arxiv: v3 [math.pr] 24 Nov 2017

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv: v3 [math.pr] 24 Nov 2017"

Transcript

1 Time-depedet weak rate of covergece for fuctios of geeralized bouded variatio Atti Luoto arxiv: v3 [mat.p] 4 Nov 17 Abstract Let W deote te Browia motio. For ay expoetially bouded Borel fuctio g te fuctio u defied by ut,x = E[gx+σW T t ] is te stocastic solutio of te backward eat equatio wit termial coditiog. Let u t,x deote te accordig approximatio produced by a simple symmetric radom walk wit steps±σ T/ wereσ >. Tis paper is cocered wit te rate of covergece of u t,x tout,x, ad te beavior of te erroru t,x ut,x astteds tot. Te termial coditio g is assumed to ave bouded variatio o compact itervals, or to be locally Hölder cotiuous. Key words: approximatio usig simple radom walk, weak rate of covergece, fiite differece approximatio of te eat equatio. Matematics Subject Classificatio 1: Primary: 41A5, 65M15; Secodary: 35K5, 6G5. Cotets 1 Itroductio Te settig ad te mai result Te adjustmet error Te local error Te global error Momet estimates for te stoppig timej 4 A Appedix 35 1 Itroductio Te objective of tis paper is to study te rate of covergece of a fiite-differece approximatio sceme for te backward eat equatio wit a irregular termial coditio. Covergece rates of fiite-differece scemes for parabolic boudary value problems ave bee studied durig te past decades see e.g. [3], [6], [8], [1] ad [13] wit varyig assumptios o te regularity of te iitial/termial coditio, te domai of te solutio, properties of te possible boudary data etc. Naturally, several teciques ave bee proposed i order to study te covergece. Our approac is probabilistic: Te solutio of te PDE is represeted i terms of Browia motio, ad te approximatio sceme is realized usig a appropriately scaled sequece of simple symmetric radom walks i te same probability space, i te spirit of Dosker s teorem. Tis metod produces error bouds wic are ot uiform over te time-ets uder cosideratio, ad ece te time-depedece of te error is of particular iterest ere. To explai our settig i more detail, fix a fiite time orizo T >, a costat σ >, ad cosider te backward eat equatio σ u+ t xu =, t,x [,T, ut,x = gx, x. 1.1 Uiversity of Jyvaskyla, Departmet of Matematics ad Statistics, P.O.Box 35, FI-414 Uiversity of Jyvaskyla. atti.k.luoto@studet.jyu.com 1

2 Te termial coditio g : is assumed to belog to te class GBV exp cosistig of expoetially bouded fuctios tat ave bouded variatio o compact itervals see Defiitio.3 for te precise descriptio of GBV exp. Te stocastic solutio of te problem 1.1 is give by ut,x := E[gσW T σw t = x] = E[gx+σW T t ], t,x [,T], 1. were W t t deotes te stadard Browia motio. To approximate te solutio 1., we proceed as follows. Give a eve iteger N, a level z, ad time ad space step sizes δ ad, defie T := { t k := kδ k,k Z}, S z := { z +m m Z }. Te fiite-differece sceme we will cosider is give by te followig system of equatios defied o grids G z := T S z [,T], u t k,x u t k 1,x t k t k 1 + σ u T, = g. u t k,x+ u t k,x+u t k,x =, 1.3 Lettig δ := T ad := σ T, system 1.3 ca be rewritte i a equivalet form as { u t k 1,x = 1 [ 4 u t k,x++u t k,x+u t k,x ], u T, = g. 1.4 Tis sceme is explicit: Give te set of termial values { gx x S z }, te solutio u of 1.4 is uiquely determied by a backward recursio. We exted te fuctio u i cotiuous time by lettig u t,x := u t k,x for t [t k,t k+1, k <, 1.5 ad cosider te error ε t,x o t,x [,T S z, wic is give by ε t,x := u t,x ut,x. 1.6 Te mai result of tis paper, Teorem.4 A states tat for some costat C > depedig oly o g, ε t,x Cψx 1 T t {t/ T } + Cψx T t k 1 [t k,t k+1 t, t,x [,T Sz, 1.7 were ψx = ψ x, g, σ, T > depeds o te properties of g ad will be give explicitly later. Iequality 1.7 suggests tat te covergece is ot uiform it,x. However, if we cosider uiform covergece o ay compact subset of[,t, te rate is at least 1/, ad it will be sow i Subsectio 4.4 tat tis rate is also sarp. Already i 1953, Jucosa & Youg [6] cosidered a fiite differece approximatio of te forward eat equatio o a semi-ifiite strip [, [,1], were te iitial coditio was assumed to ave bouded variatio. Usig Fourier metods, tey proved i [6, Teorem 7.1] tat te error is O 1/ uiformly o [t, [,1] for ay fixed t >, but did ot study te blow-up of te error as t. Notice tat te rigtad side of 1.7 udergoes a blow-up ast T. Te order of te sigularity is eve worse for time istats t ot belogig to te lattice T due to te possible discotiuities of g. O te oter ad, oe observes tat te order remais ucaged if te termial coditio g is Hölder cotiuous. Ideed, suppose tat g belogs to te class Cexp,α see Defiitio.1, wic cosists of expoetially bouded, locally α-hölder cotiuous fuctios. By Teorem.4 B, tere exists a costat C > depedig oly o g suc tat ε t,x Cψx 1 α T t [t k α k,t k+1 t, t,x [,T Sz, 1.8

3 were te fuctio ψx = ψ x, g, σ, T > plays a similar role as i 1.7. ecetly, Dog & Krylov 5 [3] cosidered te covergece of a fiite-differece sceme for a very geeral parabolic PDE. By specializig teir result [3, Teorem.1] to te settig of tis paper, te error is see to coverge uiformly i t,x wit rate 1/4 for a bouded ad Lipscitz cotiuous termial coditio, i cotrast to te time-depedet rate 1/ implied by 1.8. I fact, a aalogous uiform rate α/4 ca be sow for te class Cexp,α i our settig; te proof is sketced i emark.6. I tis paper, te mai results are derived usig te followig probabilistic approac. Let ξ i i=1,,... be a sequece of i.i.d. ademacer radom variables, ad defie were W t t [,T] is te radom walk give by u t,x := E [ g x+σw T t], t,x [,T], 1.9 Wt T := t T/ i=1 ξ i, t [,T] 1.1 deotes te ceilig fuctio. Te key observatio is tat te fuctiou i 1.9, we restricted togz, is te uique solutio of 1.4 for everyz ; 1.5 also olds for tisu by defiitio. Moreover, sice te radom walkwt t [,T] iflueces te value ofu oly troug its distributio, we may cosider a special settig were te radom variables ξ 1,ξ,... are cose i a suitable way. Defiig tese variables as te values of te Browia motio W t t sampled at certai stoppig times see Subsectio.1 eables us to apply teciques from stocastic aalysis for te estimatio of te error 1.6. Te above procedure was used i J. B. Wals [1] 3 cf. ogers & Stapleto 1997 [11] i relatio to a problem arisig i matematical fiace. More precisely, te weak rate of covergece of Europea optio prices give by te biomial tree sceme Cox-oss-ubistei model to prices implied by te Black-Scoles model is aalyzed cf. Hesto & Zou [5]. A detailed error expasio is preseted i [1, Teorem 4.3] for termial coditios belogig to a certai class of piecewise C fuctios. Usig similar ideas, we complemet tis result by cosiderig more irregular fuctios ad takig ito accout te time-depedece. It is argued i [1, Sectios 7 ad 1] tat te rate remais uaffected if te geometric Browia motio is replaced wit a Browia motio, ad te biomial tree is replaced wit a radom walk. It seems plausible tat also our time-depedet results i te Browia settig ca be trasferred ito te geometric settig wit essetially te same upper bouds. It sould be metioed ere tat te proof of 1.7 uses te geeral represetatio.7 for fuctios of geeralized bouded variatio, wic allows us to estimate te error 1.6 i a explicit maer. Tis type of fuctio classes of geeralized bouded variatio were studied first i Avikaie 9 [1]. Te paper is orgaized as follows. I Sectio we itroduce te otatio, recall te costructio of a simple radom walk usig first ittig times of te Browia motio, ad formulate te mai result Teorem.4. Usig te sequece of stoppig times, we split te error 1.6 ito tree parts, wic we refer to as te adjustmet error, te local error, ad te global error. Te adjustmet error is a cosequece of te fact tat te approximatio u t,x is costat i t o itervals of legt T, wile t ut,x is cotiuous. Te remaiig two parts of te error appear because te costructio of te simple radom walk uses te Browia motio sampled at a stoppig time wic ca be larger of smaller ta T t, ad for ut,x we usew T t. Te local error is iflueced by te smootess properties of te termial coditio g, wile for te global error oly itegrability properties of g are eeded. I Sectio 3, estimates for te adjustmet error are computed. Sectio 4 treats te local error ad follows i may places te ideas ad te maciery of J. B. Wals [1]. We also apply some results of [4] related to te first exit times of Browia bridges i order to derive explicit upper bouds. I Sectio 5, te global error is treated for expoetially bouded Borel fuctios, ad our approac is similar to tat of [1]. Sectio 6 cotais a collectio of momet estimates ad tail beaviors of radom times appearig i te descriptio of te local ad te global error. Agai, it was possible to adjust metods from [1] to our settig. 3

