Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων"

Transcript

1 Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση αυτή είναι από τις πλέον συχνά χρησιμοποιούμενες για την αντιστροφή συναρτήσεων στα ηλεκτρικά κυκλώματα. Παράδειγμα 4. Να βρεθεί ο μετασχηματισμός aplace των συναρτήσεων c( u ( και i( u (. Είναι γνωστό από την ταυτότητα του Euler ότι j j j j e e e e c( και i( (4.3 j Λόγω της σχέσης (4.3 και της ιδιότητας της γραμμικότητας του μετασχηματισμού aplace μπορούμε να γράψουμε ότι [c( u ( ], με (4.3 j j [i( u ( ], με (4.33 j j j Παράδειγμα 4.3 a f( e u(. Να βρεθεί ο μετασχηματισμός aplace για τη συνάρτηση Για να βρούμε το μετασχηματισμό aplace F( εφαρμόζουμε κατά παράγοντες ολοκλήρωση: ( a ( a ( a e e F( e d d a a (4.34 Η περιοχή σύγκλισης καθορίζεται για a έτσι ώστε ο πρώτος όρος του δευτέρου μέρους της ανωτέρω εξίσωσης να είναι ίσος με μηδέν. Έτσι

2 Κεφάλαιο 4 Μετασχηματισμός aplace 4. ( a -a e e u ( d, με (4.35 a ( a Η παραπάνω εξίσωση αποτελεί μια μερική περίπτωση της γενικής σχέσης -a! e u ( ( a, με (4.36 Παράδειγμα 4.4 ih( a u( και ch( a u( Να βρεθεί ο μετασχηματισμός aplace των συναρτήσεων Γνωρίζουμε ότι a a a a e e e e ih( a και ch( a (4.37 Λόγω και πάλι της ιδιότητας της γραμμικότητας έχουμε: a a e e a [ih( a u( ] (4.38 a a a a a e e [ch( a u( ] (4.39 a a a Παράδειγμα 4.5 u (,. Να βρεθεί ο μετασχηματισμός aplace της συνάρτησης Με εφαρμογή ολοκλήρωσης κατά παράγοντε έχουμε: u( e d de e e d e e e d e d (4.4 Συνεπώς u ( u ( (4.4 και επειδή από τη παραπάνω σχέση εύκολα πλέον προκύπτει ότι! u ( (4.4 Ο Πίνακας 4. δίνει συνοπτικά τους μετασχηματισμούς aplace χαρακτηριστικών συναρτήσεων.

3 Κεφάλαιο 4 Μετασχηματισμός aplace 4. Πίνακας 4. Μετασχηματισμός aplace χαρακτηριστικών συναρτήσεων f( F( f( F( ( a ae be b a ( ab, b, a b ( a( b u ( i( i c c( c i! a e i(, a ( a d( d a e c(, a a ( a d ( d a i( e, a ( ai c ( a a e, a a a e c(, a ( ac i ( a a e, a ( a i( ( a e,! ( a a c( ( i( e a i( a ( a c( ih( a a a a b e e b a ( ab,, a b ( a( b ch( a a

4 Κεφάλαιο 4 Μετασχηματισμός aplace Ιδιότητες του μετασχηματισμού aplace Θα εξετάσουμε τώρα ορισμένες βασικές ιδιότητες του μετασχηματισμού aplace. Πολλαπλασιασμός με μια σταθερά Αν [ f( ] F( τότε [ Kf ( ] KF( (4.43 Δηλαδή, ο μετασχηματισμός aplace της συνάρτησης Kf (, όπου K μια σταθερά, ισούται με τη σταθερά K επί το μετασχηματισμό aplace της f(. Αυτό αποδεικνύεται ως εξής Παράδειγμα 4.6 f( i( xc( [ Kf(] Kf( e d K f( e d K [ f(] Εδώ η σταθερά ισούται με i( F( i( x Να προσδιοριστεί ο μετασχηματισμός aplace της συνάρτησης K x ενώ f ( c. Επομένως Γραμμικότητα Ο μετασχηματισμός aplace ενός πεπερασμένου αθροίσματος χρονικών συναρτήσεων είναι ίσος με το άθροισμα των μετασχηματισμών των επιμέρους συναρτήσεων. Δηλαδή [ Kf( Kf( K3f3(...] KF( KF( K3F3(... (4.44 όπου Ki, i,,3,... πραγματικές σταθερές. Η απόδειξη του θεωρήματος αυτού γίνεται ως εξής [ K f ( K f ( K f (...] [ K f ( K f ( K f (...] e d K f( e d K f( e d K f( e d... K F ( K F ( K F (

