u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Σχετικά έγγραφα
. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Prey-Taxis Holling-Tanner

L p approach to free boundary problems of the Navier-Stokes equation

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

The Pohozaev identity for the fractional Laplacian

div( u p 2 u) = λa(x)u q 2 u+ 1 F(u,v) u

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

W, W, W(r) = (1/4)(r 2 1), W (r) = r 3 r

Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D

Higher spin gauge theories and their CFT duals

On a p(x)-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Envelope Periodic Solutions to Coupled Nonlinear Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

with N 4. We are concerned

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Ηλεκτρονικοί Υπολογιστές IV

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

Modelli Matematici. Gianni Gilardi. Cortona, giugno Transizione di fase solido solido in un sistema meccanico

X g 1990 g PSRB

Existence and Multiplicity of Solutions for Nonlocal Neumann Problem with Non-Standard Growth

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

EXISTENCE RESULTS FOR KIRCHHOFF TYPE SYSTEMS WITH SINGULAR NONLINEARITY. A. Firouzjai, G.A. Afrouzi, and S. Talebi

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

On the Einstein-Euler Equations

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

A NEW TYPE OF CONCENTRATION SOLUTIONS FOR A SINGULARLY PERTURBED ELLIPTIC PROBLEM

Approximation of dynamic boundary condition: The Allen Cahn equation

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

arxiv: v3 [math.ca] 4 Jul 2013

IUTeich. [Pano] (2) IUTeich

Homework 3 Solutions

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Geodesic paths for quantum many-body systems

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Bulletin of the. Iranian Mathematical Society

Multistring Solutions of the Self-Graviting Massive W Boson

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

PULLBACK D-ATTRACTORS FOR THE NON-AUTONOMOUS NEWTON-BOUSSINESQ EQUATION IN TWO-DIMENSIONAL BOUNDED DOMAIN. Xue-Li Song.

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

Strong global attractors for non-damping weak dissipative abstract evolution equations

Uniqueness of Entropy Solutions of Nonlinear Elliptic-Parabolic-Hyperbolic Problems in One Dimension Space

Areas and Lengths in Polar Coordinates

Studies on Sturm-Liouville boundary value problems for multi-term fractional differential equations

Discriminantal arrangement

Hartree-Fock Theory. Solving electronic structure problem on computers

A General Note on δ-quasi Monotone and Increasing Sequence

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography

GLOBAL WEAK SOLUTIONS TO COMPRESSIBLE QUANTUM NAVIER-STOKES EQUATIONS WITH DAMPING

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

Dispersive estimates for rotating fluids and stably stratified fluids

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Finite Field Problems: Solutions

Second Order Partial Differential Equations

Example Sheet 3 Solutions

ST5224: Advanced Statistical Theory II

Positive solutions for three-point nonlinear fractional boundary value problems

Areas and Lengths in Polar Coordinates

Differential equations

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

High order interpolation function for surface contact problem

D Alembert s Solution to the Wave Equation

Forced Pendulum Numerical approach

On the diffusive structure for the damped wave equation with variable coefficients. Yuta Wakasugi

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

arxiv: v1 [math-ph] 4 Jun 2016

Section 8.3 Trigonometric Equations

The k-α-exponential Function

Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics. Based on joint research with

Lotka Volterra. Stability Analysis of Delayed Periodic Lotka Volterra Systems

Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors

Thermodynamics of the motility-induced phase separation

ADVANCES IN MECHANICS Jan. 25, Newton ( ) ,., Newton. , Euler, d Alembert. Lagrange,, , Hamilton ( )

Oscillation of nonlinear second-order neutral delay differential equations

Homomorphism in Intuitionistic Fuzzy Automata

ON A BIHARMONIC EQUATION INVOLVING NEARLY CRITICAL EXPONENT

UNIQUENESS OF TRAVELING WAVE SOLUTIONS FOR NON-MONOTONE CELLULAR NEURAL NETWORKS WITH DISTRIBUTED DELAYS

Pullback exponential attractors for nonautonomous equations Part II: Applications to reaction-diffusion systems

INELASTIC COLLISION OF TWO SOLITONS FOR GENERALIZED BBM EQUATION WITH CUBIC NONLINEARITY

arxiv: v1 [math.ap] 22 Mar 2017

EE512: Error Control Coding

Spherical Coordinates

GAUGES OF BAIRE CLASS ONE FUNCTIONS

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Transcript:

2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2 R N R N G(s) := s., 0 g(t) dt. [8, 9, 17] inf{e(u) ; u (1) }. (1),.,,. (1) g(s) = s + s p [12, 19], g(s) [7, 14, 21, 22, 23, 25]. g(s), g(s). g(s). g(s).,. 2010 Mathematics Subject Classification: 35J61, 35A02, 35B05,, 432-8561 3-5-1 e-mail: adachi@shizuoka.ac.jp web: https://wwp.shizuoka.ac.jp/adachi/

(g1) g C 1 ([0, )), g(0) = 0, g (0) < 0. (g2) b > 0, g(s) < 0 on (0, b), g(s) > 0 on (b, ), g (b) > 0. (g3) K g (s) := sg (s) g(s) (g4) K g (s) 1 on (0, b).. (b, ) K g (s) > 1 K g(s) < 0. 1 ([4]). N 2, (g1) (g4). (1). 2. (1) u, u L := + g (u) : H 2 (R N ) L 2 (R N ), φ H 2 rad (RN ), Lφ = 0 φ 0. 3. (g2), 1. (g2 ) b > 0, b (b, ], g(s) < 0 on (0, b), g(s) > 0 on (b, b), g(s) < 0 on ( b, ), g (b) > 0, g ( b) < 0. (g2 ), Allen-Cahn g(s) = s(s b)(s b) 1., g(s) = s + s p + s q (1 < p q) (g2) (g3), 1. K g (s) = sg (s) growth function, g(s) g(s)., g(s) = s + s p (p > 1) K g (s) = psp 1 1 s p 1 1, K g ( ) = p., > 1 (s > 1) K g(s) = (p 1)2 s p 2 < 0 (s > 1) (s p 1 1) 2, g(s) = s + s p (p > 1) (g1) (g4). g(s) = s + s p (p > 1) (1) [19], [21] [19], (g1), (g2), (g4) g(s) (1). (g5) K g (s) > 1 on (b, ). (g6) K g(s) < 0 on (b, ). (g5), (g6), [7]., (g5) g(s) K g ( ) 1, [19] g(s) K g ( ) < 1. (g3) (g5), (g6), g(s)., [25] N 3, (g1), (g2), (g6) (1), (g6).

2. 1 2.1.. u + N 1 u + g(u) = 0, r u(0) = d > 0, u (0) = 0. (2) d > 0 (2) u(r; d), d > 0 3. N = {d > 0 ; R d > 0 u (r; d) < 0 on (0, R d ], u(r d ; d) = 0}, G = {d > 0 ; u (r; d) < 0 on (0, ), lim r u(r; d) = 0}, P = {d > 0 ; u(r; d) > 0 on (0, ), lim r u(r; d) 0}. d G R d =. N, G, P. 4.. (i) N, G, P, N G P = (0, )., P N (0, ). d 0 > 0, (0, d 0 ) P. (ii) d 0 G. (iii) ϵ > 0 (d 0, d 0 + ϵ) N., G = {d 0 }, d > d 0 > 0 u(r; d) R d > 0., lim R d = d 1 > 0, d 1 G d d1,. (2) u = u(r; d) δ + N 1 δ + g (u)δ = 0, r δ(0) = 1, (3) δ (0) = 0. δ(r; d) := d u(r; d) δ(r; d) (3), δ(r d; d) R d > 0. 5.. (i) δ(r d ; d) > 0, 0 = u(r d ; d) < u(r d ; d + ϵ), R d < R d+ϵ. (ii) δ(r d ; d) < 0, 0 = u(r d ; d) > u(r d ; d + ϵ), R d > R d+ϵ.

