ΑΣΚΗΣΕΙΣ. 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες.

Σχετικά έγγραφα
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF

Λογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση

Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF

Κανονικές μορφές - Ορισμοί

Επανάληψη. ΗΥ-180 Spring 2019

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF

Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF

Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Λύσεις Σειράς Ασκήσεων 1

Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Ask seic Majhmatik c Logik c 2

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

Σειρά Προβλημάτων 1 Λύσεις

Προτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα

Ασκήσεις μελέτης της 8 ης διάλεξης

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση

Σειρά Προβλημάτων 1 Λύσεις

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα

Πρόταση. Αληθείς Προτάσεις

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Σειρά Προβλημάτων 1 Λύσεις

Υπολογιστική Λογική και Λογικός Προγραμματισμός

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία:

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο )

Στοιχείο σε ομοφωνία. (α Λ β Λ γ) & (α Λ β Λ γ) α είναι στοιχείο σε ομοφωνία

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο Παράδοση: Τρίτη 26/2/2019, μέχρι το τέλος του φροντιστηρίου

ΔΟΜΗ ΕΠΙΛΟΓΗΣ. Οι διάφορες εκδοχές της

ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ Α Ψ Α Ψ viii) 9. Α Ψ ix) Α Ψ xi) Α Ψ xii) 0 0. Α Ψ xiii) Α Ψ xiv) Α Ψ xv)

p p p q p q p q p q

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

4.3 Ορθότητα και Πληρότητα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Αναπαράσταση Γνώσης και Συλλογιστικές

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

Μαθηματική Λογική και Λογικός Προγραμματισμός

HY118- ιακριτά Μαθηµατικά

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

Υπολογιστικά & Διακριτά Μαθηματικά

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

1. ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών

Μαθηματική Λογική και Λογικός Προγραμματισμός

HY118- ιακριτά Μαθηµατικά

Ευχαριστίες. Τέλος θα ήθελα να ευχαριστήσω όλους όσους ήταν δίπλα μου όλα αυτά τα χρόνια και με βοήθησαν να πραγματοποιήσω τους στόχους μου.

Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017

Σημεία Προσοχής στην Παράγραφο Ε1.

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2018 Λύσεις ασκήσεων προόδου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ. «Σύστημα για Επεξεργασία Λογικών Εκφράσεων»

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole

Εισαγωγή στις Βάσεις Δεδομζνων II

Κεφάλαιο 4 : Λογική και Κυκλώματα

Ασκήσεις ανακεφαλαίωσης στο μάθημα Τεχνητή Νοημοσύνη

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μη γράφετε στο πίσω μέρος της σελίδας

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου

HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός

HY118-Διακριτά Μαθηματικά

Λύσεις Σειράς Ασκήσεων 1

Λύσεις 1 ης Σειράς Ασκήσεων

Λογικός Προγραμματισμός

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο η Σειρά Ασκήσεων

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ


Μαθηματική Λογική και Απόδειξη

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 5: Αναπαράσταση Γνώσης με Λογική

Ασκήσεις μελέτης της 11 ης διάλεξης

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Αναπαράσταση Γνώσης και Συλλογιστικές

Μαθηματική Λογική και Λογικός Προγραμματισμός

Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης. 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus)

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Εκχώρηση Τιμών

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Transcript:

ΑΣΚΗΣΕΙΣ 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες. α) A B/A Α Β ΑΛΒ Α α α α α α ψ ψ α ψ α ψ ψ ψ ψ ψ ψ Όπως βλέπουμε, αν η πρόταση A B είναι αληθής, τότε σε καμία περίπτωση η Α δεν είναι ψευδής, οπότε η εξαγωγή συμπεράσματος είναι έγκυρη. β) AVB/A Α Β ΑVΒ Α α α α α α ψ α α ψ α α ψ ψ ψ ψ ψ Όπως βλέπουμε, αν η πρόταση A είναι ψευδής και η Β αληθής, τότε η πρόταση ΑvΒ είναι αληθής ενώ η Α είναι ψευδής. Άρα η εξαγωγή συμπεράσματος δεν είναι έγκυρη. γ) AV(BΛC)/AVC Α Β C BΛC AV(BΛC) ΑVC α α α α α α α α ψ ψ α α α ψ α ψ α α α ψ ψ ψ α α ψ α α α α α Ψ α ψ ψ ψ ψ ψ ψ α ψ ψ α Ψ ψ ψ ψ ψ ψ Όπως βλέπουμε, αν η πρόταση AV(BΛC) είναι αληθής, τότε σε καμία περίπτωση η AVC δεν είναι ψευδής, οπότε η εξαγωγή συμπεράσματος είναι έγκυρη.