5 Κεφάλαιο 4 Μετασχηματισμός aplace 4.4 Παράδειγμα 4.7 Να προσδιοριστεί ο μετασχηματισμός aplace της συνάρτησης. ( 3( f e ( u Η συνάρτηση μπορεί να γραφεί ως εξής: f( (33 e ( u 3( u 3 e u( 3 f( 3 f( όπου f ( u ( και f ( e u(. Συνεπώς F( 3 u( 3 e u( 3 3 3( 3 6 F( ( ( Διαφόριση Η παράγωγος μιας συνάρτησης f( στο πεδίο του χρόνου αντιστοιχίζεται στο πεδίο aplace με τον πολλαπλασιασμό της F( με το μείον την αρχική τιμή της συνάρτησης f (. Δηλαδή df ( F( f( (4.45 d Για την απόδειξη εργαζόμαστε ως ακολούθως: df ( f( e d d Ολοκληρώνοντας κατά μέρη την παραπάνω σχέση παίρνουμε df ( d όπου το e όταν το και ολοκλήρωμα e f( f( e d e όταν. Επομένως, αφού και το f( e d είναι ο μετασχηματισμός aplace της f( προκύπτει: df ( F( f( d Με αυτή την ιδιότητα μπορούμε να βρούμε το μετασχηματισμό της οστής παραγώγου χρησιμοποιώντας επαναληπτικά την παραπάνω σχέση. Έτσι

6 Κεφάλαιο 4 Μετασχηματισμός aplace 4.5 d f( ( F( f(... f ( (4.46 d ( όπου f ( είναι η ( οστή παράγωγος της f για. Είναι σημαντικό να σημειώσουμε εδώ ότι η παραπάνω σχέση επιτρέπει το μετασχηματισμό γραμμικών διαφορικών εξισώσεων σε απλές αλγεβρικές εξισώσεις στο πεδίο της μιγαδικής συχνότητας λαμβάνοντας παράλληλα υπόψη τις αρχικές συνθήκες για την f(. Αυτή ακριβώς η ιδιότητα χρησιμοποιείται για την απλοποίηση της εύρεσης της απόκρισης των κυκλωμάτων και συγκεκριμένα με τη μετατροπή των γραμμικών διαφορικών εξισώσεων σε αλγεβρικές εξισώσεις στο πεδίο aplace. Παράδειγμα 4.8 Να επιλυθεί η ακόλουθη γραμμική διαφορική εξίσωση ου βαθμού: dx ( dx ( 6 5( x e u ( d d με αρχικές συνθήκες x ( 4 και dx(. d Παίρνουμε το μετασχηματισμό aplace και στις δυο πλευρές της διαφορικής εξίσωσης: dx( X( x( 6 X( x( 5 X( d Χρησιμοποιώντας τις αρχικές συνθήκες έχουμε X( 46 X( 45 X( ή X( 65 4 Με επίλυση ως προς X( βρίσκουμε: ( 3( 9 7 / 3 /3 X( ( ( ( 5 5 οπότε

7 Κεφάλαιο 4 Μετασχηματισμός aplace x ( 7 e e e u ( 3 3 Παράδειγμα 4.9 Να επιλυθεί το ακόλουθο σύστημα διαφορικών εξισώσεων: dx( dy( y( 5 u( d d dx( dy( 5( x 3 e u( d d με αρχικές συνθήκες x ( και y (. Μετασχηματίζουμε τις εξισώσεις στο πεδίο aplace: 5 X( x( Y( y( Y( X( x( 5 X( 3 Y( 3 y( Αντικαθιστούμε τις αρχικές τιμές, οπότε παίρνουμε το ακόλουθο σύστημα γραμμικών εξισώσεων ως προς X( και Y( : 5 X( ( Y( ( 5 X( 3 Y( Λύνουμε ως προς X( και Y( : 3 X( Y( ( ( 4 Αναλύουμε τις παραπάνω σχέσεις σε μερικά κλάσματα (δες σχετικό εδάφιο στο κεφάλαιο αυτό:.. X( (.755 ( Y( 3( (.755 ( 3.45 Παίρνουμε τώρα τον αντίστροφο μετασχηματισμό aplace και βρίσκουμε τελικά ότι x(.e. e u(

8 Κεφάλαιο 4 Μετασχηματισμός aplace y (.5 e.697e.36 e u ( 3 Ολοκλήρωση στο πεδίο του χρόνου Ο μετασχηματισμός aplace του ολοκληρώματος μιας συνάρτησης στο πεδίο του χρόνου ισούται με το πηλίκο του μετασχηματισμού aplace της συνάρτησης προς τη μιγαδική συχνότητα. F( f( d (4.47 Για την απόδειξη ξεκινάμε από τον ορισμό: f( d f( de d Ολοκληρώνοντας κατά μέρη έχουμε: e f( d f( d e f( d Όμως e καθώς το και επίσης Επομένως f( d F( f( d Παράδειγμα 4. Να υπολογιστεί ο μετασχηματισμός aplace της μοναδιαίας συνάρτησης κλίσης r ( u (. Η συνάρτηση r ( σχετίζεται με τη μοναδιαία βηματική συνάρτηση u ( με τη σχέση Συνεπώς r ( u ( ud ( [(] u [(] r u( d

