ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής



Σχετικά έγγραφα
ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΘΕΩΡΗΜΑΤΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 7 Ο : ΘΕΩΡΗΜΑΤΑ ΗΛΕΚΤΡΙΚΩΝ ΔΙΚΤΥΩΝ

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Κεφάλαιο 1 ο. Βασικά στοιχεία των Κυκλωμάτων

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 23/06/2016 ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ

Ανάλυση Ηλεκτρικών Κυκλωμάτων

- Η ισοδύναμη πηγή τάσης Thevenin (V ή VT) είναι ίση με τη τάση ανοικτού κυκλώματος VAB.

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων

ΘΕΜΑ 1 ο (3 μονάδες):

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 21/01/2011 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

Ηλεκτρονική. Ενότητα 1: Εισαγωγή. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 06/02/2009 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

Εισαγωγή Φώτης Πλέσσας

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 26/01/2017

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 12/09/2013

Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ.1) με τα εξής χαρακτηριστικά: R 2.3 k,

Πόλωση των Τρανζίστορ

ΘΕΜΑ 1 ο (3 μονάδες):

Εργαστήριο Κυκλωμάτων και Συστημάτων Ενότητα 2: Γραμμικά δικτυώματα.

ΚΕΦΑΛΑΙΟ 7 Τελεστικός ενισχυτής

Αρχές και Θεωρήματα Ηλεκτρικών Κυκλωμάτων

3. Στοιχεία ανάλυσης κυκλωμάτων

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 05/02/2013

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ

Κυκλώματα με ημιτονοειδή διέγερση

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 2. ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 17/06/2011 ΣΕΙΡΑ Β: 16:00 18:30 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 04/02/2011 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

Ανάλυση Ηλεκτρικών Κυκλωμάτων

ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Πανεπιστήμιο Θεσσαλίας

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 20/02/2009 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC

6. Τελεστικοί ενισχυτές

Συνδυασμοί αντιστάσεων και πηγών

ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 5. Θεωρήματα κυκλωμάτων. ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Θεώρημα επαλληλίας ή υπέρθεσης Θεωρήματα Thevenin και Norton

- Η ισοδύναµη πηγήτάσηςthevenin (V ή VT) είναι ίση µε τητάση ανοικτού κυκλώµατος VAB.

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)

Μάθημα: Στοιχεία Ηλεκτροτεχνίας

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Άσκηση 13. Θεωρήματα Δικτύων

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Περιεχόμενα. Πρόλογος...13

Τελεστικοί Ενισχυτές

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΘΕΩΡΙΑ

Προτεινόμενες Ασκήσεις στις Εξαρτημένες Πηγές και στους Τελεστικούς Ενισχυτές

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

Περιεχόμενα. Πρόλογος...13

ΔΙΔΑΣΚΩΝ: Λ. ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 28/01/2015

Ανάλυση Ηλεκτρικών Κυκλωμάτων

ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου Βασικές αρχές ηλεκτροτεχνίας

ΗΛΕΚΤΡΟΝΙΚΑ Ι. ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου)

3.1 Η δίοδος στο κύκλωμα. Στατική και δυναμική χαρακτηριστική

Ανάλυση Ηλεκτρικών Κυκλωμάτων

ΚΕΦΑΛΑΙΟ 3 Ο : ΙΣΧΥΣ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟ ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 05/07/2010 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC

Ενότητα 4 η. «Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις»,Τμήμα Μηχανολόγων Π.Θ., Γ. Περαντζάκης

Διαφορικοί Ενισχυτές

i C + i R i C + i R = 0 C du dt + u R = 0 du dt + u RC = 0 0 RC dt ln u = t du u = 1 RC dt i C = i R = u R = U 0 t > 0.

