שאלה בבחירות למועצת תלמידים קיבל רן 300 קולות ונעמה קיבלה 500 קולות. מה היחס בין מספר הקולות שקיבל רן למספר
ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03
15.01 o פונקצית הוצאות של הטווח ה ארוך על מנת למקס ם רו וחי ם על פירמה לייצר תפו קה נתונה במינימום הוצא ות. נניח שמחירי גורמי הייצור קבועים. נגדיר עק ומת שוות הוצאה: כל הק ומבינציות של ו- שעבורן רמת ההוצאת
מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה י"א(
מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשע"ה, 2015 סמל השאלון: 845201 א. משך הבחינה: שלוש שעות. נספח: נוסחאון במערכות חשמל מערכות חשמל ג' שתי יחידות לימוד )השלמה
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
הרצאה 7 טרנזיסטור ביפולרי BJT
הרצאה 7 טרנזיסטור ביפולרי JT תוכן עניינים: 1. טרנזיסטור ביפולרי :JT מבנה, זרם, תחומי הפעולה..2 מודל: S MOLL (אברסמול). 3. תחומי הפעולה של הטרנזיסטור..1 טרנזיסטור ביפולרי.JT מבנה: PNP NPN P N N P P N PNP
Domain Relational Calculus דוגמאות. {<bn> dn(<dn, bn> likes dn = Yossi )}
כללים ליצירת נוסחאות DRC תחשיב רלציוני על תחומים Domain Relational Calculus DRC הואהצהרתי, כמוSQL : מבטאיםבורקמהרוציםשתהיההתוצאה, ולא איךלחשבאותה. כלשאילתהב- DRC היאמהצורה )} i,{ F(x 1,x
אוסף תרגילים בקורס "מבוא לכלכלה למהנדסים" (51605)
.1 אוסף תרגילים בקורס "מבוא לכלכלה למהנדסים" (51605) חלק א' תרגילי כיתה עקומת התמורה, הוצאה אלטרנטיבית 1.1 במשק "המילניום השלישי" קיימים שלושה סוגי פועלים. סוג א' (מסוג זה ישנם פועלים) שכל אחד מהם מסוגל
דוח מצב המדינה חברה, כלכלה ומדיניות 3102
דוח מצב המדינה חברה, כלכלה ומדיניות 3102 דוח מצב המדינה חברה, כלכלה ומדיניות 3102 בעריכת דן בן-דוד מרכז טאוב לחקר המדיניות החברתית בישראל ירושלים, טבת תשע"ד, דצמבר 3102 עריכה והבאה לדפוס: ענבל גפני עריכה
התנהגות תחרותית בכלכלת חליפין-ייצור בכלכלתחליפין-ייצורעםבעלותפרטיתישפרטיםופירמות. לכל פרטישהעדפות, סלתחילישלמוצרים (בדרךכללגורמיייצור) ואחוזיבעלותעלהפ
שיווי משקל תחרותי במשק עם ייצור משפטי הרווחה 1 התנהגות תחרותית בכלכלת חליפין-ייצור בכלכלתחליפין-ייצורעםבעלותפרטיתישפרטיםופירמות. לכל פרטישהעדפות, סלתחילישלמוצרים (בדרךכללגורמיייצור) ואחוזיבעלותעלהפירמותהשונות.