9 Κεφάλαιο 4 Μετασχηματισμός aplace 4.8 Παράδειγμα 4. Το ρεύμα i ( σε ένα κύκλωμα καθορίζεται από την ακόλουθη ολοκληρωτική εξίσωση Ri( i( d v( C όπου RC, εκφράζουν αντίσταση και χωρητικότητα, αντίστοιχα. Βρείτε το i ( όταν οι αρχικές συνθήκες είναι μηδενικές και η τάση που τροφοδοτεί το κύκλωμα έχει τη μορφή, v ( e, Παίρνουμε το μετασχηματισμό aplace της ολοκληρωτικής εξίσωσης: RI( I( V( C Λύνοντας ως προς I( βρίσκουμε V( I( R RC Ο μετασχηματισμός aplace της πηγής τάσης δίνει ( ( ( e e v ( e u ( V( e e d e d ( Αντικαθιστούμε τη V( στο I( και έχουμε οπότε C ( e ( RC R( RC I( e e R RC RC ( ( ( RC C e i ( e u ( e u ( ( RC R( RC RCe e RC i ( u ( RRC (

10 Κεφάλαιο 4 Μετασχηματισμός aplace 4.9 Διαφόριση στο μιγαδικό επίπεδο Η παράγωγος του μετασχηματισμού aplace στο πεδίο της μιγαδικής συχνότητας αντιστοιχίζεται με το αρνητικό του μετασχηματισμού aplace του γινομένου της f( με το. Δηλαδή d ( F( f (4.48 d Η ιδιότητα αυτή καλείται και ιδιότητα μιγαδικής διαφόρισης (cmplex differeiai prpery και αποδεικνύεται ως εξής df( d de f( e d f( d d d d f ( e d f ( e d f ( Παράδειγμα 4. Να υπολογιστεί ο μετασχηματισμός aplace της συνάρτησης a f( Ke u(, a. Είναι a d a d K K [ Ke u( ] Ke u( d d a ( a Ολοκλήρωση στο μιγαδικό επίπεδο Η ιδιότητα αυτή εκφράζεται από τη σχέση f( F ( d (4.49 Για την απόδειξη της ανωτέρω σχέση ξεκινούμε από τον ορισμό της F( : Συνεπώς F( f( e d f( e dd F ( d Αλλάζουμε τη σειρά ολοκλήρωσης

11 Κεφάλαιο 4 Μετασχηματισμός aplace 4. Όμως f( e dd ( d F e e d e e Αν αντικαταστήσουμε το παραπάνω ολοκλήρωμα προκύπτει πράγματι ότι f( f( e d d e d F ( d Παράδειγμα 4.3 Να υπολογιστεί ο μετασχηματισμός aplace της συνάρτησης. Είναι f( i( u( [i( u ( ] 4 Συνεπώς i( u ( d 4 Γνωρίζουμε ότι για a ισχύει η σχέση d a a a a Συνεπώς i( u ( d a 4 i( u ( a Μετατόπιση στο πεδίο του χρόνου Η μετατόπιση στο πεδίο του χρόνου μιας συνάρτησης f( προς τα δεξιά κατά a ( a μας δίνει τη συνάρτηση ( ( f a u a. Αν λοιπόν f F a ( ( τότε f( a u( a e F(, a (4.5

12 Κεφάλαιο 4 Μετασχηματισμός aplace 4. Δηλαδή, η μετατόπιση στο πεδίο του χρόνου προς τα δεξιά κατά a αντιστοιχεί σε a πολλαπλασιασμό με την εκθετική συνάρτηση e στο πεδίο της συχνότητας. Η απόδειξη της ιδιότητας αυτής γίνεται ως εξής [ f( a u( a] f( a u( a e d f( a e d Εισάγουμε μια νέα μεταβλητή. Συνεπώς a x a οπότε x όταν a και x όταν ( xa a x a F [ f( a u( a] f( x e dx e f( x e dx e ( Παράδειγμα 4.4 Να υπολογιστεί ο μετασχηματισμός aplace της συνάρτησης f( ( ( u Είναι e F( [( ( u] e u ( Παράδειγμα 4.5 Να υπολογιστεί ο μετασχηματισμός aplace του τετραγω-νικού παλμού του Σχήματος 4.7. f ( A a Σχήμα 4.7 Τετραγωνικός παλμός. Η συνάρτηση f( γράφεται ως f( Au( Au( a Συνεπώς a A F( [ Au( ] [ Au( a] A A e e a