4 Te settig ad te mai result.1 Notatio related to te radom walk Cosider a stadard Browia motio W t t o a stocastic basis Ω,F,P,F t t, were F t t stads for te atural filtratio of W t t. We also let X t t := σw t t, were σ > is a give costat. Byτ, we deote te first exit time of te process X t t from te ope iterval,, τ, := if{t : X t = } = if{t : W t = /σ}, >. Te radom variable τ, is af t t -stoppig time ad its momet-geeratig fuctio is give by E [ { e λτ ], = cos λ /σ 1, λ, cos λ/σ 1, λ, π σ 8. It follows tat te exit time τ, as fiite momets of all orders, ad for every K N tere exists a costat C K > suc tat.1 E [ τ K,] = CK /σ K.. I particular, C 1 = 1 ad C = 5/3. For relatios.1 ad., see [1, Propositio 11.1]. I order to represet te error 1.6, we costruct a radom walk o te probability spaceω,f,p,f t t. Followig [1], we defie τ := ad τ k = τ k := if { t τ k 1 : } Xt X τk 1 =.3 recursively for k = 1,,.... Te τ k is a P-a.s. fiite F t t -stoppig time for all k, ad te process X τk k=,1,... is a symmetric simple radom walk o Z := {m : m Z}. For every iteger k 1, we also let τ k := τ k τ k 1 ad X τk := X τk X τk 1. Te strog Markov property of X t t implies tat τ k, X τk k=1,,... is a i.i.d. process suc tat, for eac k 1, we ave P X τk =± = 1/, τ k, X τk d = τ,,x τ,, ad τ k, X τk is idepedet of F τk 1 +. Moreover, as sow i [11, Propositio 1], te icremets X τ1 ad τ 1 are idepedet. Cosequetly, te processes τ k k=1,,... ad X τk k=1,,... are idepedet see also [1, Propositio 11.1] ad [7, Propositio.4]. We deduce, i particular, tat for alln 1 te radom variablex τn is distributed as N k=1 ξ k, were ξ k k=1,,... is a i.i.d. sequece of ademacer radom variables. Terefore, for WT t defied i 1.1, we ave te equality i law d X τn = σw T t provided tat,n = σ T T t, T/. Note tat i tis case te sequece of stoppig times τ k k=,1,....3 depeds ovia =. Te error 1.6 will be split ito tree parts, were eac of tese parts will take ito accout differet properties of te give fuctio g. For tis purpose, let us itroduce some more otatio. For give N ad t [,T, we let := T T t, were := {,4,...,}..4 T/ 4

5 By defiitio, is te smallest multiple of T T t T greater ta or equal tot t. It is clear tat ad T t as. Te coectio betwee lattice poits t k = kt T ad te time istat,t] is explaied by t [t k,t k+1 if ad oly if = T t k, k Te fuctio classes uder cosideratio Te error 1.6 will be estimated for fuctios g belogig to te fuctio class C,α exp or GBV exp defied below. More iformatio regardig tese classes is provided i Subsectios 4.5 ad A.1, respectively. Defiitio.1 Te class C,α exp. Deote by C,α exp te class of all fuctios g : for wic tere exist costats A,β suc tat for all >, gx gy sup x,y [,], x y x y α Ae β..6 Te fuctio classgbv exp geeralizes fuctios of bouded variatio wic are bouded by allowig expoetial growt. For more iformatio, see [1]. Before itroducig te class GBV exp, we recall Defiitio. [1, Defiitio 3.]. Deote bymte class of all set fuctios µ : {G B : G is bouded} tat ca be writte as a differece of two measures µ 1,µ : B [, ] suc tat µ 1 K,µ K < for all compact sets K B. Defiitio.3 Te class GBV exp. Deote by GBV exp te class of fuctios g : wic ca be represeted as gx = c+µ[,x µ[x,+ α i 1 {xi }x, x,.7 were c is a costat, µ M, ad J = α i,x i i=1,,... is a coutable set suc tat x i x j weever i j. I additio, we require tat for some costat β,.3 Te mai result e β x d µ x+ Te followig teorem is te mai result of tis paper. i=1 α i e β xi <..8 Teorem.4. Let N, ad let u ad u be te fuctios itroduced i 1. ad 1.9. i=1 A Suppose tat g GBV exp is a fuctio give by.7 ad tat β is as i.8. Te, for all t,x [,T, i u t,x ut,x ii u t k,x ut k,x C β,σ,t T t e β x, t t k, k <, C β,σ,t T t k eβ x, k <, were C β,σ,t := CT Te 5β σ T ad C > is a costat depedig oly o g. 5

6 B Suppose tat te fuctio g C,α exp ad tat β is as i.6. Te, for all t,x [,T, iii u t,x ut,x C β,σ,t e β+1 x, t [t α T t k,t k+1, k <, k α were C β,σ,t := 1+T+σCe 4β+1 σ T ad C > is a costat depedig oly og. emark.5. Properties of te error bouds i A ad B were already discussed i Sectio 1. Here we oly poit out tat i geeral tese error bouds grow expoetially as fuctios of x. A uiform boud w.r.t. x ca be sow uder additioal assumptios: For g GBV exp, it is sufficiet tat g satisfies te coditio.8 witβ =. For g C,α exp, it suffices to assume tat g is bouded ad satisfies.6 wit β =. Proof of Teorem.4. Followig [1], we defie a auxiliary radom variable J o Ω,F,P,F t t by J ω := if{m N : τ m ω > },.9 were we assume tat te step size related to τ k k=,1,... is = σ T. By defiitio, J is te idex of te first eve stoppig time τ,τ,... exceedig te value. It olds tat J is a stoppig time w.r.t. F τk k=,1,.... Moreover, τ J is a stoppig time w.r.t. F t t, ad bot J ad τ J are P-a.s. fiite. Te error ε t,x give by 1.6 is te decomposed as follows: were ε t,x = ε glob t,x+ε loc t,x+ε adj t,x,.1 ε glob t,x := E[gx+X τ gx+x τj ], te global error.11 ε loc t,x := E[gx+X τj gx+x ], te local error.1 ε adj t,x := E[gx+X gx+x T t ]. te adjustmet error.13 Assume tat k < is te iteger for wic t [t k,t k+1 olds. A: By emark A.1i, tere exists a costat A = Aβ suc tat gx Ae β x for all x. Hece, by Propositios 3.3 ad 5.3 ad Corollary 4.14, tere exists a costat C > suc tat ε t,x Ce β x +5β σ T T T t 1 {t t k } + T T t k + We te get te claim i bot of te cases t t k,t k+1 ad t = t k : It olds tat T T t k. T T t k T T t T T t k ad T T t k T T t, sice T t k T for all itegers k <. B: Give a costat δ >, by assumptio, we ca derive te expoetial boud gx A x α e β x + g Ce β+δ x, x, for some costat C >. For simplicity, let us coose δ = 1. Cosequetly, by Propositios 3.3 ad 5.3 put b = β +δ, ad Corollary 4.18, we fid aoter costat C > suc tat ε t,x Ce β+1 x +4β+1 σ T σ α T α/ T α/ + T t k. 6

7 Te claim follows, sice T γ T t T γ k T/ 1 for all γ [,1], ad tus σ α T α/ α/ + T T t k σα T α/ α/ + T T t k α/ Tα/ +σ α T α 1+T+σ α/ T t k α/ α/ T t k α/. emark.6. For g C,α exp, tere exists a costat C = CA,σ,T > suc tat for all x, sup u t,x ut,x C e t [,T α 4β x +8β σ T,.14 4 were A,β are as i.6. Hece, we get te uiform rate α/4 istead of te time-depedet rate α/ implied by Teorem.4 B. Note tat for g Cexp,α, te time-depedece of te error boud i Teorem.4 B is caused solely by te global error, ad it remais uclear weter te associated upper boud 5.9 ca be improved usig te additioal iformatio about te regularity of g. For te proof of.14, otice first tat by te Hölder cotiuity ad by Hölder s iequality, were p := α u t,x ut,x Aσ α Ee qβ x+σw 1/q T t +qβ x+σw τ pα 1/p EW T t W τ, p ad q := p 1. To proceed, apply Lemma 5.1i ad te fact tat for some CT >, E WT t W τ = E T t τ CT 1/, wic follows from Itô s isometry ad a sligt geeralizatio of [1, Propositio 11.1iv]. 3 Te adjustmet error I tis sectio we derive a upper boud for te adjustmet error.13 for expoetially bouded Borel fuctios ad for fuctios belogig to te class C,α exp,α,1]. Defiitio 3.1 Te class B exp. A fuctio g : is said to be expoetially bouded, if tere exist costats A,b suc tat gx Ae b x for all x. 3.1 Te class of all Borel fuctios wit te above property will be deoted byb exp. emark 3.. By defiitio, GBV exp B exp see emark A.1 ad C,α exp B exp see Subsectio 4.5. Propositio 3.3. Let N. i Let g B exp ad let A,b be as i 3.1. Te, for all t,x [,T, ε adj t,x 8AT T t eb x +b σ T 1 {t t k <k< }. ii Let g C,α exp ad let A,β be as i.6. Te, for all t,x [,T, ε adj t,x Aσ α T α/ α/ e β x +4β σ T 1 {t t k <k< }. 7