δ) AΛB, A B / A Α Β ΑΛΒ A B Α α α α ψ α α ψ ψ α α ψ α ψ α ψ ψ ψ ψ ψ ψ Όπως βλέπουμε, αν οι προτάσεις A B, A B είναι αληθείς, τότε σε καμία περίπτωση η Α δεν είναι ψευδής, οπότε η εξαγωγή συμπεράσματος είναι έγκυρη. Παρατηρήστε ότι το σύνολο προτάσεων από το οποίο προσπαθούμε να εξάγουμε συμπέρασμα είναι ασυνεπές: δε γίνεται να είναι και οι δύο προτάσεις ταυτόχρονα αληθείς. Στην περίπτωση αυτή, οποιαδήποτε εξαγωγή συμπεράσματος είναι έγκυρη, αφού ποτέ δε θα υπάρχει περίπτωση που οι υποθέσεις είναι ταυτόχρονα αληθείς (και το οποιοδήποτε συμπέρασμα ψευδές). ε) A B, Α/Β Α Β ΑΛΒ Β α α α α α ψ ψ ψ ψ α ψ α ψ ψ ψ ψ Όπως βλέπουμε, αν οι προτάσεις A B, A είναι αληθείς, τότε σε καμία περίπτωση η B δεν είναι ψευδής, οπότε η εξαγωγή συμπεράσματος είναι έγκυρη. Παρατηρήστε ότι το σύνολο προτάσεων από το οποίο προσπαθούμε να εξάγουμε συμπέρασμα είναι συνεπές. 2. Χρησιμοποιώντας τις βασικές ισοδυναμίες του προτασιακού λογισμού αποδείξτε τις παρακάτω ισοδυναμίες:

Οι λύσεις που δίνονται παραπάνω είναι ενδεικτικές, μπορείτε να καταλήξετε με πολλούς διαφορετικούς τρόπους στα ίδια αποτελέσματα.

ΑΣΚΗΣΕΙΣ ΚΑΝΟΝΙΚΗΣ ΜΟΡΦΗΣ CNF DNF Άσκηση 1: Να μετατρέψετε την πρόταση (Α Β) ((Β (C ((C D) Α)))) C) σε CNF (Συζευκτική Κανονική Μορφή) Λύση: 0. Αφαιρούμε τις μη απαραίτητες παρενθέσεις. Δεν υπάρχουν μη απαραίτητες παρενθέσεις, οπότε προχωράμε στο Βήμα 1 1. Βρίσκουμε τη διάζευξη που βρίσκεται σε μεγαλύτερο βάθος και η οποία περιέχει τουλάχιστον μία σύζευξη. Επιλέγουμε τη διάζευξη που βρίσκεται στο μεγαλύτερο βάθος: ( Α Β ) ( ( Β ( C ( ( C D ) Α ) ) ) ) C) 2. Στην διάζευξη που επιλέγεται στο Βήμα 1 εφαρμόζουμε την επιμεριστικότητα της διάζευξης και έχουμε: ( Α Β ) ( ( Β ( C ( C Α ) ( D A ) ) ) C ) 3. Επιστρέφουμε στο Βήμα 1 και προσπαθούμε να βρούμε τη διάζευξη που βρίσκεται σε μεγαλύτερο βάθος και η οποία περιέχει τουλάχιστον μία σύζευξη: ( Α Β ) ( ( Β ( C ( C Α ) ( D A ) ) ) C ) 4. Στην διάζευξη που επιλέξαμε στο προηγούμενο βήμα εφαρμόζουμε την επιμεριστικότητα της διάζευξης και έχουμε: (Α Β ) ( ( Β C ) ( Β C Α) (Β D Α ) C) 5. Επιστρέφουμε στο Βήμα 1 και προσπαθούμε να βρούμε τη διάζευξη που βρίσκεται σε μεγαλύτερο βάθος και η οποία περιέχει τουλάχιστον μία σύζευξη. Αυτή είναι ολόκληρη η πρόταση: (Α Β ) ( ( Β C ) ( Β C Α) (Β D Α ) C) 6. Στην διάζευξη που επιλέξαμε στο προηγούμενο βήμα εφαρμόζουμε την επιμεριστικότητα της διάζευξης και έχουμε: (Α Β C) (Α Β C Α) (Α Β D Α) (Α C) (Β Β C) ( Β Β C Α) (Β Β D Α) (Β C) 7. Απλοποιούμε κάθε διάζευξη χρησιμοποιώντας την ισοδυναμία της αυτοπάθειας: (Α Β C) (Α Β C ) (Α Β D ) (Α C) (Β C) ( Β C Α) (Β D Α) (Β C) 8. Αν υπάρχουν διαζεύξεις που χρησιμοποιούν τα ίδια γράμματα, κρατάμε μόνο μία από αυτές: (Α Β C) (Α Β C ) (Α Β D ) (Α C) (Β C) ( Β C Α) (Β D Α) (Β C) Άρα έχουμε: (Α Β C) (Α Β D ) (Α C) (Β C) 9. Απορρόφηση To (Α C) θα απορροφήσει το ( Α Β C) Δεν μπορούμε να πραγματοποιήσουμε κάποια άλλη απορρόφηση, άρα έχουμε: Η πρόταση (Α Β D) (Α C) (Β C) είναι σε CNF