13 Κεφάλαιο 4 Μετασχηματισμός aplace 4. Παράδειγμα 4.6 Να υπολογιστεί ο μετασχηματισμός aplace του τριγωνικού παλμού του Σχήματος 4.8. f ( A a b Αν Σχήμα 4.8 Μετατοπισμένος τριγωνικός παλμός. r ( u ( τότε η συνάρτηση f( μπορεί να εκφραστεί ως f ( Ar( a Ar( b Au( b Εφαρμόζοντας το θεώρημα της μετατόπισης βρίσκουμε F( [ Ar( a] [ Ar( b] [ Au( b] a b b A e A e A e A e e e a b b Μετατόπιση στο πεδίο της συχνότητας Αν f ( F( τότε a F( a e f(, a (4.5 Δηλαδή, η μετατόπιση στο πεδίο της μιγαδικής συχνότητας προς τα δεξιά κατά a a αντιστοιχεί σε πολλαπλασιασμό με την εκθετική συνάρτηση e της συνάρτησης στο πεδίο του χρόνου. Για την απόδειξη της ιδιότητας αυτής έχουμε: a a ( a e f( e f( e d f( e d ( a F

14 Κεφάλαιο 4 Μετασχηματισμός aplace 4.3 Παράδειγμα 4.7 Βρείτε το μετασχηματισμό aplace της συνάρτησης. ( 3 f e c(( u Γνωρίζουμε ότι c( u ( 4 οπότε 3 3 e c( u( ( 3 4 Χρονική κλιμάκωση Αν f ( F( τότε f( a F, a a a (4.5 Η ιδιότητα αυτή είναι πολύ χρήσιμη για τη μελέτη συστημάτων στα οποία υπάρχει κλιμάκωση του χρόνου. Η ιδιότητα αυτή αποδεικνύεται ως εξής Αν θέσουμε f( a f( a e d x a τότε dx ad και x a dx f( a f( a e d f( x e, a ( / F a a a Παράδειγμα 4.8 Βρείτε το μετασχηματισμό aplace της συνάρτησης. Γνωρίζουμε ότι οπότε 3 f( ( 5 e u(3 ( και 5 5 e u( ( 5 e u(

15 Κεφάλαιο 4 Μετασχηματισμός aplace 4.4 Αποκοπή μιας συνάρτησης στο πεδίο του χρόνου Αν πολλαπλασιάσουμε μια συνάρτηση f( με u ( τότε αποκόπτεται (μηδενίζεται το τμήμα της συνάρτησης από έως. Δηλαδή, στην περίπτωση αυτή ισχύει ότι f(( u e f( (4.53 Για την απόδειξη της ιδιότητας αυτής ξεκινάμε από τον ορισμό του μετασχηματισμού aplace: f( u( f( u( e d Αν θέσουμε x τότε dx d και ( x f (( u e d f ( x ( u x e dx ( x x ( ( f x e dx e f x e dx e f( Παράδειγμα 4.9 Βρείτε το μετασχηματισμό aplace της συνάρτησης f( u( Είναι u( e e Στον Πίνακα 4. παρουσιάζονται περιληπτικά οι σπουδαιότερες από τις ιδιότητες του μετασχηματισμού aplace. Πρέπει να σημειώσουμε ότι εκτός από τις ιδιότητες που αναπτύξαμε παραπάνω, στη συνέχεια θα εξετάσουμε αναλυτικά και ιδιαίτερα ορισμένες από τις ιδιότητες αυτές που είναι πολύ σημαντικές για την ανάλυση και την κατανόηση της συμπεριφοράς των κυκλωμάτων αλλά γενικότερα των γραμμικών συστημάτων.

16 Κεφάλαιο 4 Μετασχηματισμός aplace 4.5 Πίνακας 4. Ιδιότητες και θεωρήματα του Μετασχηματισμού aplace Ιδιότητα/ Θεώρημα f( F( Πολλαπλασιασμός με μια σταθερά Γραμμικότητα Kf ( K f ( K f ( K f ( K F( K F ( K F ( K F ( Διαφόριση Παράγωγος βαθμού Ολοκλήρωση στο πεδίο του χρόνου df ( d d f( d f( d F( f ( ( F( f(... f ( F( Διαφόριση στο μιγαδικό επίπεδο f ( df( d Ολοκλήρωση στο μιγαδικό επίπεδο f( F( d Μετατόπιση στο πεδίο του χρόνου Μετατόπιση στο πεδίο της συχνότητας f( a u( a, a a e F( a e f(, a F( a Χρονική κλιμάκωση f( a, a F a a