8 Proof. i: Deote by p t te desity of X t = σw t for t >, ad cosider te fuctio ut,x = E[gx +X T t ] = gx +yp T t ydy, t < T. Sice g B exp, we ca use differetiatio uder te itegral sig to sow tat t ut,x = gx +y t p T tydy = gx +yp T t y 1 T t y σ dy. 3. T t Fix N ad suppose tat t k = kt is te lattice poit suc tat t [t k,t k+1. If t = t k,.5 implies tat = T t, ad tus ε adj t,x = by.13. For t t k,t k+1, by te mea value teorem ad 3., tere exists someη t k,t suc tat ut k,x ut,x t t k T t C T η T T t sup C r, 3.3 r T t,t t k were C r := gx +yp r y 1 y σ r dy, r >. Let Z be a stadard ormal radom variable. Sice g B exp, it olds for all r,t] tat [ [ C r Ae b x E e b Xr ] +Ae b x E e b Xr ] X r σ r [ ] Ae b x E e bσ rz +E [Z ] e bσ rz = Ae b x e 1 b σ r +e 1 b σ r [ Z ] E +bσ r A+b σ Te b x + 1 b σ T 8Ae b x +b σ T. 3.4 Sice adj ε t,x = ut k,x ut,x, 3.3 ad 3.4 imply te claim. ii: Let k < be suc tat t t k,t k+1 olds; te case t = t k follows from.5 ad.13. Hölder s iequality implies tat ε adj t,x Egx +X T t k gx +X T t AE [e β x + X T t + X T t k ] XT t X k T t α [ ] A E e qβ x + X T t + X T t 1/q k EXT t k X T t pα 1/p, 3.5 for somep,q 1, wit 1 p + 1 q = 1. Te coice p = α,q = α ad te fact t t k T yield E XT t k X T t pα 1/p σ E WT t k W T t α/ σ α α/ T α/ α/. 3.6 Moreover, for a stadard ormal radom variable Z, Hölder s iequality implies tat [ ] [ E e qβ x + X T t + X T t k e qβ x E e qβσ T t Z ] 1/ k E [e ] qβσ 1/ T t Z Te claim te follows by 3.5, 3.6, ad 3.7. e qβ x +q β σ T

9 4 Te local error 4.1 Notatio ad defiitios Suppose tat,,,t]. Te aim of tis sectio is to derive a upper boud for te absolute value of te error ε loc, g := E[gX τ J gx ] 4.1 as a fuctio of,, were te fuctio g belogs togbv exp orc,α exp. Te radom variable J is give by J = J, = if{m : τ m > }. 4. Afterwards, upper bouds for te error 4.1 are derived i te dyamical settig, were te step size ad te level will deped o. Observe tatj agrees witj defied i.9 for, = σ T, T T t T/. Let us start by itroducig te followig otatio: Z o := {k+1 : k Z}, Z e := {k : k Z} o refers to odd ad e refers to eve ; te Z = Z o Z e. I additio, we will abbreviate d o x := distx,z o, d e x := distx,z e = d o x, x. 4.3 As i [1], we project fuctios oto piecewise liear fuctios i order to compute te coditioal expectatio E[gX τj F ]. Defiitio 4.1. Defie operators Π o ad Π e actig o fuctios u : by Π e ux := ux if x Z e ad x Π e ux liear i [k,k+] k Z, Π o ux := ux if x Z o ad x Π o ux liear i [k 1,k+1] k Z. Te key igrediet i te estimatio of te error ε loc, g is te followig result, proposed i [1, Sectio 9]. For te coveiece of te reader, a sketc of te proof is give below. ecall Defiitio 3.1 for te class B exp ad deote byn := {,1,,...} te set of o-egative itegers. Propositio 4.. Let,,, T] ad defie a radom variable L = L, := sup{m N : τ m < } 4.4 τ L is equal to te largest of te stoppig times τ,τ 1,... less ta. Te, give a fuctio g B exp, ε loc, g = E[ Π e gx gx ] +E [ Π o Π e gx Π e gx PL eve X ]. 4.5 Proof. If g B exp, te also Π e g B exp ad Π o Π e g B exp. Te expectatios o te rigt-ad side of 4.5 tus exist ad are fiite. Usig te Markov property of te process X t t, it ca be sow tat E [ gx τj F ] = Πe gx P-a.s. o{l odd}, E [ gx τj F ] = Πo Π e gx P-a.s. o {L eve}, see [1, Sectio 9]. Cosequetly, sice1 {L odd} +1 {L eve} = 1P-a.s., E[gX τj ] = E [ E [ gx τj F ] 1{L odd} ] +E [ E [ gxτj F ] 1{L eve} ] = E [ Π e gx P L odd X ] +E [ Πo Π e gx P L eve X ] = E[Π e gx ]+E[Π o Π e gx Π e gx PL eve X ]. 9

10 4. Evaluatio of te coditioal probability PL eve X I tis subsectio we derive a represetatio for te fuctio y PL eve X = y 4.6 based o first exit time probabilities of a Browia bridge. Tis represetatio 4.13 togeter wit te estimate proved i Propositio 4.7 are eeded for Propositios 4.11, 4.15 ad Lemma 6.4 below. Defiitio 4.3 Browia bridge. Let x,y ad l >. A Gaussia process B x,l,y t t [,l] wit mea ad covariace fuctios give by E[B x,l,y t ] = x+ t l y x, t l, CovBs x,l,y,b x,l,y t = s 1 t l, s t l, is called a geeralized Browia bridge from x toy of legt l. emark 4.4. By comparig mea ad covariace fuctios, it is easy to verify tat a Browia bridge t [,l] is equal i law wit te trasformed processes below: B x,l,y t B y,l,x l t t [,l] time reversal 4.7 x+b,l,y x t t [,l] traslatio 4.8 B x,l, y t [,l] reflectio aroud te x-axis. 4.9 A cotiuous versio of te Browia bridge B x,,y t t [,] ca be tougt as a radom fuctio o te caoical space C[,],BC[,],P x,,y, were P x,,y deotes te associated probability measure. I te followig propositio we give differet caracterizatios for te fuctio 4.6 i terms of ittig times. For all c,a < b, ad ω C[,], let H c ω := if{t [,] : ω t = c}, Ĥ c ω := sup{t [,] : ω t = c}, H a,b ω := if{t [,] : ω t / a,b}, Ĥ a,b ω := sup{t [,] : ω t / a,b}. Propositio 4.5. Let,,,T]. Suppose tat B y/σ,, t t [,] is a Browia bridge o a probability space Ω, F, P, ad defie Te, for all k Z, qy = qy,, := y/σ,, PB t t [,] its Z /σ e before ittig Z /σ o, y. 4.1 i qy = PL eve X = y, y / Z, 4.11 { Py/σ,, H ii qy = k/σ < H k+1/σ, y k,k+1, 4.1 P y/σ,, H k/σ < H k 1/σ, y k 1,k, d o y + σ [ iii qy = E P B ],,,y/σ y k,k+1 H k+1 y/σ,y k/σ d o y σ [ 4.13 E P B ],,,y/σ y k 1,k. H k y/σ,y k 1/σ Here H a,b = if{t [,] : B,,y/σ t Ω, F, P cosidered i Sectio. emark 4.6. It is clear by 4.9 tat te fuctio q is symmetric. / a,b}, ad P refers to te probability measure o te space Proof of Propositio 4.5. Itemii is clear. To sowi, observe tat ifx ω k,k+1 adlω is eve, te pat t X t ω does it k at τ L ω ad afterwards, i.e. o [τ L ω,, it does ot it ay 1

11 oter m m k ad ece stays iside k 1,k+1. Terefore, te last etry of tis pat ito k,k+1 occurs via k, ad tus PL eve,x k,k+1 = P σωĥk,k+1ω = k, σω k,k+1 = P ωĥk/σ,k+1/σω = k σ, ω k σ, k+1 σ = P Ĥk/σ > Ĥk+1/σ, were P deotes te Wieer measure o C[,],BC[,]. Tus, for y k,k+1, PL eve X = y = P,,y/σ Ĥk/σ > Ĥk+1/σ = P y/σ,, H k/σ < H k+1/σ = qy, were we used 4.7, 4.1, ad te fact tat P X = y = P,,y/σ o C[,],BC[,] see e.g. [9, Capter 1, Exercise 3.16]. Te case y k 1, k is similar. Foriii, assume y k 1, k; te case y k,k+1 is similar. It is clear tat weever z / a,b, a < < b, ad H a,b = if{t [,] : B,,z t / a,b}, [ ] B,,z = ap H,,z H a < H b +b 1 P,,z H a < H b, a,b implyig tat E P I additio, from 4.1 we deduce tat P,,z H a < H b = b b a 1 [ b a E P B ].,,z 4.14 H a,b qy = P y/σ,, H k/σ < H k 1/σ = P,, y/σ H k y/σ < H k 1 y/σ = P,,y/σ H y k/σ < H y k 1/σ 4.15 by 4.8 ad 4.9. Substitutez = y y k σ,a = σ, adb = y k 1 σ. Tez / a,b,a < < b,b a = σ, ad ece by 4.14, 4.15, ad d o y = y k 1, qy = d o σ [ ] E P B,,y/σ. H y k/σ,y k 1/σ Te probability for te Browia motiow t +y/σ t to it te setz /σ e before ittig te setz /σ o is equal to d o y/ cf As poited out i [1, Sectio 9], te piecewise liear fuctio y d o y/ ca be used to approximate te fuctioy qy for small >. A estimate related to tis approximatio is derived i te propositio below. We deote by p = p, te desity of te radom variable X. Propositio 4.7. Suppose tat,,, T] ad defie :, y = y,, := qy d o y/, 4.16 were q = q,, was itroduced i 4.1. Te is symmetric, ad it olds tat i ii y pydy 51 1σ + σ, 4.17 y pydy 9 1σ + σ