Άσκηση 2: Να μετατρέψετε την πρόταση (Α Β) (Α (C Β )) a. σε CNF (Συζευκτική Κανονική Μορφή) και b. σε DNF (Διαζευκτική Κανονική Μορφή) Λύση: a. Μετατροπή (Α Β) (Α (C Β ) ) σε CNF 0. Αφαιρούμε τις μη απαραίτητες παρενθέσεις. Δεν υπάρχουν μη απαραίτητες παρενθέσεις, οπότε προχωράμε στο Βήμα 1 1. Βρίσκουμε τη διάζευξη που βρίσκεται σε μεγαλύτερο βάθος και η οποία περιέχει τουλάχιστον μία σύζευξη. Επιλέγουμε τη διάζευξη που βρίσκεται στο μεγαλύτερο βάθος: (Α Β) (Α (C Β ) ) 2. Στην διάζευξη που επιλέγεται στο Βήμα 1 εφαρμόζουμε την επιμεριστικότητα της διάζευξης και έχουμε: (Α Β) ( (Α C) (Α B) ) 3. Αφαίρεση περιττών παρενθέσεων και επιστροφή στο Βήμα 1. (Α Β) (Α C) (Α B) 4. Επιστρέφουμε στο Βήμα 1 και προσπαθούμε να βρούμε τη διάζευξη που βρίσκεται σε μεγαλύτερο βάθος και η οποία περιέχει τουλάχιστον μία σύζευξη: Δεν υπάρχει τέτοια διάζευξη, άρα προχωράμε στο επόμενο βήμα. 5. Απλοποιούμε κάθε διάζευξη χρησιμοποιώντας την ισοδυναμία της αυτοπάθειας. Δεν υπάρχει διάζευξη στην οποία μπορούμε να εφαρμόσουμε την ισοδυναμία της αυτοπάθειας, άρα προχωράμε στο επόμενο βήμα. 6. Αν υπάρχουν διαζεύξεις που χρησιμοποιούν τα ίδια γράμματα, κρατάμε μόνο μία από αυτές: (Α Β) (Α C) (Α B) Η πρόταση (Α Β) υπάρχει 2 φορές, άρα κρατάμε μία από αυτές. Η πρόταση που προκύπτει (Α Β) (Α C) είναι σε CNF.

b. Μετατροπή (Α Β) (Α (C Β ) ) σε DNF 0. Αφαιρούμε τις μη απαραίτητες παρενθέσεις. Δεν υπάρχουν μη απαραίτητες παρενθέσεις, οπότε προχωράμε στο Βήμα 1 1. Βρίσκουμε τη σύζευξη που βρίσκεται σε μεγαλύτερο βάθος και η οποία περιέχει τουλάχιστον μία διάζευξη. Επιλέγουμε τη σύζευξη που βρίσκεται στο μεγαλύτερο βάθος, όπου τυγχάνει να είναι ολόκληρη η πρόταση: (Α Β) (Α (C Β ) ) 2. Στην σύζευξη που επιλέγεται στο Βήμα 1 εφαρμόζουμε την επιμεριστικότητα της σύζευξης και έχουμε: (Α ( Α (C Β ) ) ) ( Β ( Α (C Β ) ) ) 3. Επιστρέφουμε στο Βήμα 1 και προσπαθούμε να βρούμε τη σύζευξη που βρίσκεται σε μεγαλύτερο βάθος και η οποία περιέχει τουλάχιστον μία διάζευξη: Επιλέγουμε τυχαία την 1η (Α ( Α (C Β ) ) ) και εφαρμόζουμε την επιμεριστικότητα της σύζευξης. (A Α ) ( Α (C Β ) ) (Β ( Α ( C Β ) ) ) 4. Επιστρέφουμε στο Βήμα 1 και προσπαθούμε να βρούμε τη σύζευξη που βρίσκεται σε μεγαλύτερο βάθος και η οποία περιέχει τουλάχιστον μία διάζευξη: Επιλέγουμε την ( Β ( Α (C Β ) ) ) και εφαρμόζουμε την επιμεριστικότητα της σύζευξης. (A Α ) ( Α (C Β ) ) ( (Β A) ( B ( C Β ) ) ) 5. Αφαιρούμε τις περενθέσεις που δεν είναι απαραίτητες. (A Α ) ( Α C Β ) (Β A) ( B C B ) 6. Δεν υπάρχει άλλη σύζευξη που να βρίσκεται σε μεγαλύτερο βάθος και η οποία περιέχει τουλάχιστον μία διάζευξη, άρα προχωράμε στο επόμενο βήμα. 7. Απλοποιούμε κάθε σύζευξη χρησιμοποιώντας την ισοδυναμία της αυτοπάθειας: A ( Α C Β ) (Β A) ( B C ) 8. Απορρόφηση A ( Α C Β ) (Β A) ( B C ) Η πρόταση (Β A) απορροφά την πρόταση ( Α C Β ) Άρα έχουμε: A (Β A) ( B C ) Όμως και η πρόταση Α απορροφά την (Β Α ) δηλαδή: A (Β A) ( B C ) Τελικά η πρόταση A ( B C ) είναι σε DNF.