17 Κεφάλαιο 4 Μετασχηματισμός aplace 4.6 Αποκοπή μιας συνάρτησης στο πεδίο του χρόνου f(( u e f( Θεώρημα αρχικής τιμής lim f ( lim F( Θεώρημα της τελικής τιμής lim f( lim F ( Συνέλιξη στο πεδίο του χρόνου Συνέλιξη στο πεδίο της συχνότητας Περιοδική συνάρτηση f * g f( g( d F( G( f(( g f( T, F f(, T F ( ( f( e, αλλού c j F* G F( G( d j c j c g T f 4.5 Τα θεωρήματα της αρχικής και της τελικής τιμής Τα θεωρήματα της αρχικής και της τελικής τιμής είναι πολύ χρήσιμα διότι μας επιτρέπουν να προσδιορίζουμε άμεσα από την F( την τιμή και τη συμπεριφορά της f( για και. Αν η F( αντιπροσωπεύει την απόκριση ενός κυκλώματος στο πεδίο της μιγαδικής συχνότητας, τότε μπορούμε με τα θεωρήματα αυτά να βρούμε την απόκριση στην αρχή του χρόνου λειτουργίας καθώς και στη μόνιμη κατάσταση λειτουργίας του κυκλώματος χωρίς να χρειαστεί να αντιστρέφουμε στο πεδίο του χρόνου για να προσδιορίζουμε την f( Θεώρημα αρχικής τιμής Το θεώρημα της αρχικής τιμής μας επιτρέπει να προσδιορίζουμε την αρχική τιμή της συνάρτησης f(, δηλαδή την τιμή lim f (, από την οριακή τιμή της F( καθώς το τείνει στο, δηλαδή lim f( lim F( (4.54 Για να ισχύει η παραπάνω σχέση απαιτείται όπως τόσο η f( όσο και η f( να

18 Κεφάλαιο 4 Μετασχηματισμός aplace 4.7 έχουν μετασχηματισμό aplace. Αυτό μεταφράζεται στο ότι η συνάρτηση f( πρέπει να είναι συνεχής και να μην περιέχει κρουστικές συναρτήσεις (ή να περιέχει το πολύ μια κρουστική συνάρτηση στο. Για την απόδειξη του θεωρήματος ξεκινάμε από τον μετασχηματισμό aplace της παραγώγου Παίρνουμε τώρα το όριο καθώς df df e d ( f ( (4.55 F d d : df e d F f d lim lim ( ( Το αριστερό μέρος της ανωτέρω σχέσης γράφεται ως df df lim ed e d d d df Όμως, για έχουμε lim e, οπότε d df lim e d f ( f ( d (4.56 (4.57 (4.58 Επειδή το f ( είναι ανεξάρτητο του, το δεύτερο μέρος της εξίσωσης (4.56 γράφεται ως F F lim ( f( lim ( f ( (4.59 Συνδυάζοντας τις εξισώσεις (4.58 και (4.59 παίρνουμε lim F( f( lim f( (4.6 που αποδεικνύει την ορθότητα του θεωρήματος της αρχικής τιμής. Παράδειγμα 4. Να βρεθεί η αρχική τιμής f ( της συνάρτησης f( που έχει μετασχηματισμό aplace. ( F( 3 3 Η εφαρμογή του θεωρήματος της αρχικής τιμής δίνει

19 Κεφάλαιο 4 Μετασχηματισμός aplace 4.8 και συνεπώς f (. ( f( lim F( lim lim Θεώρημα τελικής τιμής Το θεώρημα της τελικής τιμής διατυπώνεται ως εξής: lim f( lim F( (4.6 με την προϋπόθεση ότι οι ρίζες του παρονομαστή της F( (οι πόλοι βρίσκονται στο αριστερό μέρος του μιγαδικού επιπέδου. Η απόδειξη του θεωρήματος ξεκινά και πάλι από τη σχέση μετασχηματισμού της παραγώγου: df e d F( f ( (4.6 d Παίρνοντας το όριο για έχουμε d Το πρώτο μέρος για γίνεται df lim e d lim[ F( f ( ] df df df lim e d d lim dx f( f( d d dx (4.63 (4.64 Συνεπώς, από τις σχέσεις (4.6 και (4.64 προκύπτει f( f( lim F( f ( (4.65 και τελικά f( lim F( (4.66 Το θεώρημα της τελικής τιμής είναι εξαιρετικά χρήσιμο στην ανάλυση των ηλεκτρικών κυκλωμάτων γιατί μας επιτρέπει να προσδιορίζουμε από την F( τη μορφή της απόκριση στη μόνιμη κατάσταση λειτουργίας. Παράδειγμα 4. Η τάση που εκφράζει την απόκριση ενός κυκλώματος έχει τον ακόλουθο μετασχηματισμό aplace.