Ανάλυση Ηλεκτρικών Κυκλωμάτων

ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΚΥΚΛΩΜΑΤΩΝ

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

Γ. Τσιατούχας. VLSI systems and Computer Architecture Lab. Εισαγωγή στη Θεωρία Κυκλωμάτων 2

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 10/02/2015

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΘΕΜΑ 1 ο (3.5 μονάδες) V CC R C1 R C2. R s. v o v s R L. v i I 1 I 2 ΛΥΣΗ R 10 10

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

1. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ

ΛΥΣΕΙΣ (ΕΠΙΛΕΓΜΕΝΩΝ) ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑΣ

2π 10 4 s,,,q=10 6 συν10 4 t,,,i= 10 2 ημ 10 4 t,,,i=± A,,, s,,,

C (3) (4) R 3 R 4 (2)

Ισοδύναμα Κυκλώματα και Μετασχηματισμοί

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο

v(t) = Ri(t). (1) website:

ΚΕΦΑΛΑΙΟ 8 Ο : ΤΡΙΦΑΣΙΚΑ ΔΙΚΤΥΑ

ΕΚΦΩΝΗΣΕΙΣ R R R

Ηλεκτρονικό Κύκλωµα. ΟΝόµος Kirchhoff για το Ρεύµα -KCL

ΗΛΕΚΤΡΟΝΙΚΑ Ι. Ενότητα 4: Ενισχυτής κοινού εκπομπού. Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)

Ταλαντωτές. Ηλεκτρονική Γ Τάξη Β εξάμηνο Μάρτιος 2011 Επ. Καθ. Ε. Καραγιάννη

ΓΕΝΙΚΑ ΚΑΙ ΕΙΣΑΓΩΓΙΚΑ

Ανάλυση Ηλεκτρικών Κυκλωμάτων

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΜΑ Α Α

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ

Transcript:

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων που είναι μεταξύ τους ηλεκτρικώς συνδεδεμένα Ηλεκτρικά στοιχεία (παθητικά) Ωμική αντίσταση (καταναλώνει ενέργεια) Αυτεπαγωγή Χωρητικότητα Ενεργά στοιχεία (αποθηκεύει ενέργεια) (αποθηκεύει ενέργεια) Αυτά που παράγουν ενέργεια ή ενισχύουν (πχ. πηγές τάσης, ρεύματος, ενισχυτές)

Βασικά ηλεκτρικά στοιχεία και η σχέση μεταξύ τάσης και ρεύματος Κλάδος κυκλώματος Αλληλουχία στοιχείων που τα διαρρέει το ίδιο ρεύμα Κόμβος Το κοινό σημείο δυο ή περισσότερων κλάδων Βρόχος Αλληλουχία κλάδων που σχηματίζουν ένα κλειστό κύκλωμα

Βασικά ηλεκτρικά στοιχεία και η σχέση μεταξύ τάσης και ρεύματος Είσοδος κυκλώματος: δυο άκρα του στα οποία επενεργεί πηγή ηλεκτρικής ενέργειας που διεγείρει το κύκλωμα Έξοδος κυκλώματος: δυο άκρα του στα οποία παίρνουμε τάση και ρεύμα Ηλεκτρονικό κύκλωμα: εκτός από R, L, C περιέχει και διόδους, τρανζίστορ, τελεστικούς ενισχυτές κλπ.

Φορές τάσεων και ρευμάτων Οι συμβατικές φορές της τάσης και του ρεύματος δηλώνονται με βέλη και ορίζονται αυθαίρετα Με βάση αυτές καθορίζονται οι εξισώσεις του κυκλώματος Όταν ένα μέγεθος βρεθεί με αρνητική τιμή αυτό σημαίνει ότι έχει αντίθετη φορά από αυτή που έχει οριστεί

Πηγές τάσης και ρεύματος Αποτελούν ενεργά στοιχεία ενός κυκλώματος Πηγή τάσης είναι πηγή ηλεκτρικής ενέργειας της οποίας η τάση που παρέχει δεν εξαρτάται από το φορτίο Συνεπώς, μια ιδανική πηγή τάσης έχει μηδενική εσωτερική αντίσταση Πρακτικά παρουσιάζει έστω και μικρή εσωτερική αντίσταση που τοποθετείται σε σειρά με το σύμβολο της πηγής τάσης Πηγές τάσης: συνεχούς - εναλλασσόμενης τάσης, εξαρτημένη

Πηγή τάσης es RL L es Rs R R e Ke R + R R + R L e RS R L s + 1 L L L s s S L S L Διαιρέτης τάσης Αν R L >>R S τότε L e s οπότε η πηγή συμπεριφέρεται ως ιδανική

