DETERMINAREA COEFICIENTULUI DE COMPRESIBILITATE ȘI A MODULULUI DE ELASTICITATE PENTRU LICHIDE
|
|
- Ευρυδίκη Σπυρόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Lucrarea DETERMINAREA COEFICIENTULUI DE COMPRESIBILITATE ȘI A MODULULUI DE ELASTICITATE PENTRU LICHIDE. Consderaț teoretce Una dntre caracterstcle defntor ale fludelor este capactatea acestora de a sufer modfcăr ale volumulu atunc când, datortă modfcăr condțlor exteroare, apar varaț ale presun sau ale temperatur. Compresbltatea este propretatea fludelor care constă în reducerea volumulu acestora determnată de creșterea presun. Dn punct de vedere al propretăț de compresbltate, dferența dntre lchde ș gaze este una semnfcatvă. Astfel, datortă structur moleculare dferte, la aceeaș varațe a presun, reducerea de volum sufertă de un gaz este mult ma mportantă decât cea sufertă de un lchd. Aprecerea canttatvă a compresbltăț unu lchd se face pe baza coefcentulu de compresbltate zotermă ß. Pentru defnrea coefcentulu de compresbltate zotermă se pornește de la constatarea expermentală a faptulu că în cazul lchdelor supuse une transformăr zoterme (efectuată la temperatură constantă), modfcarea de volum ΔV este proporțonală cu varața de presune Δp care determnă această modfcare precum ș cu volumul nțal al lchdulu V 0. Astfel, țnând cont de această constatare ș în conformtate cu notațle dn Fgura în care sunt prezentaț parametr care caracterzează starea nțală (a) ș starea fnală (b) a une mase de lchd supusă comprmăr zoterme în nterorul unu clndru cu pston coefcentul de compresbltate zotermă se defnește prn relața: V (.) p V unde: V 0 - reprezntă volumul ocupat de lchd în starea nțală; V=V-V 0 - reprezntă varața de volum, adcă cu cât s-a mcșorat volumul pe care îl are la dspozțe lchdul ca urmare a deplasăr cu L a pstonulu după ce asupra acestua s-a acțonat cu o forță F; p=p-p 0 - reprezntă creșterea presun dn clndru ca urmare a comprmăr lchdulu sub acțunea forțe F; 0
2 3 Prn ntroducerea în relața de ma sus a semnulu având semnfcața faptulu că la temperatură constantă, une creșter de presune ( p>0) î corespunde o scădere cu ( V<0) a volumulu nțal V 0, valorle coefcentulu de compresbltate zotermă vor f întotdeauna poztve. Fgura. Comprmarea zotermă a unu lchd Dacă forța F care a comprmat masa de lchd conțnută în clndrul cu pston îș încetează acțunea, volumul lchdulu revne la valoarea volumulu nțal, ceea ce arată că lchdele sunt nu doar compresble c ș elastce. Aprecerea canttatvă a elastctăț unu lchd se face pe baza modululu de elastctate a lchdulu ε, defnt prn relața: (.) Dacă în relața () dferențele fnte sunt înlocute cu dferențale, se obțne relața: dv dp (.3) V Unde: dp - repreznta cresterea elementara a presun necesara pentru a determna o reducere elementara dv a volumulu V, la o temperatura data. Coefcentul de compresbltate zoterma are dmensunea: LM T (.) dv V dp [ A] [ F] L LMT s untatle de masura: <> SI = m N n Sstemul Internatonal cm <> CGS = dyn n sstemul CGS. Modulul de elastctate are dmensunea:
