J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

Σχετικά έγγραφα
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

On Generating Relations of Some Triple. Hypergeometric Functions

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Inclusion Relation of Absolute Summability

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

A study on generalized absolute summability factors for a triangular matrix

Homomorphism in Intuitionistic Fuzzy Automata

Ψηφιακή Επεξεργασία Εικόνας

Prey-Taxis Holling-Tanner

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Congruence Classes of Invertible Matrices of Order 3 over F 2

Solve the difference equation

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Journal of Central South University (Science and Technology) Jun i p i q

Generalizatio n of Funda mental Theore m of Pro bability Lo gic

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

PACS: Pq, Tp

Homework for 1/27 Due 2/5

A General Note on δ-quasi Monotone and Increasing Sequence

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Fuzzifying Tritopological Spaces

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

On the Galois Group of Linear Difference-Differential Equations

Abstract Storage Devices

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Probabilistic Approach to Robust Optimization

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

LAD Estimation for Time Series Models With Finite and Infinite Variance

Certain Sequences Involving Product of k-bessel Function

Heisenberg Uniqueness pairs

, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.

The k-bessel Function of the First Kind

Elements of Information Theory

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

1. For each of the following power series, find the interval of convergence and the radius of convergence:

SOME PROPERTIES OF FUZZY REAL NUMBERS

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Lecture 3: Asymptotic Normality of M-estimators

Reverse Ball-Barthe inequality

EE 570: Location and Navigation

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Outline. Detection Theory. Background. Background (Cont.)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

The Neutrix Product of the Distributions r. x λ

Fractional Colorings and Zykov Products of graphs

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Generalizations of the Inverse Weibull and Related Distributions with Applications

A Lambda Model Characterizing Computational Behaviours of Terms

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region

A Note on Intuitionistic Fuzzy. Equivalence Relation

Homomorphism of Intuitionistic Fuzzy Groups

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

The Equivalence Theorem in Optimal Design

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Bessel function for complex variable

ST5224: Advanced Statistical Theory II

n=2 In the present paper, we introduce and investigate the following two more generalized

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Additional Results for the Pareto/NBD Model

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

On a four-dimensional hyperbolic manifold with finite volume

ΠΙΘΑΝΟΤΗΤΑ ΕΞΑΛΕΙΨΗΣ ΚΑΙ ΚΛΑΔΩΤΕΣ ΑΛΥΣΙΔΕΣ

Rapid Acquisitio n of Doppler Shift in Satellite Co mmunicatio ns

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Statistical Inference I Locally most powerful tests

Limit theorems under sublinear expectations and probabilities

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

Uniform Convergence of Fourier Series Michael Taylor

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

A summation formula ramified with hypergeometric function and involving recurrence relation

Commutative Monoids in Intuitionistic Fuzzy Sets

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Intuitionistic Fuzzy Ideals of Near Rings

Data Dependence of New Iterative Schemes

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

Research on Real-Time Collision Detection Based on Hybrid Hierarchical Bounding Volume

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

On the k-bessel Functions

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Transcript:

Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla [2] Breima [3] L a.s.. Chug [4], Moy [5], Perez [6] Keiffer [7] L. Barro [8] Orey [9], Algoet Cover [0] AEP. ( [0] ).,.,,. (), Marov Borel-Catelli. (X ) N X = {, 2, N}, X m = (X m,, X ), x m = (x m,, x ) X m. (X ) N P (X m = x m) = p m, (x m) > 0, x i X, 0 m i. (.) p m, (x x m ) = P (X = x Xm = x m ), 0 m <. (.2) (a ) N, f a,(ω) =, f a,(ω) X a+ a +. l p(xa+ a + ), ω : 203--5 : 204-04-02 (0704) ; (308085QF3; 408085MA04) ; (202089; 203090). : (989 ),,,, :.