12 I additio, give a costat β, it olds uiformly i m Z tat iii m+1 m 1 e β y y pydy C 4. β,, σ, 4.19 were C 4. β,, := e β [ σ e β σ βσ σ σ ]. 4. emark 4.8. Later, i te settig of Assumptio 4.1, we ca boud te coefficiet C 4. β,, from above by a less complicated expressio: Sice σ = 1 1, C 4. β,, e βσ T/ e β σ T βσ T. 4.1 Te proof of Propositio 4.7 uses certai results of [4] related to te first ittig times of Browia bridges, amely [4, Lemma 3.1, Lemma 3. i, ad Teorem.6 i]. For te coveiece of te reader, we collect tose results i te lemma below usig te otatio of tis subsectio. Lemma 4.9. Let,,, ad suppose tat a < < b ad y / a,b. Te were [ E P B,,y ] E,,y [H a,b ] H a,b { 4b a +y/, y b, E,,y [H a,b ] 4 a b+ y /, y a, E,,y [H, ] = γ t x,y := 1 πt e x y /t y + a b+3, γ t,y F/ t dt, y /,, 4.4 γ,y πt ad Fx := m= 1 m e m x. 4.5 Proof of Propositio 4.7. ecall te fuctios q, d o,d e, ad, give by 4.1, 4.3, ad 4.16, respectively. Te fuctio is symmetric as a liear combiatio of te symmetric fuctios q ad d o. To sow i, we use 4.13 ad 4. to obtai y ++3σ E y,,y/σ [H k+1 y/σ,y k/σ ], y k,k+1, y ++3σ E,,y/σ [H k y/σ,y k 1/σ ], y k 1,k. I additio, 4.3 implies tat for y,, 4.6 y E,,y/σ [H y/σ,y/σ ] 4 σ + y y σ σ y+yy σ σ. 4.7 Cosequetly, by 4.6 witk = ad 4.7, y pydy σ y ++3σ E,,y/σ [H y/σ,y/σ ]pydy [ y pydy + +3σ ] pydy 1

13 σ y σ pydy σ σ π σ + +3σ σ 51 1σ + σ sice π Tis proves item i. ii: By extedig te exit itervals, we get for all k Z tat pydy { E,,y/σ [H E,,y/σ [H /σ,/σ ] k+1 y/σ,y k/σ ], y k,k+1, E,,y/σ [H k y/σ,y k 1/σ ], y k 1,k. 4.8 I terms of te fuctios γ ad F defied i 4.5, we let σ C, σ, y / σ := γ σ u,y γ σ,y recall 4.4. Hece, by 4.6 ad 4.8, y pydy σ F1/ u πu = σ E,,y/σ[H /σ,/σ ], 4.9 y ++3σ C, σ, y σ pydy. 4.3 Usig te kowledge tat u F1/ u πu is a p.d.f. o, see [4, Propositio.8], a stadard computatio yields C, σ, y σ 1 σ y, ad tus y σ 1 σ y pydy σ I additio, by 4.9 ad by te fact tat p = γ σ,, C, σ, y σ pydy = σ / 1 uγ 1,udu 1 σ + e 1/ π γ σ u,y F1/ u dudy 1 πu σ / sice te fuctio u F1/ u πu itegrates to oe over te iterval,. Cosequetly, F1/ u du 1 πu σ +3σ C, σ, y σ pydy σ + 3 σ. 4.3 Te claim te follows by applyig 4.31 ad 4.3 to te rigt-ad side of 4.3 ad by observig tat 1 + e 1/ π To sow iii, fix β. By symmetry, it is sufficiet to prove te claim for m. If m =, item i implies tat e β y y pydy e β y pydy C 1 β,, σ, were C 1 β,, := eβ σ. Suppose te m 1. Proceedig as i te proof of item ii, we may boud te left-ad side of 4.19 from above by 13

14 m+1 σ m 1 σ m+1 m 1 [ e βy 1 σ y py y e βy y σ 1 pydy σ ] dy σ + 3 σ Moreover, iequalities A.9 ad A.1 below imply tat m+1 m 1 e βy 1 σ y pydy m+1 m 1 e βy 1 y pydy σ 1+βσ e β σ π σ 4.34 ad m+1 m 1 e βy 1 σ pydy eβ σ / y π 1+ σ σ Fially, estimates 4.33, 4.34, ad 4.35 yield m+1 m 1 e β y y pydy 41+βσ σ e β σ + 1 π σ eβ σ C β,, σ, were we may coose [ 41+βσ π π σ +3 σ σ + 1 π σ +3 [ C β,, := σ eβ βσ 1 Sice C 4. β,, = C 1 β,, C β,,, te proof is completed. π σ σ eβ + e β σ π ] σ +1 σ σ ]. 4.3 Te local error forg GBV exp Te estimatio of te local error for te class GBV exp relies o te followig observatio: Ifg GBV exp is give by.7 ad if g x := gx + for some x, te g x x = c+ [, 1 y x, xdµy, 1,y x ]xdµy+ α i 1 {xi x }x Usig te represetatio 4.36 ad liearity, te estimatio of te error ε loc, gx essetially reduces to te estimatio of itegrals, were te itegrads cosist of idicator fuctios or teir liear approximatios give by te operators Π e ad Π o itroduced i Defiitio 4.1. Te followig propositio eables us to itercage te order of itegratio or summatio wit te applicatio of tese operators. ecall tat p = p, deotes te desity of X ad q = q,, is te fuctio defied i 4.1. i=1 14

15 Propositio 4.1. Suppose tat,,,t] ad tat g GBV exp admits te represetatio.7. Te, for all x, i Π e g x x = c+ Π e 1 y x, xdµy Π e 1,y x ]xdµy + [,, α i Π e 1 {xi x }x, x, i N:x i x Z e ii Π o Π e g x x = c+ Π o Π e 1 y x, xdµy Π o Π e 1,y x ]xdµy + [,, α i Π o Π e 1 {xi x }x, x. i N:x i x Z e Idea of te proof. Itemsi ii follow by usig te represetatio 4.36, liearity of te operatios f Π e f,f Π o f, ad f fd µ, ad relatio A.11. Propositio Let,,,T]. Suppose tat g GBV exp admits te represetatio.7 ad tat β is as i.8. Te, for all x, E[gx +X τj gx +X ] [ ] σ e 3β+β x 7 e β σ T/ + 3C4. β,, π e β y d µ y+ α i e β x i, 4.37 were te coefficiet C 4. β,, > is give by 4.. i N:x i x Z e Proof. For give x, we apply 4.5 for te fuctio gx +. By Propositio 4.1 ad by te relatio PL eve X = x = qx Leb-a.e., we may decompose te expectatio o te left-ad side of 4.37 i te followig way: E[gx +X τj gx +X ] [ = Πe 1 y x, x 1 y x, x ] dµypxdx [, , [,, + [ Πe 1,y x ]x 1,y x ]x ] dµypxdx [ Πo Π e 1 y x, x Π e 1 y x, x ] dµyqxpxdx i N:x i x Z e i N:x i x Z e [ Πo Π e 1,y x ]x Π e 1,y x ]x ] dµyqxpxdx α i Π e 1 {xi x }xpxdx =: E 1 +E +E 3 +E 4 +E 5 +E 6. α i [ Πo Π e 1 {xi x }x Π e 1 {xi x }x ] qxpxdx 15

16 We will derive upper estimates for te quatities E i,1 i 6, i te followig steps. Step 1: E 1 ade. Suppose tat y x [k,k+ for some k Z. Te Π e 1 y x, x 1 y x, x 1 [k,k+ x, ad sice for eac x [k,k+ it olds tat y + x + x, we ave e β y Πe 1 y x, x 1 y x, x pxdx e β+β x e β x Πe 1 y x, x 1 y x, x pxdx e β+β x k+ k e β x pxdx π e β+β x +β σ T/ σ by A.9. Cosequetly, by Fubii s teorem, E 1 e β y e β y Πe 1 y x, x 1 y x, x pxdx d µ y [, σ e β+β x +β σ T/ π [, I fact, it also olds tat E σ e β+β x +β σ T/ π e β y d µ y. 4.38, e β y d µ y 4.39 sice Πe 1,y x ]x 1,y x ]x = Πe 1 y x, x 1 y x, x for all x, wic is a direct cosequece of te relatio Π e 1,r] = 1 Π e 1 r,, r. 4.4 Step : E 3 ad E 4. Suppose y x [k,k+ for some k Z. Te y 3 + x + x olds for all x [k 1,k+3, ad by A.1 we may estimate e β y Πo Π e 1 y x, x Π e 1 y x, x qxpxdx e 3β+β x e β x Πo Π e 1 y x, x Π e 1 y x, x qxpxdx e 3β+β x 1 4 e3β+β x k+3 k 1 k+3 k 1 e β x d ox 4 qxpxdx e β x [ do x ] + x pxdx, were te defiitio 4.16 of was used. By proceedig as i Step 1, we obtai k+3 k 1 e β x d ox 4eβσT/ pxdx π σ. 16