3 N s untatle de masura: <ε> SI = m dyn <ε> CGS = cm V [ F] L [ dp] L MT (.5) dv [ A] LMT n Sstemul CGS n Sstemul Internatonal Valorle coefcentulu de compresbltate zoterma, respectv ale modululu de elastctate dfera de la un lchd la altul, s ε fnd marm fzce caracterstce fecaru lchd. Relata (.) de defnte a coefcentulu de compresbltate relefeaza s prncpul pe baza carua este posbla determnarea expermentala a valor acestu coefcent pentru un lchd. Astfel, nstalata expermentala trebue sa ofere posbltatea masurar reducerlor de volum V corespunzatoare unor crester p ale presun.. Obectvele lucrăr Prezentarea une metode de determnare a coefcentulu de compresbltate a unu lchd s aplcarea acestea n cazul comprmar unu ule hdraulc. Determnarea coefcentulu de elastctate al unu ule hdraulc..3 Metoda utlzată Masurarea varatlor de presune p s a varatlor de volum V determnate de acestea, n cazul une mase de lchd supuse une ser de transformar zoterme succesve atunc cand lchdul este comprmat n clndr cu peret rgz a une pompe hdraulce cu pston. Utlzarea relatlor de calcul prezentate n partea de consderat teoretce s a datelor rezultate n urma masuratorlor efectuate, n vederea determnar coefcentulu de compresbltate respectv al celu de elastctate ε al uleulu ca s mede artmetca ale valorlor coefcentlor de compresbltate respectv ale coefcentlor de elastctate ε calculat pentru fecare dn cele transformar (comprmar) succesve ale une mase de ule.. Descrerea aparatur Pentru determnarea coefcentulu de compresbltate a uleulu hdraulc, se foloseşte o pompa hdraulca cu pston, actonata manual prntr-un mecansm surub-pulta. In cazul pompe aflata n dotarea Laboratorulu de Mecanca Fludelor, lchdul poate f comprmat pana la o presune de 800 kgf/cm. Fgura permte dentfcarea elementelor componente ale aceste pompe.
4 Fgura.. Instalata expermentala pentru determnarea coefcentulu de compresbltate Pompa se compune dntr-un corp clndrc, cu peret gros s rgz, n nterorul carua are loc comprmarea lchdulu. Comprmarea lchdulu se realzeaza ca urmare a deplasar pstonulu 3 n nterorul clndrulu al pompe; prn ntermedul pstonulu se actoneaza asupra lchdulu cu o forta exteroara de compresune F. Deplasarea pstonulu, n sensul nantar ş retrager, se obtne prntr-un surub cu profl patrat, pus n mscare manual, prn rotrea manvele. Artculata dntre tja fletata s pston este realzata astfel ncat pstonul sa aba numa mscare de translate nu s de rotate. Etansarea dntre pston s clndru, se realzeaza cu un manson dn pele, sau un alt materal specal. Pentru masurarea presun lchdulu, se foloseste manometrul metalc 6, care se afla montat pe clndrul, ntre acestea aflandu-se robnetul 5. Pe conductele care leaga ce do clndr se afla montat rezervorul 7, n care se ntroduce lchdul supus masuratorlor. Almentarea cu lchd a celor do clndr de lucru, este asgurata prn ntermedul unu ventl cu ac 8. Toate aceste organe componente ale prese sunt montate pe un postament metalc, 9..5 Modul de desfășurare a lucrăr Procesul de comprmare a uleulu n clndr nstalate descrse ma sus se va desfasura n 5-6 etape successve. Fecare etapa repreznta defapt o transformare zoterma n care lchdul trece de la o stare caracterzata prn parametr (p -, V - ) la o alta, caracterzata prn parametr (p, V ). Valoarea lu se va stabl dupa o sere de 5-6 determnar ale valorlor acestor parametr, pentru presun varnd n ntervalul at. In tabelul de masurator, fecare etape ( = 6) corespunde o lne, n care sunt nregstrate valorle parametrlor ce caracterzeaza transformarea respectva.
