Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες Α.. Η γραφική παράσταση της συνάρτησης f8x9 = αx + β είναι μία ευθεία, με εξίσωση ψ = αx + β. Για ποιες τιμές των πραγματικών αριθμών α και β, α. η ευθεία αυτή διέρχεται από την αρχή των αξόνων. β. η ευθεία είναι η διχοτόμος των γωνιών xο=ψ και x Ο= ψ των αξόνων. γ. η γωνία που σχηματίζει η ευθεία αυτή με τον άξονα των x x είναι οξεία. δ. η f είναι η σταθερή συνάρτηση. 8 μονάδες Α3. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α. Η απόλυτη τιμή αρνητικού αριθμού είναι ο αντίθετός του. β. Η εξίσωση x B = α, με α > 0 και ν άρτιο φυσικό αριθμό, έχει ακριβώς E E δύο λύσεις τις α και α. γ. Η γραφική παράσταση της συνάρτησης f8x9 = αx + βx + γ, α 0, όταν β 4αγ = 0, δεν έχει κοινά σημεία με τον άξονα x x. δ. Αν η διακρίνουσα του τριωνύμου αx + βx + γ, με α > 0, είναι αρνητική, τότε: αx + βx + γ < 0, για κάθε x R. ε. Αν Α8α, β9 είναι ένα σημείο του καρτεσιανού επιπέδου, τότε το συμμετρικό του ως προς τον άξονα x x είναι το σημείο Α8α, β9. 0 μονάδες Θ έ μ α Β Δίνεται το τριώνυμο f8x9 = 8x 9 + 48x 9. Β. Να βρεθούν οι ρίζες του τριωνύμου f8x9. Β. Να παραγοντοποιηθεί το f8x9. Β3. Να λύσετε την ανίσωση: 8x 9 8f8x9 + 39 83x 69 < 0. 0 μονάδες 5 μονάδες
0 μονάδες Θ έ μ α Γ Δίνεται ότι η παραβολή f8x9 = x + βx + γ, τέμνει τον άξονα x x στα σημεία Α8, 09 και Β85, 09. Γ. Να αποδείξετε ότι f8x9 = x + 4x + 5. 9 μονάδες Γ. Να βρείτε την κορυφή της παραβολής f8x9. 8 μονάδες Γ3. Να λύσετε την ανίσωση f8x9 9 > f8x9 0. 8 μονάδες Θ έ μ α Δ Δίνεται η συνάρτηση f8x9 = x+rμr + μ x 4, μ 4 και μ 4. x+ Δ. Να βρείτε το πεδίο ορισμού της συνάρτησης f. 4 μονάδες Δ. Να αποδείξετε ότι η ευθεία 8ε9: ψ = f809x + τέμνει τον άξονα x x στο σημείο Α S, 0T. 4 RμR 7 μονάδες Δ3. Αν η ευθεία 8ε9 : ψ = f809x + τέμνει τον θετικό ημιάξονα Ox, να βρείτε το διάστημα στο οποίο παίρνει τιμές ο πραγματικός αριθμός μ. 7 μονάδες Δ4. Αν f89 = 3f809 + 5, να αποδείξετε ότι η συνάρτηση f παίρνει τη μορφή f8x9 = x 3. 7 μονάδες