Πηγή ρεύματος Πηγή ρεύματος είναι η πηγή ηλεκτρικής ενέργειας της οποίας το ρεύμα που παρέχει δεν εξαρτάται από το φορτίο Συνεπώς, μια ιδανική πηγή ρεύματος έχει μηδενική εσωτερική αγωγιμότητα Πρακτικά παρουσιάζει έστω και μικρή εσωτερική αγωγιμότητα που τοποθετείται παράλληλα με το σύμβολο της πηγής τάσης + S G 0 0 L S G L L L G M L L S S GL + GS 1 GS + 1 G L Διαιρέτης ρεύματος Αν G L >>G S τότε L s οπότε η πηγή συμπεριφέρεται ως ιδανική S

Διαιρέτες τάσης και ρεύματος Από ένα δυναμικό V 1 μπορούμε να πάρουμε ένα άλλο δυναμικό V 2 μικρότερο κατά μέτρο από το V 1 χρησιμοποιώντας δυο αντιστάσεις R 1, R 2 που αποτελούν ένα διαιρέτη τάσης Διαιρέτες εν κενώ και υπό φορτίο

Διαιρέτης τάσης Διαρέτης τάσης εν κενώ V R V R I R V KV 1 2 2 2 2 1 1 R1+ R2 R1+ R2 Διαρέτης τάσης υπό φορτίο V R // R V 2 L 2 1 R1+ R2 // RL Καλείται ισχυρός όταν R 2 //R L R 2 Για διαιρέτη τάσης με ρεύμα I L στο φορτίο R V V RI ( ) 2 2 1 1 R1+ R2 L

Διαιρέτης ρεύματος I G I G V G I MI 1 2 2 2 2 1 1 Gολ G1+ G2

Αντίσταση μεταξύ δύο σημείων μιας διάταξης Είναι ο λόγος της μεταβολής της τάσης ΔV προς την αντίστοιχη μεταβολή του ρεύματος ΔI που προκαλεί η παραπάνω μεταβολή της τάσης V R I Αντίσταση εισόδου άν τα άκρα Α, Β αφορούν την είσοδο μιας διάταξης Αντίσταση εξόδου αν τα Α, Β αφορούν την έξοδο μιας διάταξης

Ηλεκτρικά Σήματα Ηλεκτρικά σήματα είναι χρονικές διαταραχές τάσης και ρεύματος που αναπτύσσονται στα ηλεκτρικά και ηλεκτρονικά κυκλώματα Ημιτονικό σήμα Βηματική συνάρτηση

Μορφές σημάτων Βηματική συνάρτηση Χαρακτηριστικοί χρόνοι T r, T d, T s Τετραγωνικές κυματομορφές Χαρακτηριστικοί χρόνοι: Τ, τ 1, τ 2 Dty cycle (κύκλος εργασίας), ο λόγος τ 1 /Τ

Μορφές σημάτων Τριγωνικές κυματομορφές Στις πραγματικές τριγωνικές κυματομορφές οι γωνίες θα είναι στρογγυλοποιημένες και τα μέτωπα θα έχουν σχετική κλίση Εκθετικό σήμα Χαρακτηριστικός χρόνος η σταθερά χρόνου T Για tt V V 0 0 e 2,71 0,37V 0 t T 0 0 Ve t

Μορφές σημάτων Μοναδιαίος κρουστικός παλμός Έχει εμβαδόν ίσο με τη μονάδα Η διάρκειά του είναι μικρή σε σχέση με τις σταθερές χρόνου του δικτυώματος που πρόκειται να διεγείρει Ιδανικός κρουστικός παλμός, συνάρτηση δέλτα, στην περίπτωση που ΔΤ 0 και V 0

Μορφές σημάτων Θόρυβος Σήμα ακαθόριστης μορφής που εμφανίζεται σε διάφορα σημεία των ηλεκτρονικών κυκλωμάτων σαν παρασιτικό Διαμορφωμένα ημιτονικά σήματα Διαμορφωμένα κατά πλάτος και κατά συχνότητα ( ω ) V 1+ msn t snω t m m c ( ω ω snω ) V sn + m t t m c f m m