5 6 A. Pregatrea nstalata expermentale n vederea efectuar masuratorlor: - se verfca daca lchdul destnat încercarlor este ntrodus în rezervorul 7. In caz contrar, se nchde ventlul 8, se rdca capacul rezervorulu s se ntroduce lchd n rezervor, astfel ncat o patrme dn naltmea lu sa ramana goala. - se trece la almentarea cu lchd a celor do clndr de lucru. In acest scop, se deplaseaza pstonul 3 înante, pana la refuz, dupa care se deschde ventlul 8 s robnetul 5. Prn rotrea manvele, n sens nvers acelor de ceasornc, pstonul se retrage n punctul posteror, ar lchdul dn rezervorul 7, patrunde s umple ce do clndr. B. Efectuarea masuratorlor s nregstrarea datelor: Volumul nteror al unu clndru este V 0 =50 cm 3. Aceasta valoare, care corespunde volumulu pe care l are la dspozte lchdul n starea ntala, nante de a se ncepe comprmarea sa, repreznta volumul ntal. Presunea p 0 la care se afla lchdul n starea ntala este ndcata de manometrul 6. Valorle p 0 s V 0 ale celor do parametr care caracterzeaza starea ntala a lchdulu se trec n tabelul de masurator n coloanele p - respectv V - ale prme ln dn tabel, corespunzatoare prme transformar zoterme =. Comprmarea lchdulu: a. Pentru determnarea parametrlor aferent prme transformar (=) se deschde ventlul 8, se actoneaza asupra manvele, efectuandu-se un numar de rotat n, astfel ncat la manometrul 6 sa se poata ct o presune p. Se va lasa nstalata n aceasta stare crca -3 mnute. Daca presunea p ramne constanta, masuratoarea este corecta, trecandu-se valoarea acestea n coloana p a prme ln dn tabel. In aceeas lne, n coloana n se va trece numarul de rotat ale manvele n. Daca presunea nu se mentne constanta, se verfca, n prmul rand, nchderea robnetulu 8. Ulteror masuratoarea trebue reluata. b. Pentru determnarea parametrlor aferent cele de a doua etape, (=), se mprma manvele, un numar de rotat n, corespunzator carora se va putea ct la manometrul 6, valoarea presun p. Se asteapta -3 mnute s daca valoarea presun p ramane constanta, se trec n lna a doua a tabelulu datele ctte. c. Pentru determnarea parametrlor aferent celorlalte etape ( =3 6) se repeta operatle descrse n pasul 3 a.
6 7.6 Prelucrarea rezultatelor Pentru fecare transformare zoterma, se calculeaza: Varata presun: p = p p - Varata de volum V ca fnd volumul dzlocat prn deplasarea pe o dstanta L a pstonulu cu dametrul D: ΔV πd L πd n h unde n repreznta numarul de rotat ale manvele la transformarea respectva h repreznta pasul fletulu surubulu. In cazul nstalate utlzate h = mm s D = cm Volumul fnal: V = V - V unde V - repreznta volumul ocupat de flud nante a face cele n rotat ale manvele aferente transformar. Coefcentul de compresbltate : Δp ΔV V Coefcentul de elastctate ε : ε In fnal, coefcentul de compresbltate zoterma ß respectv modulul de elastctate ε al lchdulu utlzat se determna ca mede artmetca a valorlor respectv ε : ε ε ;
7 8 Tabel Măsurător ș Rezultate Marm masurate Marm calculate Nr. Nr. Pres.nt. Pres. fn. Var. pres. Var. vol. Vol. nt. Vol. fn. ε ε transf. rotat p - p p V V - V n [N/m ] [N/m ] [N/m ] [m 3 ] [m 3 ] [m 3 ] [m /N] [N/m ] [m /N] [N/m ] Denumre Lchd:
Numere complexe. a numerelor complexe z b b arg z.
Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea
Διαβάστε περισσότεραDETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC
UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ BN - 1 B DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC 004-005 DETERMINAREA ACCELERAŢIEI
Διαβάστε περισσότεραa. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Διαβάστε περισσότεραAplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότεραDETERMINAREA EXPONENTULUI ADIABATIC LA GAZE Metoda balonului Clémènt-Désormes
Lucrarea IV DETERINAREA EXPONENTULUI ADIABATIC LA GAZE 4.. etoda balonulu Clémènt-Désormes Consderaţ teoretce Datortă compresbltăţ mar a gazelor exstă o deosebre sensblă între căldura specfcă la volum
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραDurata medie de studiu individual pentru această prezentare este de circa 120 de minute.