20 Κεφάλαιο 4 Μετασχηματισμός aplace 4.9 ( V( ( 45 Να προσδιοριστεί η τιμή της τάσης v ( στη μόνιμη κατάσταση λειτουργίας του κυκλώματος. Οι πόλοι της V( είναι και,3 j, δηλαδή Re[ i ], i,,3. Συνεπώς, μπορούμε να εφαρμόσουμε το θεώρημα της τελικής τιμής: ( lim v ( lim V( lim 8V ( 45 Πράγματι, η τάση στο πεδίο του χρόνου έχει τη μορφή και lim v ( 8V. v ( 88e c( 4e i( u (V Παράδειγμα 4. Δίνεται η υπολογιστεί η οριακή τιμή f (. f( e u(. Να εξεταστεί αν μπορεί να Προφανώς lime. Όμως, αν πάρουμε το μετασχηματισμό aplace της f( είναι f( και lim Βλέπουμε δηλαδή ότι στην περίπτωση αυτή, δεν μπορεί να εφαρμοστεί το θεώρημα της τελικής τιμής και αυτό γιατί ο πόλος δεν ανήκει στο αριστερό μιγαδικό ημιεπίπεδο Το θεώρημα της συνέλιξης Όπως γνωρίζουμε και από τη θεωρία των Ηλεκτρικών Κυκλωμάτων Ι, η συνέλιξη (cvlui μας επιτρέπει να προσδιορίζουμε την απόκριση ενός κυκλώματος, με μηδενικές αρχικές φορτίσεις, όταν είναι γνωστή η διέγερση και η κρουστική του απόκριση. Γενικά, η συνέλιξη παίζει πολύ σημαντικό ρόλο στην ανάλυση των γραμμικών συστημάτων. Η συνέλιξη δύο συναρτήσεων f( και g ( συμβολίζεται

21 Κεφάλαιο 4 Μετασχηματισμός aplace 4.3 ως h f * g και εκφράζεται από τη σχέση h ( f( g ( d f( g( d (4.67 Συμβολικά γράφουμε h f g gf (4.68 Το θεώρημα της συνέλιξης καθορίζει ότι αν h ( H(, f F g ( =G( τότε ( ( και H( F( G( (4.69 Δηλαδή, στο πεδίο της συχνότητας ο μετασχηματισμός aplace μετατρέπει τη συνέλιξη σε πολλαπλασιασμό. Απόδειξη Ο μετασχηματισμός aplace της συνέλιξης των δύο συναρτήσεων f( και g ( μπορεί να γραφεί ως h ( f( ( g de d (4.7 Επειδή, u ( (4.7, η σχέση (4.7 μπορεί να γραφεί ως h ( f( u ( g( de d (4.7 Αλλάζοντας τη σειρά των ολοκληρωμάτων έχουμε h ( g( f( u ( e dd (4.73 Το ολοκλήρωμα μέσα στην αγκύλη δεν είναι τίποτε άλλο από το μετασχηματισμό aplace της f( u( u(. Σύμφωνα λοιπόν με την ιδιότητα της χρονικής μετατόπισης έχουμε ( ( ( F F( ( h ( H( F( G( h g e d g e d (4.74 (4.75

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑ RC ΜΕ ΚΡΟΥΣΤΙΚΗ ΔΙΕΓΕΡΣΗ

ΚΥΚΛΩΜΑ RC ΜΕ ΚΡΟΥΣΤΙΚΗ ΔΙΕΓΕΡΣΗ ΚΥΚΛΩΜΑ ΜΕ ΚΡΟΥΣΤΙΚΗ ΙΕΓΕΡΣΗ Εννοούμε την απόκριση ενός γραμμικού, χρονικά αμετάβλητου κυκλώματος σε μια μοναδιαία κρουστική συνάρτηση δ() εφαρμοζόμενη στον χρόνο = 0 (απόκριση μηδενικής κατάστασης). Η

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει. Έστω xt : Ο (αμφίπλευρος) μετασχηματισμός LAPLACE ορίζεται : X: L { xt} : X xt e dt = = μιγαδική συνάρτηση της μιγαδικής μεταβλητής = σ+ j Ο (μονόπλευρος) μετασχηματισμός LAPLACE ορίζεται : L { xt } :

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

3. Κεφάλαιο Μετασχηματισμός Fourier

3. Κεφάλαιο Μετασχηματισμός Fourier 3 Κεφάλαιο 3 Ορισμοί Ο μετασχηματισμός Fourir αποτελεί την επέκταση των σειρών Fourir στη γενική κατηγορία των συναρτήσεων (περιοδικών και μη) Όπως και στις σειρές οι συναρτήσεις θα εκφράζονται με τη βοήθεια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

Κεφάλαιο 4. Απόκριση συχνότητας

Κεφάλαιο 4. Απόκριση συχνότητας Κεφάλαιο 4 Απόκριση συχνότητας Εισαγωγή Στο κεφάλαιο αυτό θα μελετήσουμε την απόκριση συχνότητας ενός κυκλώματος, δηλαδή τον τρόπο με τον οποίο μεταβάλλεται μία τάση ή ένα ρεύμα του κυκλώματος όταν μεταβάλλεται