(iii) d [d 0, d 0 + ϵ) δ(r; d) (0, R d ) 1, δ d (R d ; d) < 0., R d > 0, δ(r; d). 2. 6. d G, δ(r; d) 1. 7 (strictly admissible). d N G. δ(r; d) (0, R d ) 1., (i) d N, δ(r d ; d) < 0. (ii) d G, lim r δ(r; d) =. 8. 6, 7 v λ (r; d) := ru (r; d) + λu(r; d) (λ > 0) δ(r; d) Sturm. [21], [21] 6, 7 (g5), (g6). (g3) v λ (r; d),., 5 7,. d (d 0, ) d 0, δ(r d ; d) = 0, 5 (iii). Case A: δ(r; d) (0, R d ) 1, δ(r d ; d) = 0. Case B: δ(r; d) > 0 on (0, R d ), δ(r d ; d) = 0., Case A 7, Case A., Case B., R d., d 1 > 0, lim d d1 R d = d 1 G, δ(r; d 1 ) > 0 on (0, )., 6., (d 0, ) d 1 G d 1 > d 0, G = {d 0 }. 2.2. 7. (1) u H 1 (R N ) φ + N 1 φ + g (u)φ = 0, φ (0) = 0, r φ Hrad 2 (RN )., a R, φ(r) = aδ(r; d 0 ). 7 (ii) lim δ(r; d 0 ) =, φ Hrad 2 (RN ). r 9. u, [7], { } u u Ker (L) = span,..., x 1 x N, L.

3. 1 1. u κu α 1 (u α ) = u + u p in R N, (4) u > 0 in R N, u H 1 (R N )., N 2, κ > 0, α > 1, 1 < p < α2 1. 2 Sobolev 2N (N 3), 2 := N 2 (N = 2). (4) [10, 11, 18]. (4) N 2, κ > 0, α > 1, 1 < p < α2 1 [13, 20]),, κ p, N [1, 2, 3, 5, 6, 16, 24]., 1, N 2, κ > 0, α > 1, 1 < p < α2 1,. 10. N 2, κ > 0, α > 1, 1 < p < α2 1. (4)., 1 10. 3.1. 10 (4) I(u) = 1 u 2 dx + κ (u α ) 2 dx + 1 u 2 dx 1 u p+1 dx 2 R 2α N R 2 N R N = 1 (1 + ακu 2α 2 ) u 2 dx + 1 u 2 dx 1 u p+1 dx 2 R 2 N R { } N : X := u H 1 (R N ) ; (u α ) 2 dx < R R N, I(u) (4)., u = f(v), I(f(v)) = 1 (1 + ακf(v) 2α 2 ) f(v) 2 dx + 1 f(v) 2 dx 1 f(v) p+1 dx 2 R 2 N R N = 1 (1 + ακf(v) 2α 2 )f (v) 2 v 2 dx + 1 f(v) 2 dx 1 f(v) p+1 dx 2 R 2 N R N, (1 + ακf(v) 2α 2 )f (v) 2 1 f, f J(v) := I(f(v)) = 1 v 2 dx + 1 f(v) 2 dx 1 f(v) p+1 dx 2 R 2 N R N

. J(v). v = f(v)f (v) + f(v) p f (v) in R N, v > 0 in R N, v H 1 (R N ). (5), f, (4) (5) 1 1, 10 (5). f (4) (5), [13, 20]. f. f (s) = 1 on s [0, ), 1 + ακf(s) 2α 2 (6) f(0) = 0. (6) f(s), g(s) := f(s)f (s) + f(s) p f (s), b := f 1 (1) (g1) (g4), 1 (5) v,, (4) u = f(v). f(s). 11.. (i) f(s) s, 0 < f (s) 1, f (s) 0 on [0, ). (ii) f(s) αsf (s) (α 1)f(s)f (s) 2 on [0, ). (iii) sf (s) f(s) on [0, ). f(s) (iv) lim s s 1 α (v) lim s 0 f(s) s = = 1. ( α κ ) 1 2α, lim s sf (s) f(s) = 1 α. 11 (ii) (g3). 12. g(s) = f(s)f (s) + f(s) p f (s) K g (s) = sg (s), 11 g(s) lim K g(s) = p α + 1 s α., p α + 1 α 1 p 2α 1, g(s) p 2α 1.