970 Vol. 35 a 0,. X a+ a +,. 2 h a,(x a +) = p (x x a +) l p (x x a +); x X H a,(ω) = h a,(x a +). H a, X X a +. 2 (X ) N (.), [f a,(ω) + =a +2 H a,(ω)] = 0 a.s.. t, Λ () a,(t, ω) = EΛ () a,(t, ω) a+ exp{t l p (X X a+ )} =a+2 a+ =a+2 =E{E[Λ () a,(t, ω) X a+ a + } =E{E[Λ () a, (t, ω) E[e E[e t l p (X X a+ ) X t l pa+(xa+ Xa+ e a+ ) t l pa+(xa+ Xa+ a+ a+ ],, ) X a+ a + a+ =E{Λ () a, (t, ω) E[et l p a+(x a+ Xa+ ) X a+ a + ] t l pa+(xa+ Xa+ E[e a+ ) X a+ a + ] } =E[Λ () a, (t, ω)] = = E[Λ () a,(t, ω)] =. Marov, ɛ > 0, P ( P ( = ] Xa+ a + ]} l Λ() a,(t, ω) ɛ) = P (Λ () a,(t, ω) e ɛ ) EΛ() a,(t, ω) = e ɛ, e ɛ l Λ() a,(t, ω) ɛ) e ɛ <, Borel-Catelli, = P ( l Λ() a,(t, ω) ɛ) = 0. ɛ, l Λ() a,(t, ω) 0 a.s.. (.3)

No. 4 : 97 l Λ() = + =a +2 a,(t, ω) {t l p (X X a +) l E[e t l p (X X a+ ) X a +]}, (.4) (.3), (.4) + =a +2 t l p (X X a +) + =a +2 l x x (x > 0) 0 e x x x 2 e x, = t 2 + =a +2 + =a +2 + =a +2 + =a +2 + =a +2 l E[e t l p (X X a+ ) X a +] a.s., {t l p (X X a +) te[l p (X X a +) X a +]} {l E[e t l p (X X a+ ) X a +] te[l p (X X a +) X a +]} {E[e t l p (X X a+ ) X a +] te[l p (X X a +) X a +]} {E[(e t l p (X X a+ ) t l p (X X a +)) X a +]} 0 < t <, (.5) t, t E[l 2 p (X X a +)e t l p (X X a+ ) X a +] a.s.. (.5) + =a +2 + =a +2 max{x t+ l 2 x, x > 0} = 4 e 2 ( t) 2, {l p (X X a +) E[l p (X X a +) X a +]} E[l 2 p (X X a +)e t l p (X X a+ ) X a +] a.s.. E[l 2 p (X X a +)e t l p (X X a+ ) X a +] N = p t (x x a +) l 2 p (x x a +)p (x x a +) = x = N x = 4N e 2 ( t), 2 p t+ (x x a +) l 2 p (x x a +)

972 Vol. 35 t (.6), t 0, + =a +2 + =a +2 + =a +2 < t < 0, if + =a +2 (.7) (.8), {l p (X X a +) E[l p (X X a +) X a +]} 4N e 2 ( t) 2 = 4Nt a.s., (.6) e 2 ( t) 2 {l p (X X a +) E[l p (X X a +) X a +]} 0 a.s.. (.7) {l p (X X a +) E[l p (X X a +) X a +]} 0 a.s.. (.8) + =a +2 {l p (X X a +) E[l p (X X a +) X a +]} = 0 a.s.,, Ee l p(xa+) = ɛ > 0, (.9), (.0) + =a +2 N x a+= [l p (X X a +) + H a,(ω)] = 0 a.s.. (.9) e l p(xa+) p(x a+) = N, Marov, P [ l p(x a +) ɛ] N = e ɛ <. = l p(x a +) = 0 a.s.. (.0) l p(x a +) + + =a +2 [l p (X X a +) + H a,(ω)] = 0 a.s., [f a,(ω) + =a +2 H a,(ω)] = 0 a.s..

No. 4 : 973 [],, [2 3] []., [] ( a = 0 [] ).. 3 t, M m, (t, X m ) =E[e tp m, (X X m,x ) Xm ] = e tp m, (x x m,x ) p m, (x x m ), 0 m <, (.) x X M m, (t, x m ) Xm = x m, p m, (X Xm ). 2 (a ) N, (X ) N (.), b a, = mi{p a,(x x a ), x i X, a i }, = a +, a + 2,, α > 0, a + =a + Λ (2) a,(t, ω) = + =a + e α/b a, = M <, p a, (X X a ) a + =a + = N e tp a, (X X a ) M a,(t, Xa ). a.s.. (.2), a+ [ =a + EΛ (2) a,(t, ω) =E{E[Λ (2) a,(t, ω) X a+ a ]} =E{E[ a + =a + e tp a, (X X a ) M a,(t, X a =E[Λ (2) a, (t, ω)] = =. tp l Λ(2) a,(t, ω) 0 a (X, X ) a + =a + a ]} ) Xa+ a.s.. l M a,(t, Xa )] 0 a.s..