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z

7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z 7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Ένα σημείο λέγεται ανώμαλο σημείο της συνάρτησης f( ) αν η f( ) δεν είναι αναλυτική στο και σε κάθε γειτονιά του υπάρχει ένα τουλάχιστον

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + + Μετασχηματισμός aplace ορίζεται ως εξής : t X() [x( t)] xte () dt = = Ο αντίστροφος μετασχηματισμός aplace ορίζεται από το μιγαδικό ολοκλήρωμα : t x(t) = [ X()] = X() e dt π j c C είναι μία καμπύλη που

Διαβάστε περισσότερα

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z 7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Σκοπός του Κεφαλαίου είναι να ορίσει

Διαβάστε περισσότερα

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί. O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 8: Μετασχηματισμός Ζ Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Z Μετασχηματισμός Ζ (Ζ-Transform) Χρήσιμα Ζεύγη ΖT και Περιοχές Σύγκλισης (ROC) Ιδιότητες

Διαβάστε περισσότερα

Κεφάλαιο 5 Μετασχηματισμός z και Συνάρτηση μεταφοράς

Κεφάλαιο 5 Μετασχηματισμός z και Συνάρτηση μεταφοράς Κεφάλαιο Μετασχηματισμός και Συνάρτηση μεταφοράς Σύνοψη Στο κεφάλαιο αυτό δίνεται ο ορισμός του μετασχηματισμού και παρουσιάζονται οι ιδιότητες του μετασχηματισμού Δίνεται ο ορισμός της συνάρτησης μεταφοράς

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 2. ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 2. ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1.1 Εισαγωγή 1.1 1.2 Συμβολισμοί και μονάδες 1.3 1.3 Φορτίο, τάση και ενέργεια 1.5 Φορτίο και ρεύμα 1.5 Τάση 1.6 Ισχύς και Ενέργεια 1.6 1.4 Γραμμικότητα 1.7 Πρόσθεση

Διαβάστε περισσότερα

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΚΕΦΑΛΑΙΟ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΣΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ KAI ΟΛΟΚΛΗΡΩΤΙΚΟ-ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ O μετασχηματισμός lc-ο αντίστροφος μετασχηματισμός

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ [] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» σελ β) Ας είναι ux (, ) = x+ cos( π ) και vx (, ) = cos( π x) το πραγματικό και το φανταστικό μέρος

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

~ 1 ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2013 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

~ 1 ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2013 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ~ ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Μια συνάρτηση f ( ) u( x, y) iv( x, y ) έχει παράγωγο σε ένα σημείο x iy αν ικανοποιούνται

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος

Διαβάστε περισσότερα

0 f(t)e st dt. L[f(t)] = F (s) =

0 f(t)e st dt. L[f(t)] = F (s) = Α. Δροσόπουλος 3 Ιανουαρίου 29 Περιεχόμενα Μετασχηματισμοί Laplace 2 Αντιστάσεις, πυκνωτές και πηνία 2 3 Διέγερση βαθμίδας σε L κυκλώματα 5 3. Φόρτιση.....................................................

Διαβάστε περισσότερα

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης 6 Nv 6 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Διδάσκων : Επίκ Καθ Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 2019Κ7-1

ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 2019Κ7-1 ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 19Κ7-1 ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ Είσοδος ΜΑΥΡΟ ΚΟΥΤΙ Έξοδος 1. Το περιεχόμενο του μαύρου κουτιού (απλά ηλεκτρικά στοιχεία). Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση i.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τίτλος Μαθήματος Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

( s ) Παραγώγιση στο χρόνο. Ολοκλήρωση στο χρόνο. Θεώρηµα αρχικής και τελικής τιµής Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Σεραφείµ Καραµπογιάς

( s ) Παραγώγιση στο χρόνο. Ολοκλήρωση στο χρόνο. Θεώρηµα αρχικής και τελικής τιµής Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Σεραφείµ Καραµπογιάς Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Παραγώγιση στο χρόνο d x( ) sx ( s ) x ( ) [ x ) ] X X x( ) e ( s Μετασχηµατισµός aplace παραγώγου dx ( ) sx Ολοκλήρωση στο χρόνο Μετασχηµατισµός aplace ολοκληρώµατος

Διαβάστε περισσότερα

Οι Μιγαδικοί Αριθμοί

Οι Μιγαδικοί Αριθμοί Οι Μιγαδικοί Αριθμοί Οι μιγαδικοί αριθμοί αρχικά βοήθησαν στην επίλυση δευτεροβάθμιων εξισώσεων των οποίων η διακρίνουσα είναι αρνητική Το γενικότερο πρόβλημα βέβαια είναι ότι δεν υπάρχει πραγματικός αριθμός

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού //04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές) Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 3: Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Συστήματα Διακριτού Χρόνου Εισαγωγή στα Συστήματα Διακριτού Χρόνου Ταξινόμηση Συστημάτων ΔΧ