Μορφές σημάτων Διαμορφωμένα παλμικά σήματα Διαμορφωμένα καθ ύψος και κατά διάρκεια

Μέση και ενεργός τιμή σήματος Μέση τιμή περιοδικού σήματος VAV 1 T Στιγμιαία ισχύς που καταναλίσκεται σε αντίσταση pt () Μέση τιμή ισχύος για περιοδικό σήμα T 0 () t dt 2 () t R 1 T 1 1 T 2 PAV p() t dt () t dt T 0 R T 0 P AV V 2 rms R 1 T T 2 Vrms () t dt 0 Ενεργός τιμή της τάσης (t) είναι η τιμή μιας σταθερής τάσης που έχει το ίδιο ενεργειακό αποτέλεσμα πάνω σε μια ωμική αντίσταση

Ενεργός τιμή σήματος Ενεργός τιμή συνημιτονικού σήματος V V V V tdt t dt V T T T 2 T 2 2 1 T 2 2 2π 1 T m 4π m rms cos 1 cos 0, 707 0 m 0 + m Αν σήμα με συνημιτονική μορφή εφαρμοστεί στα άκρα μιας αντίστασης R τότε η καταναλισκόμενη ισχύς θα είναι P AV V R 2 rms Όσον αφορά την ισχύ, η εναλλασσόμενη τάση ισοδυναμεί με συνεχή τάση τιμής / 2 V m

Γραμμικά κυκλώματα και αρχή της επαλληλίας Ένα κύκλωμα ή γενικότερα ένα σύστημα είναι γραμμικό όταν ισχύει γι αυτό η αρχή της επαλληλίας ή υπέρθεσης Για γραμμικά σύστημα με μηδενικές αρχικές συνθήκες, όπου δεν δρουν άλλα σήματα ούτε πηγές και y (t) είναι η απόκριση σε είσοδο x (t) τότε για είσοδο x(t)c 1 x 1 (t)+ C 2 x 2 (t)+ +C n x n (t) παίρνουμε έξοδο y(t)c 1 y 1 (t)+ C 2 y 2 (t)+ +C n y n (t) Κάθε σήμα επιφέρει στο γραμμικό κύκλωμα το αποτέλεσμά του ανεξάρτητα από την ύπαρξη των άλλων σημάτων που δρουν σε αυτό Εάν δεν ισχύει η αρχή της επαλληλίας για ένα κύκλωμα, τότε αυτό δεν είναι γραμμικό. Η δυναμική λειτουργία ενός γραμμικού κυκλώματος περιγράφεται με γραμμικές διαφορικές εξισώσεις

Γραμμικά κυκλώματα Γραμμικά κυκλώματα περιέχουν Στοιχεία R, L, C Γραμμικούς ενισχυτές Τρανζίστορ που λειτουργούν στη γραμμική περιοχή Μη γραμμικά κυκλώματα περιέχουν τουλάχιστον ένα μη γραμμικό στοιχείο Διόδους Τρανζίστορ, ενισχυτές που λειτουργούν σε μη γραμμική λειτουργία Θυρίστορ, κλπ Ένα μη γραμμικό κύκλωμα μπορεί να θεωρηθεί γραμμικό σε μια μικρή περιοχή τάσεων ή ρευμάτων

Παράδειγμα (επαλληλία) Για την εφαρμογή της αρχής της επαλληλίας θα πρέπει να βρεθεί το αποτέλεσμα κάθε πηγής χωριστά, αφού μηδενιστεί το αποτέλεσμα της άλλης πηγής, και αθροίσουμε τα δυο αποτελέσματα. Το αποτέλεσμα της πηγής τάσης μηδενίζεται βραχυκυκλώνοντας την πηγή Το αποτέλεσμα της πηγής ρεύματος μηδενίζεται ανοικτοκυκλώνοντας την πηγή Να βρεθεί η τάση στα άκρα της R 2