ΙΑΓΩΝΙΣΜΑ Θ έ μ α Α Α. Αν η εξίσωση αx + βx + γ = 0, α 0, έχει πραγματικές ρίζες x και x να αποδείξετε ότι ισχύει: x W + x = β α. Μονάδες 7 Α. Πότε το τριώνυμο f8x9 = αx + βx + γ, α 0, έχει δύο ρίζες πραγματικές και άνισες x και x; Να γραφεί το f8x9 σε μορφή γινομένου πρωτοβάθμιων παραγόντων στην περίπτωση αυτή. Μονάδες 4 Α3. Πότε μια ακολουθία λέγεται γεωμετρική πρόοδος; Μονάδες 4 Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α9 Αν α < 0 και β < α τότε α β < 0. β9 το κλειστό διάστημα [α, β] αποτελείται από τους αριθμούς x για τους οποίους ισχύει: α < x < β. γ9 Αν ο αριθμός α είναι αρνητικός τότε: α = α. δ9 Τα σημεία Α8α, β9 και Β8 α, β9 είναι συμμετρικά ως προς τον άξονα x x. ε9 Η συνάρτηση f8x9 = αx παριστάνει ευθεία η οποία διέρχεται από το σημείο Ο80, 09. Μονάδες 0 Θ έ μ α Β Δίνεται η συνάρτηση f8x9 = α x 4α + της οποίας η γραφική παράσταση διέρχεται από το σημείο Α8, 9. Β. Να αποδείξετε ότι f8x9 = 4x 6. Μονάδες 9 Β. Να λύσετε την εξίσωση f8x9 f8 9 = 8. Μονάδες 8 ] ^8_9`a Β3. Να συγκρίνετε τους αριθμούς: [4\f89 και. Μονάδες 8 3
Θ έ μ α Γ Δίνεται ότι η συνάρτηση με τύπο f8x9 = x 4. Γ. Να βρείτε το πεδίο ορισμού της συνάρτησης f8x9. Μονάδες 5 Γ. Να λύσετε την εξίσωση: f8x9 =. Μονάδες 0 Γ3. Δίνονται οι ευθείες με εξισώσεις ε: ψ = f8 9x 3 ε: ψ = 8λ 09x + f849 α9 Να βρείτε τα σημεία τομής της ευθείας ε με τους άξονες συντεταγμένων. β9 Για ποιες τιμές του αριθμού λ οι παραπάνω ευθείες είναι παράλληλες; Μονάδες 0 Θ έ μ α Δ Έστω αριθμητική πρόοδος με πρώτο όρο α W = και διαφορά ω. Αν το τριώνυμο f8x9 = x + 8ω 99x α c, όπου α8 ο όγδοος όρος της αριθμητικής προόδου, έχει δύο ρίζες x και x πραγματικές και άνισες με γινόμενο x W x = 4, Δ. να αποδείξετε ότι f8x9 = 8x x 49. Μονάδες 0 Δ. Να λύσετε την ανίσωση f8x9 < 8. Μονάδες 8 Δ3. Να υπολογίσετε το άθροισμα S5 των 5 πρώτων όρων της αριθμητικής προόδου. Μονάδες 7 3 x 4
ΙΑΓΩΝΙΣΜΑ 3 ΘΕΜΑ ο Α. Να γράψετε και να αποδείξετε τους τύπους που δίνουν το άθροισµα S = x + x και το γινόµενο P = x x των ριζών x, x της εξίσωσης : αx + βx + γ = 0, α 0, συναρτήσει των συντελεστών α, β και γ. Β. ίνεται η εξίσωση : 3x + (λ )x = 0, µε ρίζες x και x. α) Στον παρακάτω πίνακα να γίνει η κατάλληλη αντιστοίχιση. Στήλη Α Στήλη Β 3. x + x α. λ. x x 3. x + x β. 3 γ. 3 λ δ. 3 ε. λ β) Αν x =, να βρεθεί η άλλη ρίζα x της παραπάνω εξίσωσης και ο πραγµατικός αριθµός λ. ΘΕΜΑ ο ίνεται η συνάρτηση : f ( x)= x +α( x+ ) x+, της οποίας η γραφική παράσταση διέρχεται από το σηµείο Μ(, 3). α) Το πεδίο ορισµού της συνάρτησης f είναι : Α. R Β. (, ) (, + ) Γ. (, ). (, ) (, + ) β) Να δείξετε ότι α = 4 και να απλοποιήσετε τον τύπο της f. γ) Να λύσετε την εξίσωση : x 4 + f(3)x f(4) = 0. 5