17 I additio, by 4.19 of Propositio 4.7, it olds tat k+3 k 1 e β x x pxdx C 4. β,, σ, were C 4. β,, > is give by 4.. Hece, by Fubii s teorem, E 3 e β y e β y Πo Π e 1 y x, x Π e 1 y x, x qxpxdx d µ y [, e 3β+β x σ + C4. β,, π 4 eβ σ T/ [, e β y d µ y Moreover, by 4.4 ad by te liearity of Π o, we obtai Πo Π e 1,y x ]x Π e 1,y x ]x = Πo Π e 1 y x, x Π e 1 y x, x, x, ad oe readily sees tat E 4 e 3β+β x σ + C4. β,, π 4 eβ σ T/, e β y d µ y. 4.4 Step 3: E 5. By A.13, Π e 1 {ξ} if ξ / Z e, ad Π e1 {ξ} 1 [ξ,ξ+] if ξ Z e. I additio, sice x i + x + x weever x x i x, E 5 i N:x i x Z e i N:x i x Z e i N:x i x Z e α i Π e 1 {xi x }xpxdx α i e β x i α i e β x i σ 4 e β+β x +β σ T/ π e β x i px1 [xi x,x i x +]xdx xi x + x i x i N:x i x Z e e β x i pxdx were A.9 was used for te last iequality. Step 4: E 6. If ξ Z e, relatios A.11, A.16, ad te liearity of Π o imply tat Π o Π e 1 {ξ} x Π e 1 {ξ} x = 1 Π o ξ x x ξ = d ox 4 1 Π o ξ+ x x ξ+ 1 [ξ 3,ξ x 1 [ξ,ξ+ x+1 [ξ+,ξ+3 x α i e β x i, 4.43 Π o ξ x x ξ, x. I additio, we ave Π o Π e 1 {ξ} Π e 1 {ξ} for ξ / Z e by A.11. Terefore, sice 17

18 x i 3+ x + x weever x x i x 3, we get E 6 α i Π o Π e 1 {xi x }x Π e 1 {xi x }x qxpxdx i N:x i x Z e i N:x i x Z e i N:x i x Z e α i e β x i xi x +3 α i e β x i +3β+β x x i x 3 xi x +3 e β x i d ox qxpxdx x i x 3 e β x [ do x by te defiitio 4.16 of. I additio, for x i x Z e, relatio A.9 implies tat xi x +3 x i x 3 e β x d ox pxdx σ 6e β σ T/ π ad by usig te estimate 4.19 of Propositio 4.7, we obtai xi x +3 x i x 3 e β x x pxdx 3 sup m Z were C 4. β,, > is give by 4.. Cosequetly, E 6 σ m+1 m 1 3eβ σ T/ + 3C4. β,, π ] + x pxdx e β x x pxdx σ 3C4. β,,, e 3β+β x i N:x i x Z e α i e β x i It remais to observe tat te sum te rigt-ad sides of 4.38, 4.39, 4.41, 4.4, 4.43, ad 4.44 are bouded from above by te rigt-ad side of I order to distiguis betwee te geeral settig, ad te specific -depedet settig,, we will refer to te assumptio below. Assumptio 4.1. For give t [,T ad N, we substitute, =,, were T = σ, = T T t ad = T/ as i.4. For otatioal coveiece, we will drop te subscript from. emark Te special coice, =, i Assumptio 4.1 affects te objects below used trougout tis text: τ k = if { t > τ k 1 : X t X τk 1 = }, X τk k=,1,..., F τk k=,1,..., J = J = if{m N : τ m > }, L = L = sup{m N : τ m < }, Z e = {k : k Z}, Z o = {k+1 : k Z}, Z = Z o Z e, d o x = distx,z o, d ex = distx,z e, ad px = PX dx/dx. Tis coice also affects te fuctios q = q,, ad =,, defied i 4.5 ad 4.16, respectively. I particular, Propositio 4.5 implies tat qx = PL eve X = x, x / Z. For te mai result of tis subsectio, recall tat ε loc t,x = E[gx +X τj gx +X ]. 18

19 Corollary Let N. Suppose tat te fuctio g GBV exp admits te represetatio.7 ad tat β is as i.8. Te, uder Assumptio 4.1, tere exists a costat C > suc tat for all t,x [,T, ε loc t,x C T T t k eβ x +5β σ T, t [t k,t k+1, k <. Proof. Let γ = βσ T. Propositio 4.11 ad te relatio σ 1/ = 1/ ε loc t,x C γ e β x e β y d µ y+ i N:x i x Z e imply tat α i e β x i, were te coefficiet C γ > implied by 4.37 ca be estimated usig 4.1 as follows: [ ] 7 C γ = e 3β e β σ T/ + 3C4. β,, π [ e 3γ/ eγ /+3γ/ 46e γ +4γ. / 1 eγ + 3 e γ/ e γ ] 1 γ +e 4γ/ e γ +3γ/ eγ Sice T = T t k for t [t k,t k+1 by.5, we obtai te desired result. 4.4 O te sarpess of te rate for te classgbv exp Te followig lemma idicates tat te rate 1/ for te class GBV exp is sarp. Propositio Uder Assumptio 4.1, tere exists a fuctio g GBV exp suc tat < limif 1/ ε, limsup 1/ ε, < Proof. For simplicity, let T = σ = 1 ad g := 1 [,. Te = 1/, g GBV exp, ad te locatio of te jump of g belogs to te set Z e for all N. Observe tat te εadj, = by Propositio 3.3 ad ε glob, C 1 by Propositio 5.3 below, were C > is some costat. Cosequetly, it suffices to sow tat 4.45 is valid for te local error ε loc,; recall.1. Te expressio 1/ ε loc, is bouded from above by Corollary For te lower boud, we ote tat by Defiitio 4.1, Π e 1 [, x = 1 x+ 1[, x, Π o Π e 1 [, x = 1 x+3 4 1[ 3, x, x. Cosequetly, for, = 1/,1, Propositio 4. ad relatio 4.11 yield ε loc, = E[ Π e 1 [, W 1 1 [, W 1 ] +E [ Π o Π e 1 [, W 1 Π e 1 [, W 1 qw 1 ] x+ [ ] x+3 x+ = pxdx+ 4 1 [,x+1 [, x qxpxdx = p 3 x+ 1 qxpxdx+ x+ 1 qxdx 3 x+3 4 qxpxdx+ x 4 qxpxdx by te symmetry of te fuctios p > ad q [, 1]. Moreover, relatios 4.6 wit k =, 4.7, ad 19

20 te symmetry of imply tat for x,, 1 qx = 1 d ox x d ex Hece, tere exist costats C 1,C > ot depedig o suc tat ε loc, p x x 6+. x+ x dx 6+ x+ [ p dx C 1 C + ] p. Te relatio = 1/ te implies tat limif 1/ ε loc, C 1 p >. emark I [1, Propositio 9.8] it is stated tat te rate for te local error is i.e. 1/ istead of i.e. 1 weever te termial coditio g as a discotiuity at a o-lattice poit x / Z. By cotrast, Propositio 4.11 implies tat oly te jumps tat occur at eve lattice poits cotribute to te error. Tis discrepacy is a result of te coice of differet step fuctios: I [1], oly step fuctios of te te type 1 [a, :=1 a, {a} are cosidered. 4.5 Te local error forg C,α exp A fuctio g : is called locally α-hölder cotiuous write g C,α loc, if for eac compact K gx gy sup x,y K, x y x y α <. Te class Cexp,α see Defiitio.1 cosists of all locally α-hölder cotiuous fuctios wit expoetially bouded Hölder costats i te sese of.6. I fact, Cexp,α C,α loc B exp,α,1], ad tis iclusio is strict at least for α = 1: Te fuctio fx = sie x 1 belogs toc,1 loc B exp, wereas f / Cexp,,1 sice f / B exp. ecall tat p = p, deotes te desity of X ad tat ε loc, g = E[gX τ J gx ]. Propositio Let,,,T]. Suppose tat g C,α exp ad tat A,β are as i.6. Te, for g x = gx +, werex, it olds tat E[gx +X τj gx +X ] 3+α α Ae β+β x +β σ /. Proof. Te property g Cexp,α implies tat bot g ad g x belog tob exp, ad ε loc, gx E Π e g x X g x X +E Π o Π e g x X Π e g x X 4.46 olds by Propositio 4.. Moreover, weever x [k,k+] for some k Z, Π e g x x g x x k+ x g x k g x x + x k g x k+ g x x α α Ae β x +β+β x sice g C,α exp ad k k+ + x. Sice E [ e β X ] e β σ /, E Π e g x X fx α α Ae β x +β k= k+ k e β x pxdx 1+α α Ae β x +β+β σ /. 4.47

21 To estimate te remaiig expectatio o te rigt-ad side of 4.46, observe tat if y, z [m,m+] for somem Z, te it olds tat Π e g x y Π e g x z = z y gx m z y gx m+ Terefore, for x [k,k+] wit k Z, by 4.48 it olds tat Π o Π e g x x Π e g x x α α Ae β x + m m = k+1 x Π e g x k 1 Π e g x x + x k 1 Π e g x k+1 Π e g x x k+1 x Ae β x [ e β k k +e β k k+ ] α α + x k 1 Ae β x + k k+ α α α+1 α Ae β x + k k+. Usig te symmetry i k of tis upper boud, we obtai E Π o Π e g x X Π e g x X k+ α+ α A e β x + k k+ pxdx k= k α+ α Ae β x +β k= k+ k e βx pxdx α+ α Ae β x +β+β σ / Te claim follows by applyig te estimates 4.47 ad 4.49 to Corollary Let N. Suppose tat g C,α exp ad tat β is as i.6. Te, uder Assumptio 4.1, tere exist a costat C > suc tat for all t,x [,T, ε loc t,x Cσ α T α/ α/ e β x +β σ T. Proof. Sice = σ T σ T 4.17 implies te result. ad εloc t,x = ε loc, g x by Assumptio 4.1 ad.1, Propositio 5 Te global error Our aim is to derive a upper boud for te global error ε glob t,x = E[gx +X τ gx +X τj ] defied i.11, wereg is a expoetially bouded Borel fuctio adx τk k=,1,... is te radom walk cosidered i Subsectio.1. For tis purpose, we eed a collectio of estimates related to te beavior of te radom walk X τk ad te stoppig time J. A part of tese are give i tis sectio, wile te more ivolved oes are treated later i Sectio 6. 1