Παράδειγμα (επαλληλία) Προκύπτουν τα ισοδύναμα κυκλώματα Από (α) 1 1 R2 0, 25KΩ I2 I 5mA 1, 67mA 1 1 1 + ( 0,5 + 0, 25) KΩ R R 1 2 Από (β) 2 R 4 VE E 20 V 13,33 V R + R 2+ 4 1 2 Συνεπώς η τάση στα άκρα της R 2 θα είναι V V + V 20,01V I E VI R2I 2 4 1,67KΩ ma 6,68V

Παράδειγμα (αποκοπή τάσης DC σε πυκνωτή) Εύρεση της τάσης εξόδου στο κύκλωμα: Γραμμικό κύκλωμα: εφαρμογή της επαλληλίας για τις δυο πηγές (εισόδους) Λόγω του πυκνωτή από την αντίσταση δεν διέρχεται κανένα ρεύμα DC Στην R επιδρά μόνο η ημιτονική τάση Θεωρείται ότι ο πυκνωτής παρουσιάζει μηδενική αντίσταση

Ευθεία φόρτου και δυναμική αντίσταση στοιχείου Θεωρούμε ένα ηλεκτρονικό στοιχείο με δυο άκρα Το στοιχείο παρουσιάζει σχέση ρεύματος τάσης If(V) RI + V E I 1 E V + R R Ευθεία φόρτου Το ρεύμα και η τάση στο στοιχείο πρέπει να ικανοποιούν και τις δύο σχέσεις: Σημείο λειτουργίας Q

Ευθεία φόρτου και δυναμική αντίσταση στοιχείου Στατική αντίσταση VA RA I A Δυναμική αντίσταση dv r δ di Η δυναμική αντίσταση ορίζεται από την παράγωγο της καμπύλης If(V) στο σημείο λειτουργίας και για μη γραμμικά στοιχεία μεταβάλλεται με τη μεταβολή του σημείου λειτουργίας Για μικρές μεταβολές τάσης,, ρεύματος,, (π.χ. ημιτονικές) έχουμε r δ

Τα θεωρήματα των Thevenn και Norton Χρησιμοποιούνται στην επίλυση κυκλωμάτων Θεώρημα Thevenn Για κάθε γραμμικό κύκλωμα, το ισοδύναμο κύκλωμα για δυο ελεύθερα άκρα του, είναι μια πηγή τάσης σε σειρά με μια αντίσταση. Η πηγή τάσης ισούται με την τάση στα ελεύθερα άκρα του κυκλώματος, ενώ η αντίσταση ισούται με αυτήν που βλέπουμε μεταξύ των δυο άκρων Θεώρημα Norton Για κάθε γραμμικό κύκλωμα, το ισοδύναμο κύκλωμα για δυο ελεύθερα άκρα του, είναι μια πηγή ρεύματος παράλληλη με μια αγωγιμότητα. Η πηγή ρεύματος ισούται με το ρεύμα που διαρρέει τα άκρα του κυκλώματος όταν αυτά βραχυκυκλωθούν, ενώ η αγωγιμότητα ισούται με αυτήν που βλέπουμε μεταξύ των δυο άκρων

Τα θεωρήματα των Thevenn και Norton Η αντίσταση που βλέπουμε στα δυο άκρα του δικτυώματος ισούται με το αντίστροφο της αγωγιμότητας που βλέπουμε στα άκρα αυτά R T 1 G N Για να βρούμε την αντίσταση και την αγωγιμότητα πρέπει να βαχυκυκλώσουμε όλες τις ανεξάρτητες πηγές τάσης και να ανοίξουμε όλους τους κλάδους του δικτυώματος που περιέχουν ανεξάρτητες πηγές ρεύματος Για το προηγούμενο σχήμα et AB( αν ) ι Ν ι AB ( βρ ) R T AB( αν ) AB( βρ) G N R 1 AB( βρ) T AB( αν )

Παράδειγμα Με εφαρμογή του θεωρήματος Thevenn να βρεθεί το ρεύμα που διαρρέει το στοιχείο Σ Λύση 1. Ανοίγουμε το κύκλωμα στα σημεία Α και Β οπότε το στοιχείο τίθεται εκτός κυκλώματος 2. Βρίσκουμε την τάση στα άκρα ΑΒ