Semnar 6 5. Caracterstc geometrce la suprafeţe plane I 5. Introducere Presupunând cunoscute mecansmele de evaluare a stăr de efortur la nvelul une structur studate (calcul reacţun, trasare dagrame de efortur),
Διαβάστε περισσότεραLegea vitezei se scrie în acest caz: v t v gt
MIŞCĂRI ÎN CÂMP GRAVITAŢIONAL A. Aruncarea pe vertcală, de jos în sus Aruncarea pe vertcală în sus reprezntă un caz partcular de mşcare rectlne unform varată. Mşcarea se realzează pe o snură axă Oy. Pentru
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραCARACTERISTICI GEOMETRICE ALE SUPRAFEŢELOR PLANE
CRCTERSTC GEOMETRCE LE SUPRFEŢELOR PLNE 1 Defnţ Pentru a defn o secţune, complet, cunoaşterea are ş a centrulu de greutate nu sunt sufcente. Determnarea eforturlor, tensunlor ş deformaţlor mpune cunoaşterea
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότεραStatistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu
Statstca descrptvă (contnuare) Şef de Lucrăr Dr. Mădălna Văleanu mvaleanu@umfcluj.ro VARIABILE CANTITATIVE MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medana, Modul, Meda geometrca, Meda armonca, Valoarea
Διαβάστε περισσότεραLEC IA 1: INTRODUCERE
LE Lec\a.. Defnrea dscplne LE LEC IA : INRODUCERE Abrever: LE eora Lnear` a Elastct`\ NE eora Nelnear` a Elastct`\ MSD Mecanca Soldulu Deformabl RM Resten\a Materalelor MDF Metoda Dferen\elor Fnte MEF
Διαβάστε περισσότεραSTUDIUL INTERFERENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG
UNIVESITATEA "POLITEHNICA" DIN BUCUEŞTI DEPATAMENTUL DE FIZICĂ LABOATOUL DE OPTICĂ BN - 10 A STUDIUL INTEFEENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG 004-005 STUDIUL INTEFEENŢEI LUMINII CU DISPOZITIVUL LUI
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραCapitolul 4 Amplificatoare elementare
Captolul 4 mplfcatoare elementare 4.. Etaje de amplfcare cu un tranzstor 4... Etajul sursa comuna L g m ( GS GS L // r ds ) m ( r ) g // L ds // r o L ds 4... Etajul drena comuna g g s m s m s m o g //
Διαβάστε περισσότερα5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότεραCAP. 2. NOŢIUNI DESPRE AERUL UMED ŞI USCAT Proprietăţile fizice ale aerului Compoziţia aerului
CAP.. NOŢIUNI DESPRE AERUL UED ŞI USCAT... 5.. Propretăţle fzce ale aerulu... 5... Compozţa aerulu... 5... Temperatura, presunea ş greutatea specfcă... 5.. Aerul umed... 6... Temperatura... 7... Umdtatea...
Διαβάστε περισσότεραLaboraratorul 3. Aplicatii ale testelor Massey si
Laboraratorul 3. Aplcat ale testelor Massey s Bblografe: 1. G. Cucu, V. Crau, A. Stefanescu. Statstca matematca s cercetar operatonale, ed. Ddactca s pedagogca, Bucurest, 1974.. I. Văduva. Modele de smulare,
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότεραTEORIA GRAFURILOR ÎN PROBLEME SI APLICATII
UNIVERSITATEA DE STAT DIN MOLDOVA Facultatea de Matematca s Informatca Sergu CATARANCIUC TEORIA RAFURILOR ÎN PROBLEME SI APLICATII Chsnau 004 UNIVERSITATEA DE STAT DIN MOLDOVA Facultatea de Matematca s
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραUTILIZAREA OSCILATORULUI FLAMMERSFELD PENTRU DETERMINAREA EXPONENTULUI ADIABATIC AL GAZELOR
UILIZAREA OSCILAORULUI FLAMMERSFELD PENRU DEERMINAREA EXPONENULUI ADIABAIC AL GAZELOR 1. Scopul lucrăr Scopul aceste lucrăr este determnarea exponentulu adabatc al aerulu folosnd osclatorul Flammersfeld.