22 Note: Te Assumptio 4.1 is take as a stadig assumptio trougout Sectio 5. ecall te defiitios of ad give i.4. ecall also tat J ω = if{m N : τ m ω > } as was defied i.9. A result similar to te lemma below was proved i [1, Corollary 11.4]. Lemma 5.1. For ay b, it olds tat i E [ e b Xτ ] e b σ T/, 5.1 ii E [ e b Xτ J ] e bσ T+b σ T/. 5. Proof. i: SiceX τ = k=1 X τ k, were X τk k=1,,... is a sequece of i.i.d. radom variables wit P X τk = ± = 1/ for = σ T see Subsectio.1, E [ e b Xτ ] E [ ] e bxτ = E [ ] e b Xτ 1 = cosb e b / e b σ T/ by te iequality cosx e x /, x. ii: Firstly, observe tat by te defiitio of J we ave X τj X. Secodly, sice for a stadard ormal Z radom variable it olds tat E [ e u Z ] e u / u, E [ e b Xτ J ] E [ e b Xτ J X +b X ] e b E[e bσ Z ] e bσ T+b σ T/. I Propositio 5., we preset more upper bouds wic are used to estimate te global error. Propositio 5.. i Suppose tat p, g B exp, ad tat b is as i 3.1. Te tere exists a costat C p > suc tat for all x, [ Xτ sup E pgx σ +X τ ] C p e b x +b σ T. 5.3,t N [,T Moreover, for every p > tere exists a costat C p > suc tat ii iii sup,t N [,T sup,t N [,T p P X τ / > 3/5 Cp, 5.4 p P J > 3/5 Cp. 5.5 Proof. i: Observe tat S := X τ = σ 1 σ k=1 d 1 X τk = were ξ i i=1,,... is a i.i.d. ademacer sequece see Subsectio.1. Hece, k=1 E [ e ts ] = cos t e t / = e t /, t. Cosequetly, by te symmetricity of S ad Markov s iequality, P S > t = P e ts > e t e t E [ e ts ] e t /, t >, ξ i,

23 ad tus, uiformly i,t, for p >, E S p = p t p 1 P S > tdt p t p 1 e t / dt := C p <. 5.6 Hölder s iequality, 5.6, ad 5.1 te imply tat [ E S p gx +X τ ] Ae b x E S p1 E [ e b Xτ ]1 A C 1 p e b x +b σ T. Tis proves 5.3 for p >, ad te case p = ca be see from te last lie as well. ii: Sice = σ, by Markov s iequality ad 5.6 we obtai P X τ / > 3/5 = P S > 1/1 E S q q/1 C q q/1 5.7 for all q >. Coose q 1p ad multiply bot sides of 5.7 by p to obtai 5.4. iii: For every K >, Markov s iequality ad Propositio 6.11 below imply tat P J > 3/5 E J K 3K/5 C K K/1 5.8 for some costat C K >. For givep >, it remais to coose K 1p ad multiply bot sides of 5.8 by p. For te mai result of tis sectio, recall tat ε glob t,x = E[gx +X τ gx +X τj ]. Te proof of te mai result of tis sectio follows closely te proof of [1, Teorem 8.1]. Propositio 5.3. Let N. Suppose tat g B exp ad tat b is as i 3.1. Te tere exists a costat C > suc tat for all t,x [,T, ε glob t,x CT T t k eb x +3b σ T, t [t k,t k+1, k <. 5.9 Proof. Defie a set Γ := { Xτ / J 3/5 } 5.1 ad decompose te error ε glob t,x ito te sum of expectatios E 1 ad E, were E 1 := E[gx +X τ gx +X τj ;Γ ], E := E[gx +X τ gx +X τj ;Γ ] Usig te estimates of Lemma 5.1 ad Propositio 5., it ca be sow tat E C 3/ e b x +b σ T+bσ T 5.1 for some costat C > ; tis is doe i Lemma A.3 i. Estimatio of E 1 requires more subtlety. Deote te probability mass fuctios of X τ +k / ad J by P +kx := PX τ +k = x ad PJ x := PJ = x, x Z By Lemma A.3ii, tere exists a costat C 1 > suc tat E 1 k= k gx +xp J kp x 3k +4kx x= 8 + 3k x 4 3 k x C 1 3/ e b x +b σ T

24 Next, we use relatio A.4 i order to rewrite te double sum o te rigt-ad side of 5.14 as E 3 := k= = 1 { 1 E [ gx +X τ k gx +xp J kp x x= 3k +4kx 8 ]E[J ] 3 [ ] 8 E gx +X τ E J + 3k x 4 3 k x E[ X τ gx σ +X τ ] E[J ]+ 3 4 E[ X τ gx σ +X τ ] E J 1 [ 8 E Xτ ] } 4gx σ +X τ E J = 1 [ ] {E 1 gx +X τ E[J ] 3 8 E J +E [ X τ gx σ +X τ ] 3 4 E J 1 E[J ] ] 1 8 E [ Xτ σ 4gx +X τ E J } By Propositio 6.5, tere exist costats c 1,c > suc tat E[J ] 4 3 c 1 E [ J ] c, ad tus 3 1 E[J ] 3 8 E J 5 c 1 +c, E J 1 E[J ]+ 1 c 1 +c. 6 ad 1 8 E J 1 c 1 ad Cosequetly, by 5.15 ad 5.3, tere exist costats C, C 3 > suc tat E 3 5 [ ] E + 1 [ E Xτ gx gx +X τ σ +X 1 6 τ ] E [ Xτ σ 4gx +X τ ] + C e b x +b σ T 3/ C 3 e b x +b σ T + C e b x +bσt 3/ To complete te proof, it remais to observe tat 3/ 1 1, to combie 5.11, 5.1, 5.14, ad 5.16, ad to recall tat T = T t k for t [t k,t k+1. 6 Momet estimates for te stoppig time J I tis sectio we preset momet estimates for te radom variable J = if{m N : τ m > } itroduced i.9, wic are used for te estimatio of te global error i Sectio Estimates for te first ad te secod momet ofj Te purpose of tis subsectio is to provide estimates for te first ad te secod momet of te radom variable J. We begi by derivig a estimate for te expectatio E[τ J ] ad te use martigale 4

25 teciques to obtai estimates for E[J ] ad for EJ. Te results of tis subsectio are closely related to [1, Propositio 11.]. ecall te radom times J = if{m N : τ m > } ad L = sup{m N : τ m < } defied for eac,,,t] i 4. ad 4.4. ecall also te fuctios q,d o,d e, ad, defied i 4.1, 4.3, ad 4.16, respectively. Propositio 6.1. Suppose tat,,,t]. Te i E[τ J F ] = σ d ox P-a.s. o{l odd}, ii E[τ J F ] = σ d e X P-a.s. o {L eve}, iii E[Jτ J ] E[τ 1 ]E[J] [,], iv E[τ J X = x] = σ d o x 1 qx +σ d e xqx Leb-a.e. o. Proof. Items i, ii, ad iv are proved i [1, p. 348 ad p. 356]. For te coveiece of te reader, we give te geeral idea for te proof of tese statemets. i ii : For all k Z, let A k+1 := {X τl = k+1} ad B k = {X τl = k}. Te Markov property of X t t implies tat P-a.s o A k+1, E[τ J F ] = σ k X k+ X = σ d e X +d o X = σ d o X. A similar observatio applies toii by first writig τ J = τ J τ J 1 +τ J 1 o B k, sice P-a.s. o B k, τ J 1 = if{t : X t / k 1,k+1}, ad τ J = if { t τ J 1 : Xt X τj 1 = }. iii : Sice J isf -measurable, E[Jτ J ] = E[JE[τ J F ]]. Byi ad ii, E[τ J F ]1 {L odd} = σ d o X 1 {L odd} P-a.s., ad E[τ J F ]1 {L eve} = σ d ox 1 {L eve} +σ d o X 1 {L eve} P-a.s., were we used te equality d ex = d o x,x. Cosequetly, σ E[Jτ J ] = E [ J d o X ] +E[Jd o X 1 {L eve} ] E [ J d ox /+d o X ]. Sice d o [,], E[τ 1 ] = /σ, ad J, te lower boud is clear. For te upper boud, it suffices to furter observe tat x /+x for x [,]. iv : By te tower property of te coditioal expectatio ad items i ad ii, P-a.s, ] X E[τ J X ] = E [E[τ J F ]1 {L odd} +E[τ J F ]1 {L eve} = σ d o X PL odd X +σ d e X PL eve X. Moreover, qx = PL odd X = x = 1 PL eve X = x o \Z by 4.11, ad te claim follows. Lemma 6.. Suppose tat Assumptio 4.1 olds. Te for all,t N [,T, E[ ] τ J 4 T 3 67 T