Παράδειγμα (συνέχεια) Τάση που οφείλεται στη πηγή τάσης Τάση που οφείλεται στην πηγή ρεύματος Τελικά R 1KΩ 12 4 2 VABE E V V R1+ R2 (1+ 2) KΩ 12 VABI Rολ I ( R1 / / R2) I KΩ 15mA 10V 1+ 2 V V + V 4 + 10 14V T ABE ABI

Παράδειγμα (συνέχεια) Αντίσταση που βλέπουμε στα άκρα ΑΒ RR 12 R R R KΩ KΩ T 1 2 1 / / 2 0,666 R1+ R2 1+ 2 Ισοδύναμο κύκλωμα κατά Thevenn Βρίσκουμε την ευθεία φόρτου και υπολογίζουμε το ρεύμα δια του στοιχείου Σ (I Q 5mA)

Επίλυση κυκλωμάτων, νόμοι του Krchhoff Νόμος ρευμάτων Το αλγεβρικό άθροισμα των ρευμάτων που διαρρέουν τους κλάδους ενός κόμβου είναι μηδέν Νόμος τάσεων Το αλγεβρικό άθροισμα των τάσεων στα άκρα των στοιχείων σε ένα ηλεκτρικό βρόχο είναι μηδέν 1 2 3 0 R 11+ R 2 3+ R 3 4 e1 0

Ενισχυτές τάσης και ρεύματος Ενισχυτής τάσης Διάταξη που παρέχει στην έξοδό της πολλαπλάσια τάση από την τάση εισόδου της A A 1 o a όπου a Ιδανικός ενισχυτής Πραγματικός ενισχυτής Στον ιδανικό ενισχυτή η αντίσταση εισόδου είναι άπειρη ενώ η αντίσταση εξόδου είναι μηδενική Σε ένα πραγματικό ενισχυτή η ενίσχυση μεταβάλλεται με τη συχνότητα του σήματος εισόδου

Ενισχυτές τάσης Ισοδύναμο πραγματικού ενισχυτή τάσης που διεγείρεται από μια μη ιδανική πηγή τάσης και στην έξοδό του έχει μια αντίσταση φορτίου R L. R A L a o RL + Ro RL a o a RL + Ro A A KA R A A KK A o o s o a s s R + Rs Αν R >>R s και R o <<R L τότε K 1, K ο 1 και συνεπώς A s A a

Ενισχυτής ρεύματος Διάταξη που παρέχει στην έξοδό της πολλαπλάσιο ρεύμα από το ρεύμα εισόδου της A όπου 1 o β A β Ιδανικός ενισχυτής Πραγματικός ενισχυτής Στον ιδανικό ενισχυτή η αγωγιμότητα εισόδου είναι άπειρη ενώ η αγωγιμότητα εξόδου είναι μηδενική Σε ένα πραγματικό ενισχυτή η ενίσχυση μεταβάλλεται με τη συχνότητα του σήματος εισόδου

Ενισχυτής ρεύματος Για τον πραγματικό ενισχυτή του σχήματος που διεγείρεται από μια πραγματική πηγή ρεύματος και στην έξοδό του τροφοδοτεί φορτίο G L : G A L β o GL + Go GL β o β GL + Go A A M A G A A MM A o o s o β s s G + Gs Αν G >>G s και G o <<G L τότε M 1, M ο 1 και συνεπώς A s A β

Θεωρία των διθύρων Ως δίθυρο (τετράπολο) χαρακτηρίζεται κάθε κύκλωμα που έχει δυο ζεύξη ακροδεκτών Το ρεύμα διαμέσου του άνω ακροδέκτη του ορίζεται ως θετικό αν κατευθύνεται προς το δικτύωμα Για γραμμικό κύκλωμα τα μεγέθη 1, 1, 2, 2 συνδέονται μεταξύ τους με γραμμικές σχέσεις

Ισοδύναμα z και y Θεωρώντας ανεξάρτητες μεταβλητές τα 1, 2, έχουμε Οι σταθερές αναλογίας z j έχουν διαστάσεις αντίστασης και λέγονται παράμετροι z του διθύρου Ισοδύναμο κύκλωμα 1 z111 + z122 z + z 2 21 1 22 2