שאלה 5: להלן סטטיסטיקה תיאורית מפורטת עם טבלת שכיחות לציוני בית ספר לוח 1: סטטיסטיקה תיאורית של ציוני בית ספר
20 0 79.80 78.50 75 שאלה 5: להלן סטטיסטיקה תיאורית מפורטת עם טבלת שכיחות לציוני בית ספר לוח : סטטיסטיקה תיאורית של ציוני בית ספר סטטיסטיקה תיאורית של ציוני בית ספר Score Valid Missing גודל מדגם חסרים מדד=
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע
פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע הוצאות בטווח הקצר והארוך טווח קצר חלק מגורמי הייצור קבועים טווח ארוך כל גורמי הייצור משתנים בטווח הקצר ישנן הוצאות שאינן תלויות ברמת התפוקה ונובעות
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
מס' קטלוגי /6
כלל ריבית אופטימלי למודל מוניטרי של המשק הישראלי איל ארגוב 5.3 ספטמבר 5 כלל ריבית אופטימלי למודל מוניטרי של המשק הישראלי איל ארגוב 5.3 ספטמבר 5 הדעות המובעות במאמר זה אינן משקפות בהכרח את עמדת בנק ישראל.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)
x = r m r f y = r i r f
דירוג קרנות נאמנות - מדד אלפא מול מדד שארפ. )נספחים( נספח א': חישוב מדד אלפא. מדד אלפא לדירוג קרנות נאמנות מוגדר באמצעות המשוואה הבאה: כאשר: (1) r i r f = + β * (r m - r f ) r i r f β - התשואה החודשית
פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (100 נקודות)
שאלה מספר 1 פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (1 נקודות) על פי כלל יד ימין מדובר בפרוטון: האצבעות מחוץ לדף בכיוון השדה המגנטי, כף היד ימינה בכיוון הכוח ולכן האגודל
אלקטרומגנטיות אנליטית תירגול #2 סטטיקה
Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען
מודלים חישוביים תרגולמס 7
מודלים חישוביים תרגולמס 7 13 באפריל 2016 נושאי התרגול: מכונת טיורינג. 1 מכונת טיורינג נעבור לדבר על מודל חישוב חזק יותר (ובמובן מסוים, הוא מודל החישוב הסטנדרטי) מכונות טיורינג. בניגוד למודלים שראינו עד
מתמטיקה בדידה תרגול מס' 12
מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע
החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.
החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע
תומורתה סויג ףקיה לע םימרותל סמ יוכיז ןתמ תעפשה לארשיב חוור תנווכ אלל תודסומב
השפעת מתן זיכוי מס לתורמים על היקף גיוס התרומות במוסדות ללא כוונת רווח בישראל תקציר מחקר זה עוסק בהשפעת הורדת מחיר התרומה על היקף גיוס התרומות בישראל על ידי עמותות. סעיף 46 לפקודת מס הכנסה מעניק זיכוי
לבחינה בסטטיסטיקה ומימון נובמבר 2102
כ) כ) הכנה לבחינה בסטטיסטיקה ומימון נובמבר 10 שאלות חמות לקראת בחינת רשות ניירות ערך רבים מהתפקידים בשוק ההון מחייבים רישיון כל שהוא, אם יעוץ השקעות, ניהול השקעות יעוץ פנסיוני או סוכני הביטוח. על המתעניינים
PDF created with pdffactory trial version
הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח
Options Terminology 2 סוגים של חוזים עתידיים
Options Terminology חוזה עתידי החוזה העתידי הוא התחייבות הדדית בין מוכר החוזה )הכותב( לרוכש החוזה לספק נכס כלשהו - סחורה, מט"ח, נייר ערך וכו', במועד עתידי ידוע וקבוע מראש ובמחיר שנקבע ביניהם מראש, כאשר
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
Joseph Louis Francois Bertrand,
תחרותביןמעטים ברטראנד קורנו שוב... תחרותמונופוליסטית עקומתביקוששבורה תחרותמיקום-מחיר הוטלינג קוישר סאלופ מעגל Joseh Louis Francois Bertrand 8-900 מודל ברטראנד תיאורהסביבה ההנחות מושגהפתרון חישובהפתרון
תורת המחירים ב' 57308
תורת המחירים ב' 57308 חיים שחור סיכומי הרצאות של פרופ' דוד ג'נסוב י"א אדר תשע"ב (שעור ) ברוכים הבאים. ליעד יהיה אחראי על השליש האחרון של הקורס. הקורס הוא הרחבה של מחירים א'. אם היה לכם קשה, מומלץ שתעברו
הערכת שווי חברות ערן בן חורין וניר יוסף
שמורות ה א ו נ י ב ר ס י ט ה ה ע ב ר י ת ב י ר ו ש ל י ם The Hebrew University of Jerusalem בית הספר למנהל עסקים מיסודם של דניאל ורפאל רקאנטי EMBA Accounting Financial Management הערכת שווי חברות ערן בן
םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ
פתרונות מלאים למבחנים 0,9,8,7,6 פוקוס במתמטיקה שאלון 3580 שחר יהל העתקה ו/או צילום מספר זה הם מעשה לא חינוכי, המהווה עברה פלילית. פתרון מבחן מתכונת מס' 6 פתרון שאלה א. נקודות A ו- B נמצאות על הפונקציה
-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה.