26 Proof. For eac,,,t], defie I 1, := σ px d o x 1 qxdx, 6. I, := σ px d ex qxdx. 6.3 Te, by Propositio 6.1iv, it olds for Leb-a.e. x tat E[τ J ] = E[τ J X = x]pxdx = I 1, +I,. By Lemma 6.4 below ad by te fact tat σ = T ad σ = 1 1, te left-ad side of 6.1 is bouded from above by I 1, 5 1σ + I, 11 1σ π σ σ 4 67 T. Te estimate below will be used i te proof of Lemma 6.4. Lemma 6.3. Let,,,T] ad deote byp = p, te desity of X = σw. Te m= Proof. By te symmetry of te Gaussia desity p, it olds tat S := m= I additio, sice p is decreasig o[,, 3 pxdx = m=1 wic togeter wit 6.5 implies tat pm π σ. 6.4 pm+1 = 4p + m+3 m+1 pxdx 4p pxdx pm m=1 pm+1 m=1 pxdx S 3 3 pxdx, pxdx 4p. 6.6 For eac β >, te mea value teorem implies tat for a costat ξ = ξ, σ,, β β, β we ave ad 6.4 te follows by 6.6. β πσ pxdx = β β β e x σ dx = βe ξ σ, Lemma 6.4. Let,,,T]. Te, for I 1 ad I defied i , it olds tat i ii I 1, 5 1 I, 11 1 σ σ π σ σ 4, π σ σ 4. 6

27 Proof. i: Sice1 qx = 1 d o x x for x by te defiitio of, ad sice Dx := d ox 1 d o x, x, is symmetric, periodic wit period, ad symmetric aroud o [, ], we may decompose te itegral I 1 = I 1, ito I 1 = S 1 +S +S 3, were S 1 := σ S := σ S 3 := σ pm+1 m= m+ m= m m+ m= m A stadard calculatio yields Dxdx = 5 3 /6, ad tus S 1 = 5 1 σ m= Dxdx, px pm+1 Dxdx, px d ox xdx. pm+1 = 5 1σ + 5 1σ m= pm Hece, by applyig te estimate 6.4 to te rigt-ad side of 6.7, we obtai S 1 5 1σ 5 3 π σ I order to estimate S, otice tat for eac iteger k, k+1 k Dxdx = Dxdx = 1 d ox By te symmetricity ad te mootoicity properties ofp, we tus obtai S σ m= m+1 m 1 d ox px pm+1 Dxdx σ pm pm+1 3 σ m= m+1 m= m x σ pxdx Dxdx dx 3. π 3 σ A similar computatio yields te lower boud π 3 σ 3 for S, ad cosequetly, S π 3 σ It remais to estimate S 3. Usig te iequality d ox ad estimates 4.17 ad 4.18 of Propositio 4.7, we ave 7

28 S 3 = 1 σ m= m+ m px d o x xdx σ x pxdx 163 σ σ Te claim te follows by applyig 6.8, 6.1, ad 6.11 to te rigt-ad side of te estimate below, I 1, 5 1 S1 σ 5 + S 1σ + S 3. ii: Te proof is similar to te proof of item i, ad tus we omit most of te details. We write qx = 1 d o x+ x, let ad decompose I = S 4 +S 5 +S 6, were S 4 := σ S 5 := σ S 6 := σ Hx := d e x 1 d o x, x, pm+1 m= m+ m= m m+ m= m Hxdx, px pm+1hxdx, px d ex xdx. Te fact tat Hxdx = ad iequality 6.4 yield te estimate S σ 11 3 π σ By te properties of H, for eac iteger k, it olds tat k+1 k Hxdx = Hxdx = ad by proceedig as i 6.9 witd replaced by H, it is easy to verify tat Fially, sice d ex, by 6.11 we obtai d ox do x dx 3, S 5 4 π 3 σ S 6 S 3 33 σ σ Te triagle iequality togeter wit 6.1, 6.13, ad 6.14 te implies ii. Propositio 6.5. Suppose tat Assumptio 4.1 olds. Te tere exists a costat C > suc tat for all,t N [,T, i E[J ] , ii E J 3 C. 8

29 Proof. i: Defie a process M k k=,1,... by settig M k := τ k ke[τ 1 ] for k. Sice τ k = k j=1 τ j is a sum of k i.i.d. radom variables τ j distributed as τ 1, te process M k k=,1,... is a F τk k=,1,... - martigale. I additio, sice J is a F τk k=,1,... -stoppig time ad sice J N is a bouded stoppig time for all N N, te optioal stoppig teorem implies tat = E[M N ] = E [ E [ M N F τj N ]] = E[MJ N] = E[τ J N] E[J N]E[τ 1 ], i.e. E[J N] = E[τ J N]/E[τ 1 ]. Moreover, sice N τ J N is icreasig, were τ J is a itegrable upper boud by Lemma 6., te mootoe covergece teorem implies tat E[J ] = lim E[J E[τ J N] N] = lim = E[τ J ] < N N E[τ 1 ] E[τ 1 ] From E[τ 1 ] = = T σ see. we coclude tat E[τ 1 ] E[J ] 4 3 = E[τJ ] 4 T 3, ad te claim te follows by Lemma 6.. ii: Let ζ := + if{t : X t+ X = }. Te by te Markov property ad te scalig property of X t t, ζ d = if{t : Xt = } d = if { t : X t/4 = } d = 4τ1. Sice Pτ J ζ = 1 ad E[τ1 ] = = 5 T σ 4 3 by., it also olds tat By te defiitio of te process M k k=,1,..., Eτ J Eζ = 16E[τ 1] = 8 3 E[M J ] = Eτ J J E[τ 1 ] = E[τ J ] E[J τ J ]E[τ 1 ]+E[J ]E[τ 1]. T Moreover, sice E[J ] <, Wald s secod idetity applies ad tus E[MJ ] = E[J ]Var[τ 1 ]. cosequece, sice Var[τ 1 ] = 3 E[τ 1] ad E[τ J ] = E[τ 1 ]E[J ] by 6.15, As a E[J ] = E[J ]Var[τ 1 ] E[τ 1 ] + E[J τ J ] E[τ J ] E[τ 1 ] E[τ 1 ] = 3 E[J ]+ E[J τ J ] E[τ 1 ] Eτ J E[τ 1 ] + E[J ] E[τ J ]/E[τ 1 ] E[τ 1 ] = 3 E[J ]+ E[J τ J ] E[τ 1 ] + E[τ 1 ] Eτ J E[τ 1 ] Deote α := E[J τ J ], β := Eτ J E[τ 1 ]E[J ] E[τ 1 ] ad γ := E[J ] 4 3, 6.18 ad observe tat α [,4],β [,8/3], ad γ [, 67 ] by Propositio 6.1 iii, 6.16, ad item i, respectively. I additio, by 6.17, EJ = E[J ] E[J ]+ 9

30 = E[J ] 3 +α β + = α +γ 3 +α β + = α α +γ 3 +α β. I particular, usig te above upper bouds for α,β, ad γ, ad te fact tat, α E J C for some costat C 1 >. Notice tat τ J P-almost surely by te defiitio of J. Terefore, by 6.15, it olds tat E[τ 1 ]E[J ] = E[τ J ], wic yields α 3 = E[J τ J ] 4 E[τ 1 ]E[J ] 3 = E[τ J ]+E[J τ J ] 4 E[τ 1 ]E[J ] 3 E[τ 1]E[J ] E[τ J ] 4 3 E[τ J ] +E J τ J. 6. By te relatio = T ad Lemma 6., E[τ J ] 4 3 E[τ J ] = E[τ J ] 4 T E[τ J ] E[τ J ] 4 T E[τ J ] 67 T T T = C for a costat C >. Moreover, by Hölder s iequality, 6.3, ad 6.16, E J τ J EJ Eτ J 1/ C3 T = C 3 6. for some costat C 3 >. Cosequetly, by 6.19, 6., 6.1, ad 6., it olds tat E J 3 = E J α + α 3 C, were C = C 1 +C +C 3 >. emark 6.6. I te proof of [1, Propositio 11.], a expressio for α i 6.18 is give based o te relatio E[J τ J ] = E[J ]E[τ J ]. 6.3 However, we were ot able to verify 6.3, ad tus ad to use a estimate for α istead. 3

31 6. Tail beavior ofτ adj Lemma 6.7. Uder Assumptio 4.1, suppose tat N ad a costat ξ > are suc tat ξ N. Te for every ρ, π 1 ξ it olds tat i P τ ξ ξ > ρ exp 3 ρ 3ρ ξh ξ, 6.4 ii P τ ξ ξ < ρ exp 3 ρ 3ρ ξ, 6.5 were ξ H H :,π/ is give by Hx := 1+ 6 x 4 x +logcosx. 6.6 emark 6.8. Te above estimates are o-trivial oly weever H is positive. Sice H+ = 1/, it olds tat Hx > for small eoug x. Notice tat te coditio ρ, π 1 ξ esures tat 3ρ ξ,π/, wic is te domai ofh. Proof of Lemma 6.7. Te proof uses ideas from te proof of [1, Propositio 11.3]. i: By Cebysev s iequality, for ay λ, ρ > it olds P + ρ := P e λ τ ξ ξ > ρ = P τ ξ ξ > e λ ρ [ e λ ρ E e λ ] τ ξ ξ = e λ ρ e λ ξ E[e λ τ 1 ] ξ 6.7 sice τ ξ ca be writte as a sum of ξ idepedet radom variables idetically distributed as τ 1 see Subsectio.1. I additio, sice σ = T ad = T, by.1 e λ ρ e λ ξ E[e λ ξ λ τ 1 ] ξ = e λ ρ λ e cos 6.8 provided tat λ, π 8T. Let ρ, π 1 ξ ad defie λ := 3ρ ξ ad κ := 3ρ ξ ; 6.9 te λ, π 8T. Substitute ρ,λ = ρ, λ ad use te relatio κ = λ i order to rewrite te rigt-ad side of 6.8 i terms of ρ,λ,κ,ξ: e λ ρ e λ cos ξ λ = e λρ 4λ e κ / ξ κ cosκ Hece, by 6.7, 6.8, 6.3, ad fially by 6.9, logp + ρ λρ 4λ ξ κ κ 4 +logcosκ = 3 ρ ξ 1+ 6 κ 4 κ +logcosκ so tat P + ρ exp 3 ρ ξhκ i terms of H defied i 6.6. ii: By Cebysev s iequality, for ay λ, ρ > it olds tat P ρ := P τ ξ ξ < ρ = P e λ τ ξ ξ > e λ ρ 31