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότεραPRELEGEREA IV STATISTICĂ MATEMATICĂ
PRELEGEREA IV STATISTICĂ MATEMATICĂ I. Indcator de măsură a împrăşter Dstrbuţa une varable nu poate f descrsă complet numa prn cunoaşterea mede, c este necesar să avem nformaţ ş despre gradul der împrăştere
Διαβάστε περισσότεραCurs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότεραT R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :
Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet
Διαβάστε περισσότεραSubiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Διαβάστε περισσότεραPRELUCRAREA DATELOR EXPERIMENTALE
PRELUCRAREA DATELOR EXPERIMETALE I. OŢIUI DE CALCULUL ERORILOR Orce măsurare epermentală este afectată de eror. După cauza care le produce, acestea se pot împărţ în tre categor: eror sstematce, eror întâmplătoare
Διαβάστε περισσότερα5.1 Realizarea filtrelor cu răspuns finit la impuls (RFI) Filtrul caracterizat prin: 5. STRUCTURI DE FILTRE NUMERICE. 5.1.
5. STRUCTURI D FILTR UMRIC 5. Realzarea ltrelor cu răspuns nt la mpuls (RFI) Fltrul caracterzat prn: ( z ) = - a z = 5.. Forma drectă - - yn= axn ( ) = Un ltru cu o asemenea structură este uneor numt ltru
Διαβάστε περισσότεραEsalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότεραCursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate
Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs
Διαβάστε περισσότεραAsupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Διαβάστε περισσότεραValori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
Διαβάστε περισσότεραRĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Διαβάστε περισσότερα1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
Διαβάστε περισσότεραFig. 1.1 Sistem de acţionare în linie
. dnamca.. Introducere O clasfcare a sstemelor de acţonare electrcă a în consderare numărul de motoare raportate la sarcna de acţonat: - sstem de acţonare în lne reprezntă cea ma veche varantă. Sstemul
Διαβάστε περισσότεραSEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Διαβάστε περισσότεραFig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Διαβάστε περισσότεραLaborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
Διαβάστε περισσότεραΑκαδημαϊκός Λόγος Κύριο Μέρος
- Επίδειξη Συμφωνίας În linii mari sunt de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου Cineva este de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου D'une façon générale,
Διαβάστε περισσότερα3.5. Forţe hidrostatice
35 oţe hidostatice 351 Elemente geneale lasificaea foţelo hidostatice: foţe hidostatice e suafeţe lane Duă foma eeţilo vasului: foţe hidostatice e suafeţe cube deschise foţe hidostatice e suafeţe cube
Διαβάστε περισσότερα4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Διαβάστε περισσότερα5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
Διαβάστε περισσότερα2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότεραSeminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Διαβάστε περισσότεραELECTROTEHNICĂ. partea a II-a. - Lucrări de laborator -
Prof. dr. ng. Vasle Mrcea Popa ELECTOTEHNICĂ partea a II-a - Lucrăr de laborator - Sbu 007 CAP. 6 LCĂI DE LABOATO Lucrarea nr. 7 - Conexunea consumatorlor trfazaţ în stea I. Partea teoretcă n sstem de
Διαβάστε περισσότεραCurs 4 mine Starea de magnetizare. Câmpul magnetic în vid
Curs 4 mne 1.12 tarea de magnetzare. Câmpul magnetc în vd Expermental se constată că exstă în natură substanńe, ca de exemplu magnettul (Fe 3 O 4 ), care au propretatea că între ele sau între ele ş corpur
Διαβάστε περισσότεραCurs 10 TRANZISTOARE. TRANZISTOARE BIPOLARE
Curs 10 TRANZISTOARE. TRANZISTOARE IPOLARE CUPRINS Tranzstoare Clasfcare Prncpu de funcțonare ș regun de funcțonare Utlzarea tranzstorulu de tp n. Caracterstc de transfer Utlzarea tranzstorulu de tp p.