ΘΕΜΑ 3 ο ίνεται η παράσταση Α(x) = (x ) 3 3(x )(x + ) 4(x +). α) Να αποδείξετε ότι : Α(x) = x 3 9x + 8x. β) Να γράψετε την παράσταση Α(x) ως γινόµενο τριών πρωτοβάθµιων πολυωνύµων. γ) Να λύσετε την ανίσωση : Α(x) 0. ΘΕΜΑ 4 ο ίνεται η παραβολή ψ = x + 6x 4λ +. α) Για τις διάφορες τιµές του πραγµατικού αριθµού λ, να βρείτε το πλήθος των κοινών σηµείων της παραβολής µε τον άξονα χ χ. β) Να γράψετε τις συντεταγµένες του σηµείου Γ, που η παραβολή τέµνει τον άξονα ψ ψ. γ) Αν η ευθεία (ε) : ψ = 00x + 6 διέρχεται από το σηµείο Γ, να βρείτε τον αριθµό λ. δ) Αν λ =, ποια είναι η κορυφή της παραβολής ; 6
ΙΑΓΩΝΙΣΜΑ 4 ΘΕΜΑ ο Α. Στις παρακάτω ερωτήσεις να δώσετε την απάντηση που θεωρείτε σωστή. α) Ο συντελεστής διεύθυνσης της ευθείας ψ = x 4 είναι : Α. Β. Γ. 4. x β) Οι ευθείες ψ = λ 3 x και ψ = 7x είναι παράλληλες, όταν το λ ισούται µε : Α. 7 Β. 3 Γ. 3. Β. Στον παρακάτω πίνακα, να αντιστοιχίσετε κάθε ευθεία της στήλης Α µε την κατάλληλη εξίσωση από τη στήλη Β. Στήλη Α α. β. Στήλη Β ε : ψ = x + 5 ε : ψ = x + 4 ε 3 : ψ = x γ. δ. ε 4 : ψ = ε 5 : ψ = x 3 ε 6 : ψ = x Γ. Να αποδείξετε ότι δύο διακεκριµένες ευθείες ε : ψ = α x + β και ε : ψ = α x + β είναι παράλληλες, µόνο όταν οι συντελεστές διεύθυνσής τους είναι ίσοι. 7
ΘΕΜΑ ο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Α. Να λυθεί το σύστηµα : α+β= 5α+β= Β. Για τις τιµές των α και β που βρήκατε παραπάνω να λύσετε την εξίσωση : x(x α) x(α + β) + 8 = 0. ΘΕΜΑ 3 ο ίνεται ότι f(x) = (x 4) + 6(α x) 4(3 + 3α). α) Να δείξετε ότι η παράσταση f(x) είναι τριώνυµο ου βαθµού. β) Να δείξετε ότι το τριώνυµο f(x) έχει δύο άνισες ρίζες x, x και ισχύουν : x + x = 0 και x x = 4. γ) Να συγκρίνεται τους αριθµούς : = x + x + 5 B + = x x x. Α και ( ) ΘΕΜΑ 4 ο ίνονται οι συναρτήσεις : f (x) = ( αx) αx 3 και για τις οποίες ισχύει : f () + g(004) = 000. x + β g(x ) =. x 00 α) Να βρείτε το πεδίο ορισµού των f και g. β) Να υπολογίσετε τους αριθµούς α και β. γ) Αν α = και β = 0, να βρείτε τις θετικές τιµές του x, για τις οποίες το γινόµενο f (x) g(x) γίνεται αρνητικό. 8