Ισοδύναμα z και y Θεωρώντας ανεξάρτητες μεταβλητές τα 1, 2, έχουμε Οι σταθερές αναλογίας y j έχουν διαστάσεις αγωγιμότητας και λέγονται παράμετροι y του διθύρου Ισοδύναμο κύκλωμα 1 y111 + y122 y + y 2 21 1 22 2

Το υβριδικό δίθυρο Χρησιμοποιείται συνήθως για την πραγματοποίηση ισοδύναμων κυκλωμάτων των τρανζίστορ στις χαμηλές συχνότητες Θεωρώντας ανεξάρτητες μεταβλητές τα 1 και 2, έχουμε h+ h h + h 1 11 1 12 2 2 21 1 22 2 Υβριδικό ισοδύναμο ή h + h h + h 1 1 r 2 2 f 1 o 2 h h r 1 1 0 1 2 1 2 0 h h f o 2 1 0 2 2 2 1 0

Διέγερση του υβριδικού δίθυρου με πηγή τάσης και επιδόσεις Απολαβή ρεύματος A L 2 2 f 1 o 2 1 1 h + h R 2 2 L 2 h f 1 hr o L 2 (1 + hr) h o L 2 f 1 A hf 1 + hr o L

Διέγερση του υβριδικού δίθυρου με πηγή τάσης και επιδόσεις Αντίσταση εισόδου R h + h R h Rh 1 1 r 2 2 L r 1 1 1 R h + AR h L r R h G hh L f r + h o

Διέγερση του υβριδικού δίθυρου με πηγή τάσης και επιδόσεις Απολαβή τάσης A A A 2 1 2 R 2 L 2 R 1 1 1 1 R L A R L 1 A A hf / RL RL GL + h hh o f r h GL + h hf hh h G + h ( ) f r L o o A A s s s s R A R + R 2 1 2 s 1

Διέγερση του υβριδικού δίθυρου με πηγή τάσης και επιδόσεις Αντίσταση εξόδου R ο R o 2 2 h + h 2 o 2 f 1 h o + 1 1 hf 2 R o 2 Rs + h hh h( R+ h) hh ho R + h s f r o s f r ( Rs h) 1 h r 2 + + 1 hr R + h 2 s 0 G o h o R hh s f r + h

Το θεώρημα Mller και το δυαδικό του Μαζί με το δυαδικό του είναι χρήσιμο για την απλοποίηση κυκλωμάτων που περιέχουν ενισχυτικές μονάδες με τρανζίστορ και τελεστικούς ενισχυτές Η αντίσταση R μπορεί να αντικατασταθεί ισοδύναμα με δυο αντιστάσεις R A και R B Το μέγεθος των αντιστάσεων εξαρτάται από την απολαβή B K A

Το θεώρημα Mller Επειδή το ρεύμα A που φεύγει από το σημείο Α καθώς και το ρεύμα B που φεύγει από το σημείο Β πρέπει να είναι τα ίδια και στο ισοδύναμο κύκλωμα, θα έχουμε: A 1 ( 1 K) R R R A R R 1 K A B A B A A A R A R 1 K Αν K >> 1 τότε R A R K A B 1 1 1 R R R K R R 1 R 1 R K B 1 1 K B A B A B B B B B Αν K >> 1 τότε RB R

Το δυαδικό θεώρημα του Mller Η αντίσταση R στο αρχικό κύκλωμα διαρρέεται από δυο ρεύματα Λόγω της ισοδυναμίας των κυκλωμάτων οι αντίστοιχες τάσεις και τα ρεύματα στα δυο κυκλώματα θα είναι ίσα R R ( + ) ( 1+ 2) R2 R 1 2 A 1 2 RA R 1+ 1 RA R K ό Κ ι 2 ( 1 ) που 1 Β 1 RΒ R + 1 2 R Β R 1 Οι αντιστάσεις R A, R B που υπολογίστηκαν αντικαθιστούν την αντίσταση R στο ισοδύναμο κατά Mller κύκλωμα 1 K