-07- בשנים קודמות למדתם את נושא הזוויות. גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. זווית נוצרת על-ידי שתי קרניים היוצאות מנקודה אחת. הנקודה נקראת קדקוד
c>150 c<50 50<c< <c<150
מוצרים ציבוריים דוגמה ראובןושמעוןשותפיםלדירה. הםשוקליםלקנותטלוויזיהלסלוןהמשותף. ראובןמוכןלשלםעד 00 עבורהטלוויזיה. שמעוןמוכןלשלםעד 50 עבורהטלוויזיה. אפשרלקנותטלוויזיהב- c. האם כדאי להם לקנות אותה? תלוי
מתמטיקה )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( 1 מספרים מרוכבים 3#2 3 3
סוג הבחינה: בגרות לבתי ספר על יסודיים מדינת ישראל מועד הבחינה: חורף תשע"ב, 202 משרד החינוך מספר השאלון: 035807 דפי נוסחאות ל 5 יחידות לימוד נספח: א. משך הבחינה: שעתיים. מתמטיקה 5 יחידות לימוד שאלון שני
שיעור 1. זוויות צמודות
יחידה 11: זוגות של זוויות שיעור 1. זוויות צמודות נתבונן בתמרורים ובזוויות המופיעות בהם. V IV III II I הדסה מיינה את התמרורים כך: בקבוצה אחת שלושת התמרורים שמימין, ובקבוצה השנייה שני התמרורים שמשמאל. ש
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
אינפי - 1 תרגול בינואר 2012
אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
33 = 16 2 נקודות. נקודות. נקודות. נקודות נקודות.
1 מבחן מתכונת מס ' משך הבחינה: שלוש שעות וחצי. מבנה ה ומפתח הערכה: ב זה שלושה פרקים. פרק א': אלגברה והסתברות: נקודות. נקודות. נקודות. נקודות. 1 33 = 16 3 3 פרק ב': גיאומטריה וטריגונומטריה במישור: 1 33
b2n-1 ב. נשתמש בנוסחת סכום סדרה הנדסית אינסופית יורדת כדי לרשום את הנתון: 1-q = 0.8 b 1-q 1=0.8(1+q) q= 1 4 פתרון לשאלה 2
פתרון מבחן מס' פתרון לשאלה א. להוכיח כי סדרה c היא סדרה הנדסית משמע להוכיח כי היחס בין איברים סמוכים בסדרה הוא מספר n c n +n c מכיוון ש- q הוא מספר קבוע, סדרה = b n+ = bq n =q cn bn- bq n- :b n קבוע. אם
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
הערכת שווי חברות דגשים עיקריים בהערכת שווי חברות
FINANCIAL ADVISORY SERVICES הערכת שווי חברות דגשים עיקריים בהערכת שווי חברות ADVISORY דצמבר 2009 סומך חייקין KPMG מחלקת הערכות שווי אביבית בן שמחון 1 מטרת ההרצאה הערכת שווי חברה יכולה לשמש למגוון צרכים:
The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן
.. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j
שאלה 3. b a I(A) α(deg) 10 cm
שאלה 1 תרגילי חזרה במגנטיות בתוך שדה מגנטי אחיד B שרויה הצלע התחתונה (שאורכה ( L של מעגל חשמלי מלבני. המעגל החשמלי מורכב מסוללה ומסגרת מלבנית מוליכה שזורם בה זרם i. המעגל החשמלי תלוי בצד אחד של מאזניים
f ( x, y) 1 5y axy x xy ye dxdy לדוגמה: axy + + = a ay e 3 2 a e a y ( ) במישור. xy ואז dxdy למישור.xy שבסיסם dxdy וגבהם y) f( x, איור 25.