ΙΑΓΩΝΙΣΜΑ 5 ΘΕΜΑ ο Α. ίνεται το τριώνυµο f(x) = αx + βx + γ, µε α 0, και διακρίνουσα. Να γράψετε τη µορφή του f(x) στις περιπτώσεις : α) όταν > 0 β) όταν = 0 Β. Να συµπληρώσετε τα κενά στις παρακάτω προτάσεις : α) Η εξίσωση αx + β = 0, έχει µοναδική λύση όταν :. β) Αν θ > 0, τότε : x < θ. γ) Η εξίσωση β βαθµού µε άθροισµα ριζών x + x = α και γινόµενο ριζών x x = β έχει τη µορφή :. Γ. Να επιλέξετε τη σωστή απάντηση στις παρακάτω προτάσεις : α) Η γωνία που σχηµατίζει η ευθεία ψ = x +3 µε τον άξονα των χ χ είναι : Α. 0 ο Β. 45 ο Γ. 90 ο. 35 ο β) Για τη συνάρτηση f(x) = x + το σηµείο που δεν ανήκει στη γραφική της παράσταση είναι : Α. ( 0, ) Β. ( -, ) Γ. (, ). ( -, 3) γ) Το τριώνυµο f(x) = x + βx + γ έχει δύο άνισες ρίζες x, x µε x < x και ισχύει f(004) > 0. Ο αριθµός 004 ανήκει στο διάστηµα : Α. ( -, x ) Β. (x, x ) Γ. ( x, + ). ( 004, + ) ΘΕΜΑ ο ίνεται το τριώνυµο f(x) = x + x 6. α) Να αποδείξετε ότι για κάθε x R, το f(x) γίνεται αρνητικό. β) Να λύσετε την ανίσωση : f (x) x + 5. 9
ΘΕΜΑ 3 ο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ίνεται η συνάρτηση f (x) x 6 =. x + 4x α) Να βρείτε το πεδίο ορισµού της και να απλοποιήσετε τον τύπο της. β) Αν τα σηµεία Α(, α +3) και Β(κ, 3) ανήκουν στη γραφική παράσταση της συνάρτησης f, να βρείτε τους αριθµούς α και κ. γ) Αν α = και κ = - να υπολογίσετε την απόσταση (ΑΒ). ΘΕΜΑ 4 ο ίνεται η εξίσωση : x 4κx + κ 4 = 0. α) Να δείξετε ότι έχει δύο ρίζες πραγµατικές και άνισες x, x για κάθε κ R. β) Να βρείτε τον αριθµό κ, ώστε να ισχύει : ( x ) ( x ) = 5, όπου x, x οι ρίζες της αρχικής εξίσωσης. γ) Αν ( ) x+ x < 8, να βρείτε το διάστηµα στο οποίο παίρνει τιµές x x ο πραγµατικός αριθµός κ. 0
ΙΑΓΩΝΙΣΜΑ 6 Θέµα ο Να συµπληρώσετε τις προτάσεις :. Αν θ>0, τότε x =θ. (χ-ψ) =.. 3. Η εξίσωση αχ +βχ+γ=0, α 0, έχει δύο άνισες ρίζες όταν.. 4. Αν χ, χ είναι οι δύο ρίζες του τριωνύµου f(χ) = αχ +βχ+γ,α 0, τότε χ +χ =... 5 µονάδες Θέµα ο ίνεται η παράσταση Π = (χ+ψ) 4ψ(χ-ψ) +3. α) Να αποδείξετε ότι Π = χ +8ψ +3. β) Αν χ=3 και ψ=-, να υπολογίσετε τη τιµή της παραπάνω παράστασης. 5 µονάδες Θέµα 3 ο ίνεται η συνάρτηση 3 x 4 x f ( x) =. x α) Να βρείτε το πεδίο ορισµού της. β) Να αποδείξετε ότι : f ( x) = ( x )( x+ ). γ) Να υπολογίσετε την τιµή της παράστασης Α= f ( ) + 4 f (). Θέµα 4 ο ίνεται το τριώνυµο f(χ) = χ 7χ +0. α) Να βρείτε τις ρίζες χ και χ του τριωνύµου. β) Να βρείτε το πρόσηµο του f(χ) για κάθε χ R. 5 µονάδες 5 µονάδες