Διαβάστε περισσότεραSISTEME DE ACTIONARE II. Prof. dr. ing. Valer DOLGA,
SISTEME DE ACTIONARE II Prof. dr. ng. Valer DOLGA, Cuprns_3. Caracterstc statce. Stabltatea functonar ssteulu 3. Moent de nerte redus, asa redusa. 4. Forta redusa s oent redus Prof. dr. ng. Valer DOLGA
Διαβάστε περισσότεραSeminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότεραElemente de termodinamică biologică
Bofzcă Elemente de termodnamcă bologcă Captolul V. Elemente de termodnamcă bologcă Termodnamca este nu numa un mportant captol al fzc, dar ş sursa a numeroase nformaţ mportante despre sstemele bologce.
Διαβάστε περισσότεραCAPITOTUL IV. CARACTERISTICI GEOMETRICE ALE FIBRELOR TEXTILE
Dmensunle ş forma fbrelor textle 45 CAPITOTU IV. CARACTERISTICI GEOMETRICE AE FIBREOR TEXTIE IV.1. DIMENSIUNEA TRANSVERSAĂ IV.1.1. Consderaţ generale Dmensunea transversală a fbrelor textle consttue unul
Διαβάστε περισσότεραSondajul statistic- II
08.04.011 odajul statstc- II EŞATIOAREA s EXTIDEREA REZULTATELOR www.amau.ase.ro al.sac-mau@cse.ase.ro Data : 13 aprle 011 Bblografe : ursa I,cap.VI,pag.6-70 11.Aprle.011 1 odajul aleator smplu- cu revere
Διαβάστε περισσότερα2. Algoritmi genetici şi strategii evolutive
2. Algortm genetc ş strateg evolutve 2. Algortm genetc Structura unu algortm genetc standard:. Se nţalzează aleator populaţa de cromozom. 2. Se evaluează fecare cromozom dn populaţe. 3. Se creează o nouă
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραCAPITOLUL 3 FILTRE DE MEDIERE MODIFICATE
32 Prelucrarea numercă nelnară a semnalelor Captolul 3 - Fltre de medere modfcate 33 CAPITOLUL 3 FILTRE DE MEDIERE MODIFICATE Ieşrea fltrulu de medere cu prag (r,s) este: s TrMean ( X, X2, K, X ; r, s)
Διαβάστε περισσότεραriptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Διαβάστε περισσότερα3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότερα6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Διαβάστε περισσότερα2. Metoda celor mai mici pătrate
Metode Nuerce Curs. Metoda celor a c pătrate Fe f : [a, b] R o fucţe. Fe x, x,, x + pucte dstcte d tervalul [a, b] petru care se cuosc valorle fucţe y = f(x ) petru orce =,,. Aproxarea fucţe f prtr-u polo
Διαβάστε περισσότεραBazele aşchierii şi generării suprafeţelor
Bazele aşcher ş generăr suprafeţelor Unverstatea Dunărea de Jos Bazele aşcher ş generăr suprafeţelor ş.l. dr. ng. Teodor Vrgl Galaţ - 2008 Departamentul pentru Învăţământ la Dstanţă ş cu Frecvenţă Redusă
Διαβάστε περισσότεραConice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Διαβάστε περισσότεραTEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
Διαβάστε περισσότεραCOLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Διαβάστε περισσότεραCONEXIUNILE FUNDAMENTALE ALE TRANZISTORULUI BIPOLAR
LCAEA N.4 CONEXINILE FNDAMENTALE ALE TANISTOLI BIPOLA Scpul lucrăr măurarea perrmanțelr amplcatarelr elementare realzate cu tranztare bplare în cele tre cnexun undamentale (bază la maă, emtr la maă, clectr
Διαβάστε περισσότερα1. NOŢIUNI DE FIZICA SEMICONDUCTOARELOR
. NOŢIUNI DE FIZICA SEMICONDUCTOARELOR.. Introducere Electronca s-a mpus defntv în cele ma dverse domen ale veţ contemporane, nfluenţând profund dezvoltarea ştnţe, a producţe ş char modul de vaţă al oamenlor.