( + 5 ) 5. אנטגרלים כפולים., f ( המוגדרת במלבן הבא במישור (,) (ראה באיור ). נתונה פונקציה ( β α f(, ) נגדיר את הסמל הבא dd e dd 5 + e ( ) β β איור α 5. α 5 + + = e d d = 5 ( ) e + = e e β α β α f (, )
אוניברסיטת בר-אילן חוברת תרגילים ופתרונות המרצה: ד"ר מרדכי א' שורץ
אוניברסיטת בר-אילן המחלקה לכלכלה חוברת תרגילים ופתרונות לקורס 66533, "כלכלה בין דורית" המרצה: ד"ר מרדכי א' שורץ התרגילים והפתרונות הוכנו ע"י ד"ר רונן בראל תועלת ההורים תועלת הילדים 3 תרגיל 1 שאלה 1 מודל
מימון דף נוסחאות + = = 1+ 4 rnekova Revonit. 1 (1 d) reffective. effective. effective. reff. Simple
מימון דף נוסחאות ריבית אפקטיבית ריבית פשוטה = ריבית נקובה = ריבית נומינאלית. המעבר מריבית נקובה לריבית אפקטיבית המחושבת ב N תקופות: rnekov + = + reffective N וכאשר N שואף לאינסוף (הריבית מחושבת באופן רציף):
פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 20 חודשי הולדת. לכל ילד 12 אפשרויות,לכן. לכן -
פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 0 חודשי הולדת לכל ילד אפשרויות,לכן לכן - 0 A 0 מספר קומבינציות שלא מכילות את חודש תשרי הוא A) המאורע המשלים ל- B הוא "אף תלמיד לא נולד באחד מהחודשים אב/אלול",
ניסוי מקרי: ניסוי שיש לו מספר תוצאות אפשריות ואי-אפשר לדעת מראש באיזה תוצאה יסתיים הניסוי.
1 תורת ההסתברות מהי? העולם שבו אנחנו חיים הוא עולם של אי-ודאות. מכיוון שאין לנו דרך לקבוע בוודאות את תוצאותיו של תהליך אקראי, אנו מנסים לצמצם את אלמנט אי-הודאות ולהעריך את הסיכויים של התוצאות האפשריות
(להנדסאי מכונות) הוראות לנבחן פרק שני: בקרת תהליכים ומכשור לבקרה ולאלקטרוניקה תעשייתית 80 נקודות
גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תשס"ח, 2008 מועד הבחינה: משרד החינוך 710923 סמל השאלון: מערכות מכטרוניות ה' (להנדסאי מכונות) הוראות לנבחן א. משך הבחינה: ארבע שעות. ב. מבנה השאלון
מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה י"א( הוראות לנבחן
מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשס"ח, 2008 סמל השאלון: 845201 א. משך הבחינה: שלוש שעות. נספח: נוסחאון במערכות חשמל מערכות חשמל ג' שתי יחידות לימוד )השלמה
The Origins of Income Inequality in Israel Trends and Policy
אי מקורות השוויון בהכנסות בישראל תהליכים ומדיניות עופר קורנפלד אורן דניאלי The Origins of Income Inequality in Israel Trends and Policy Ofer Cornfeld Oren Danieli הוצג ביום עיון של פורום "ספיר" באוניברסיטת
מתודולוגיה לקביעת שער ההיוון הממשלתי
יולי 2016 מחקר מספר 103 מתודולוגיה לקביעת שער ההיוון הממשלתי אסא כהן עמית מרכז מילקן לחדשנות במכון ירושלים לחקר ישראל מנחה מחקר: פרופ איתן ששינסקי מכון ירושלים לחקר ישראל Jerusalem Institute for Israel
התפלגות χ: Analyze. Non parametric test
מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06
- הסקה סטטיסטית - מושגים
- הסקה סטטיסטית - מושגים פרק נעסוק באכלוסיה שהתפלגותה המדויקת אינה ידועה. פרמטרים לא ידועים של ההתפלגות. מתקבלים מ"מ ב"ת ושווי התפלגות לשם כך,,..., סימון: התפלגות האכלוסיה תסומן בפרק זה המטרה לענות על