974 Vol. 35 l x x (x > 0) 0 e x x x 2 e x, = t 2 + =a + + =a + + =a + + =a + x = t 2 N + [tp a (X, X ) Nt] a [l M a,(t, X a [M a,(t, X a N N =a + x = + ) Nt] ) Nt] p a,(x Xa )[e tp p b a, =a + a a, (x X a, (x X a )e t p a, (x X a ) ) tp a (x, Xa )] e t b a, a.s.. (.3) 0 < λ <, max{xλ x, x > 0} =. 0 < t < α, e l λ tn tn e(α t) + =a + [p a (X, Xa ) N] + b a, =a + + =a + e t b a, + =a + = tn + b a, =a + e α/b a, = tnm 0, (t 0) a.s., e(α t) ( et e α )/b a, e α/b a, [p a (X, Xa ) N] 0 a.s.. (.4) α < t < 0, (.3) if tn if =tn if + =a + [p a (X, Xa ) N] + b a, =a + + b a, =a + tnm 0, (t 0) a.s., e(α + t) e t b a, e (t+α)/b a, e α/b a,

No. 4 : 975 (.4), (.5) if + =a + + =a + [p [p a (X, Xa ) N] 0. (.5) a (X, X ) N] = 0 a.s.,.. ( []) (X ) N (.), α > 0, b = mi{p 0, (x x 0 ), x i x, 0 i },. a e α/b = M <, = {p 0, (X X 0,, X ), m} a.s. N, = p 0, (X X 0 ) = N a.s.. 2 a. 2 m, (X ) N m, α > 0, p(x m 0 ) = P (X m 0 = x m 0 ) > 0, x i X, p m+ (x m+ x +m ) = P (X m+ = x m+ X +m = x +m ) > 0, 0. b = mi{p m+ (x +m x +m ) : x i X, i m + }. a + =a + + =a + e α/b = M <, p m+ (X m+ X a ) = N. 3 (X ) N, p(x 0 ) = P (X 0 = x 0 ) > 0, x 0 X, a.s.. (.6) a + =a + = N a.s.. p (X )

976 Vol. 35 [] Shao C E. A mathematical theory of commuicatio[j]. Bell Sgst. Tech. J., 948, 27: 379 423. [2] McMilla B. The basic theorems of iformatio theory[j]. A. Math. Stat., 953, 24: 96 29. [3] Breima L. The idividual ergodic theorem of iformatio theory[j]. A. Math. Stat., 957, 28: 809 8. [4] Chug K L. A ote o the ergodic theorem of iformatio theory[j]. A. Math. Stat., 96, 32: 62 64. [5] Moy S C. Geeralizatio of the Shao-McMilla theorem[j]. Pacific J. Math., 96, 705 74. [6] Pierze J R. The early days of iformatio theory[j]. IEEE Tras. If. Theory, 973, 6: 3 8. [7] Kieffer J C. A simple proof of the Moy-Perez geeralizatio of the Shao-McMilla theorem[j]. Pacific J. Math., 974, 5: 203 206. [8] Barro A R. The strog ergodic theorem for desities: geeralized Shao-McMilla-Breima theorem[j]. A. Prob., 985, 3: 292 303. [9] Orey S. O the Shao-Perez-Moy theorem[j]. Cotemp. Math., 985, 4: 39 327. [0] Algoet P, Cover T M. A sadwich proof of the Shao-McMilla-Breima theorem[j]. A. Prob., 988, 6(2): 899 909. []. [J]., 997, 7(4): 375 38. [2],. [J]., 2008, 3(4): 648 653. [3] Shi Zhiya, Yag Weiguo. Some it properties of radom trasitio probability for secod-order ohomogeous Marov chais idexed by a tree[j]. J. Ie. Appl., ID 503203, 2009. SOME LIMIT THEOREMS FOR DISCRETE INFORMATION SOURCES JIAN Xu, WANG Zhog-zhi (School of Mathematics Physics Sciece ad Egieerig, Ahui Uiversity of Techology, Maasha 243002, Chia) Abstract: I this paper, we study the properties of geeralized etropy ad the coditioal probability of radom harmoic mea of discrete iformatio sources. By usig Marov s iequality, we put forward a ew approach of studyig strog it theorem, Borel-Catelli lemma ad coditioal momet geeratig fuctio. Keywords: Marov s iequality; Borel-Catelli lemma; geeralized harmoic mea; coditioal momet geeratig fuctio; etropy 200 MR Subject Classificatio: 60F5