Διαβάστε περισσότεραV O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Διαβάστε περισσότερα2CP Electropompe centrifugale cu turbina dubla
2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică
Διαβάστε περισσότερα2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede
2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind
Διαβάστε περισσότερα13. Grinzi cu zăbrele Metoda izolării nodurilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...
SEMINAR GRINZI CU ZĂBRELE METODA IZOLĂRII NODURILOR CUPRINS. Grinzi cu zăbrele Metoda izolării nodurilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele
Διαβάστε περισσότεραΕμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία
- Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,
Διαβάστε περισσότερα4. Criterii de stabilitate
Dragomr T.L. Teora sstemelor Curs anul II CTI 04/05 4 4. Crter de stabltate După cum s-a preczat metodele numerce de analză a stabltăţ se bazează pe crterul rădăcnlor. In ngnera reglăr se folosesc o sere
Διαβάστε περισσότεραProblema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Διαβάστε περισσότερα400 g + Y. θ 0-P ω ω II X III. 200 g
UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA FACULTATEA DE CONSTRUCŢII DEPARTAMENTUL CCTFC SPECIALIZAREA MĂSURĂTORI TERESTRE ŞI CADASTRU. TOPOGRAFIE ŞI REŢELE TOPO-GEODEZICE.Cercul topografc; partculartăţ;
Διαβάστε περισσότεραSERII RADIOACTIVE. CINETICA DEZINTEGRĂRILOR Serie radioactivă- ansamblu de elemente radioactive care derivă unele din altele prin dezintegrări α şi β
SERII RDIOTIVE. IETI DEZITEGRĂRILOR Sr radoacvă- ansamblu d lmn radoacv car drvă unl dn all prn dzngrăr α ş β ca rzula al lg ransmuaţ radoacv -prn dzngrar α, numărul d masă scad cu 4 unăţ ş numărul aomc
Διαβάστε περισσότεραAnaliza bivariata a datelor
Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele
Διαβάστε περισσότεραLucrarea Nr. 6 Reacţia negativă paralel-paralel
Lucrre Nr. 6 ecţ netă prlel-prlel Crcutul electrc pentru studul AN pp: Schem de semnl mc AN pp: Fur. Schem electrcă pentru studul AN pp Fur 2. Schem de semnl mc crcutulu pentru studul AN pp Intern cudrpl:
Διαβάστε περισσότεραLUCRAREA 1 AMPLIFICATORUL DIFERENȚIAL MODULUL MCM5/EV
LUCRAREA 1 AMPLIFICATORUL DIFERENȚIAL MODULUL MCM5/EV 1.1 INTRODUCERE Amplfcatorul dferențal (AD) este întâlnt ca bloc de ntrare într-o mare aretate de crcute analogce: amplfcatoare operațonale, comparatoare,
Διαβάστε περισσότεραCurs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Διαβάστε περισσότεραSEMNALE ALEATOARE Definirea semnalului aleator, a variabilei aleatoare, a funcţiei şi a densităţii de repartiţie
CAPIOLUL SEMNALE ALEAOARE Un proces sau semnal aleator, numt ş stochastc, este un proces care se desfăşoară în tmp ş este guvernat, cel puţn în parte, de leg probablstce. Importanţa teoretcă ş practcă
Διαβάστε περισσότεραProfesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Διαβάστε περισσότεραLUCRARE DE LABORATOR NR. 1 MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA
LUCRARE DE LABORATOR NR. MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA. OBIECTIVELE LUCRARII Isusrea uor otu refertoare la: - eror
Διαβάστε περισσότερα