3.2. (4),,. div (a(u) u) + 1 2 a (u) u 2 = h(u) in R N, (7) u > 0 in R N, u H 1 (R N )., h(s), a(s). (h1) h C 1 ([0, )), h(0) = 0, h (0) < 0. (h2) b > 0, b (b, ], h(s) < 0 on (0, b), h(s) > 0 on (b, b), h(s) < 0 on ( b, ), h (b) > 0, h ( b) < 0. (h3) K h (s) (b, b) K h (s) > 1 K h (s) < 0. (h4) K h (s) 1 on (0, b). (h5) s 0 > 0, H(s 0 ) = lim sup s (h6) l > 0, lim sup s (a1) a C 2 ([0, )), inf a(s) > 0. s 0 (a2) a (s) 0 on (0, ). s0 0 h(s) s (l+1)n+2 N 2 h(t) dt > 0. (a3) K a (s) K a (b) on (0, b), K a(s) 0 on [b, b). a(s) (a4) a > 0, lim = a s s l. 0 if N 3, h(s) e βsl+2 0 for any β > 0 if N = 2. 13 ([4]). (h1) (h6), (a1) (a4). (7),. 14. h(s) = s + s p (1 < p < α2 1), a(s) = 1 + κs 2α 2, (h1) (h6), (a1) (a4) (b = 1, b =, l = 2α 2), (7) (4). [1] S. Adachi, M. Shibata, T. Watanabe, Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities, Commun. Pure Appl. Anal. 13 (2014), 97 118. [2] S. Adachi, M. Shibata, T. Watanabe, Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations in R 2, Funkcialaj Ekvacioj 57 (2014), 297 317. [3] S. Adachi, M. Shibata, T. Watanabe, Global uniqueness results for ground states for a class of quasilinear elliptic equations, Kodai Math. J. 40 (2017), 117 142.

[4] S. Adachi, M. Shibata, T. Watanabe, A note on the uniqueness and the non-degeneracy of positive radial solutions for semilinear elliptic problems and its application, submitted. [5] S. Adachi, T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonlinear Anal. 75 (2012), 819 833. [6] S. Adachi, T. Watanabe, Asymptotic uniqueness of ground states for a class of quasilinear Schrödinger equations with H 1 -supercritical exponent, J. Differential Equations. 260 (2016), 3086 3118. [7] P. Bates, J. Shi, Existence and instability of spike layer solutions to singular perturbation problems, J. Funct. Anal. 196 (2002), 429 482. [8] H. Berestycki, T. Gallouët, O. Kavian, Equations de champs scalaires euclidens non linéaires dans le plan, C. R. Acad. Paris Sér. I Math. 297 (1984), 307 310. [9] H. Berestycki and P. L. Lions, Nonlinear scalar fields equations, I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), 313 345. [10] L. Brizhik, A. Eremko, B. Piette, W. J. Zakrzewski, Electron self-trapping in a discrete two-dimensional lattice, Phys. D 159 (2001), 71 90. [11] L. Brizhik, A. Eremko, B. Piette, W. J. Zahkrzewski, Static solutions of a D-dimensional modified nonlinear Schrödinger equation, Nonlinearity 16 (2003), 1481 1497. [12] C. V. Coffman, Uniqueness of the ground state solution for u u + u 3 = 0 and a variational characterization of other solutions, Arch. Rational Mech. Anal. 46 (1972), 81 95. [13] M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal. 56 (2004), 213 226. [14] C. Cortázar, M. Elgueta, P. Felmer, Uniqueness of positive solutions of u + f(u) = 0 in R N, N 3, Arch. Rational Mech. Anal. 142 (1998), 127 141. [15] B. Gidas, W. M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in R N Adv. in Math. Suppl. Stud. 7a (1981), 369 402. [16] F. Gladiali, M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations, Adv. Nonlinear Anal. 1 (2012), 159 179. [17] J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in R N : mountain pass and symmetric mountain pass approaches, Topol. Methods in Nonlinear Anal. 35 (2010), 253 276. [18] S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan 50 (1981), 3262 3267. [19] M. K. Kwong, Uniqueness of positive solutions of u u+u p = 0 in R N, Arch. Rational Mech. Anal. 105 (1989), 243 266. [20] J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II, J. Differential Equations. 187 (2003), 473 493. [21] K. McLeod, Uniqueness of positive radial solutions of u + f(u) = 0 in R N, II, Trans. Amer. Math. Soc. 339 (1993), 495 505. [22] K. McLeod, J. Serrin, Uniqueness of positive radial solutions of u + f(u) = 0 in R N, Arch. Rational Mech. Anal. 99 (1987), 115 145. [23] L. A. Peletier, J. Serrin, Uniqueness of positive solutions of semilinear equations in R n, Arch. Rational Mech. Anal. 81 (1983), 181 197. [24] A. Selvitella, Uniqueness and nondegeneracy of the ground state for a quasilinear Schrödinger equation with a small parameter, Nonlinear Anal. 74 (2011), 1731 1737. [25] J. Serrin, M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J. 49 (2000), 897 923.