32 e λ ρ e λ [ ξ E e λ ] ξ τ ξ = e λ ρ e λ cos λ, by.1. Proceed as ii wit te same substitutio ρ, λ = ρ,λ for ρ, π 1 ξ adλgive by 6.9 to get as te couterpart of 6.3, e λ ρ e λ ξ cos λ = e λρ e κ cos 3ρ ξ Similarly as i i, oe te sows tat P ρ exp Ĥx := x x 4 +logcosx 3 ρ ξ 4λ ξ κ 4. Ĥ 3ρ ξ i terms of te fuctio o,π/. It remais to sow tat Ĥ H o,π/. Sice Ĥx Hx = 6x 4 x +logcosx logcosx it suffices to sow tat First, ϕ x = x+tax+tax. Secodly, ϕ x = + ϕx := x +logcosx logcosx cos x + 1 cos x = cos x+cos x cos xcos x cos xcos x > cosx cosx cos xcos x sice cosxcosx < 1 for x,π/. Hece, ϕ is icreasig o,π/, ad sice it also olds tat ϕ + = = ϕ+, 6.31 follows. We cotiue wit te tail estimate for J. Te result resembles iequality 4 i [1], but te timedepedet settig causes some cages. π Lemma 6.9. Uder Assumptio 4.1, suppose tat N, δ,, ad let H be as i π Te i PJ > 1+δ exp ii PJ < 1 δ exp 3 δ 3 δ 1+δ H 1 δ H 3δ 1+δ 3δ 1 δ > if 1+δ N, if 1 δ N. Proof. Fix N, δ, π 1+π, ad let ρ := δ. For i, let ξ := 1 + δ ad suppose tat 1+δ = ξ N. Te PJ > ξ = Pτ ξ < = P τ ξ ξ < ρ exp 3 ρ ξh 3ρ ξ by 6.5, sice te coice ofδ esures tat te pairξ,ρ satisfies te assumptios of Lemma 6.7. To sow ii, let ξ := 1 δ ad suppose tat 1 δ = ξ N. Te by 6.4, PJ < ξ = Pτ ξ > = P τ ξ ξ > ρ exp 3 ρ ξh sice te pair ξ,ρ satisfies te assumptios of Lemma 6.7 due to te coice of δ. 3ρ ξ 6.3 Momet estimates for te differece J For te coveiece of te reader, we recall see e.g. [, Teorem 14.1] a versio of te Azuma Hoeffdig iequality, wic will be applied below. 3

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction Supplemet to A theoretical framework for Bayesia oparametric regressio: radom series ad rates of cotractio A Proof of Theorem 31 Proof of Theorem 31 First defie the followig quatity: ɛ = 3 t α, δ = α α

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators Higer Order Properties of Bootstrap ad Jackkife Bias Corrected Maximum Likeliood Estimators Jiyog Ha Brow Uiversity Guido Kuersteier MIT Marc 5, 2002 Witey Newey MIT Abstract Pfazagl ad Wefelmeyer (978)

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ

Διαβάστε περισσότερα

Lecture 3: Asymptotic Normality of M-estimators

Lecture 3: Asymptotic Normality of M-estimators Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,

Διαβάστε περισσότερα

Digital Signal Processing: A Computer-Based Approach

Digital Signal Processing: A Computer-Based Approach SOLUTIOS AUAL to accopay Digital Sigal Processig: A Coputer-Based Approac Tird Editio Sait K itra Prepared by Cowdary Adsuilli, Jo Berger, arco Carli, Hsi-Ha Ho, Raeev Gadi, Ci Kaye Ko, Luca Luccese, ad

Διαβάστε περισσότερα

Proof of Lemmas Lemma 1 Consider ξ nt = r

Proof of Lemmas Lemma 1 Consider ξ nt = r Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =

Διαβάστε περισσότερα

The Equivalence Theorem in Optimal Design

The Equivalence Theorem in Optimal Design he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.

Διαβάστε περισσότερα

Adaptive Covariance Estimation with model selection

Adaptive Covariance Estimation with model selection Adaptive Covariace Estimatio with model selectio Rolado Biscay, Hélèe Lescorel ad Jea-Michel Loubes arxiv:03007v [mathst Mar 0 Abstract We provide i this paper a fully adaptive pealized procedure to select

Διαβάστε περισσότερα

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, ) Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL

Διαβάστε περισσότερα

Three Classical Tests; Wald, LM(Score), and LR tests

Three Classical Tests; Wald, LM(Score), and LR tests Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad

Διαβάστε περισσότερα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

1. Introduction. Main Result. 1. It is well known from Donsker and Varadhan [1], the LDP for occupation measures. I(ξ k A) (1.

1. Introduction. Main Result. 1. It is well known from Donsker and Varadhan [1], the LDP for occupation measures. I(ξ k A) (1. LAGE DEVIATIONS FO OCCUPATION MEASUES FO MAKOV POCESSES (discrete time, o compact case). LIPTSE Electrical Egieerig-Systems, Tel Aviv Uiversity, 69978 - amat Aviv, Tel Aviv, ISAEL ad Istitute for Problems

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent Supplemetary Materials: Tradig Computatio for Commuicatio: istributed Stochastic ual Coordiate Ascet Tiabao Yag NEC Labs America, Cupertio, CA 954 tyag@ec-labs.com Proof of Theorem ad Theorem For the proof

Διαβάστε περισσότερα

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

Supplemental Material to Comparison of inferential methods in partially identified models in terms of error in coverage probability

Supplemental Material to Comparison of inferential methods in partially identified models in terms of error in coverage probability Supplemetal Material to Compariso of iferetial methods i partially idetified models i terms of error i coverage probability Federico A. Bugi Departmet of Ecoomics Duke Uiversity federico.bugi@duke.edu.

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

Dimension-free PAC-Bayesian bounds for matrices, vectors, and linear least squares regression.

Dimension-free PAC-Bayesian bounds for matrices, vectors, and linear least squares regression. Dimesio-free PAC-Bayesia bouds for matrices vectors ad liear least squares regressio Olivier Catoi ad Ilaria Giulii December 31 2017 Abstract: This paper is focused o dimesio-free PAC-Bayesia bouds uder

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Inertial Navigation Mechanization and Error Equations

Inertial Navigation Mechanization and Error Equations Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 311: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 016 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα, Αλγόριθμοι και Πολυπλοκότητα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 3: ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 3: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 06 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα,

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time Moder Applied Sciece September 8 Steady-state Aalysis of the GI/M/ Queue with Multiple Vacatios ad Set-up Time Guohui Zhao College of Sciece Yasha Uiersity Qihuagdao 664 Chia E-mail: zhaoguohui8@6com Xixi

Διαβάστε περισσότερα

A note on a conjecture of Calderón

A note on a conjecture of Calderón A ote o a cojecture of Calderó Jiecheg CHEN & Xiagrog ZHU Dept of Math Xixi Campus), Zhejiag Uiversitry Abstract For f SR ) ad Ω L 1 S 1 ), S 1 Ωx )dx = 0, defie T Ω f)x) = lim ɛ 0+ x y ɛ Ωy/ y ) y fx

Διαβάστε περισσότερα

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE ECE 6382 Fall 2017 David R. Jackso Notes 21 Bessel Fuctio Examples Notes are from D. R. Wilto, Dept. of ECE Note: j is used i this set of otes istead of i. 1 Impedace of Wire A roud wire made of coductig

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Non Parametric

Αναγνώριση Προτύπων. Non Parametric Γιώργος Γιαννακάκης No Parametric ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Probability Desity Fuctio If the radom variable is deoted by X, its probability desity fuctio f has the property that No Parametric

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

Gauss Radau formulae for Jacobi and Laguerre weight functions

Gauss Radau formulae for Jacobi and Laguerre weight functions Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Large Deviations for Stochastic Systems with Memory

Large Deviations for Stochastic Systems with Memory Souther Illiois Uiversity Carbodale OpeSIUC Articles ad Preprits Departmet of Mathematics 7-6 Large Deviatios for Stochastic Systems with Memory Salah-Eldi A. Mohammed Souther Illiois Uiversity Carbodale,

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

HARDY AND RELLICH INEQUALITIES WITH REMAINDERS

HARDY AND RELLICH INEQUALITIES WITH REMAINDERS HARDY AND RELLICH INEQUALITIES WITH REMAINDERS W. D. EVANS AND ROGER T. LEWIS Astract. I this paper our primary cocer is with the estalishmet of weighted Hardy iequalities i L p () ad Rellich iequalities

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Certain Sequences Involving Product of k-bessel Function

Certain Sequences Involving Product of k-bessel Function It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1. Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li

Διαβάστε περισσότερα