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

1. Μεταβατικά φαινόμενα Κύκλωμα RC

1. Μεταβατικά φαινόμενα Κύκλωμα RC . Μεταβατικά φαινόμενα.. Κύκλωμα RC Το κύκλωμα του Σχήματος είναι το απλούστερο κύκλωμα Α τάξης και αποτελείται από μια πηγή συνεχούς τάσης, που είναι η διέγερσή του, εν σειρά με μια αντίσταση και έναν

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Μετασχηματισμός Ζ (Ζ Transform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας

Διαβάστε περισσότερα

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

Κεφάλαιο 0 Μιγαδικοί Αριθμοί Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών

Διαβάστε περισσότερα

(είσοδος) (έξοδος) καθώς το τείνει στο.

(είσοδος) (έξοδος) καθώς το τείνει στο. Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου

Διαβάστε περισσότερα

Κεφάλαιο 1 Μετασχηματισμός Laplace

Κεφάλαιο 1 Μετασχηματισμός Laplace Κεφάλαιο. Εισαγωγή και ορισμός.. Γενικευμένα Ολοκληρώματα Έστω ότι η f() μία πραγματική ορισμένη στο διάστημα a. Τότε το ολοκλήρωμα a f ( ) lim f ( ) b b a Ονομάζεται γενικευμένο ολοκλήρωμα (πρώτου είδους)

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΚΑΤΕΥΘΥΝΣΗ : «ΕΦΑΡΜΟΣΜΕΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΑ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός Laplace Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αιτιατότητα Μη-Αιτιατότητα. Ευστάθεια. Περιοχή Σύγκλισης Μετασχηµατισµού Laplace

Διαβάστε περισσότερα

ορίσουμε το Μετασχηματισμό Laplace (ML) και το Μονόπλευρο Μετασχηματισμό Laplace (MML) και να περιγράψουμε τις βασικές διαφορές τους.

ορίσουμε το Μετασχηματισμό Laplace (ML) και το Μονόπλευρο Μετασχηματισμό Laplace (MML) και να περιγράψουμε τις βασικές διαφορές τους. Όταν θα έχουμε τελειώσει το κεφάλαιο αυτό θα μπορούμε να: υπολογίσουμε το μετασχηματισμό aplac στοιχειωδών σημάτων. αναφέρουμε τις ιδιότητες του μετασχηματισμού aplac. 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΕΙΣΑΓΩΓΙΚΑ Ι Από το πραγματικό κύκλωμα στο μοντέλο Μαθηματική μοντελοποίηση Η θεωρία κυκλωμάτων είναι

Διαβάστε περισσότερα

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο

Διαβάστε περισσότερα

Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει.

Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει. Όταν η s δεν συγκλίνει λέμε ότι η σειρά αποκλίνει. Παρατήρηση: Το αντίστροφο του προηγουμένου θεωρήματος δεν ισχύει. Παράδειγμα η σειρά με νιοστό όρο α = +-. Τότε lim α =0. Όμως s =α +α + +α = - + 3- +...+

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 8: Βηματική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z

Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Ο μετασχηματισμός αντιστοιχεί

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ Pierre-Simn Laplace ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ /4 Τι περιλαμβάνει Ορισμοί Μετασχ. Laplace απλών σημάτων Ιδιότητες Εφαρμογή στη λύση ΔΕ Μετασχηματισμένο

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Η Κρουστική Απόκριση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ : ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΛΟΓΟΣ Σε κάθε ενότητα αυτού του βιβλίου θα βρείτε : Βασική θεωρία με τη μορφή ερωτήσεων Μεθοδολογίες και σχόλια

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος Κανάτας

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 2 ο ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ ο ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ Ανάλυση συστήματος Εισαγωγή Μαθηματική Περιγραφή Διαφορικές Εξισώσεις Μετασχηματισμός LLCE Συνάρτηση Μεταφοράς Βήματα για την μελέτη του συστήματος Ορισμός του

Διαβάστε περισσότερα

1.2 ΣΗΜΑΤΑ. (Σχ. 1.7). Η σταθερή Τ είναι το διάστηµα δειγµατοληψίας.

1.2 ΣΗΜΑΤΑ. (Σχ. 1.7). Η σταθερή Τ είναι το διάστηµα δειγµατοληψίας. ΣΗΜΑΤΑ.2 ΣΗΜΑΤΑ Ένα σήµα (sigal ) είναι µια συνάρτηση που παριστάνει ένα φυσικό µέγεθος. Ένα σήµα συνεχούς χρόνου (coiuous-ime sigal ) είναι µια συνάρτηση x() της οποίας το πεδίο ορισµού αποτελείται από

Διαβάστε περισσότερα

x(t) = e st = e (σ+j2πf)t (7.1) h(t)e st dt (7.4) H(s) = y(t) = H{e st } = H(s)e st (7.5)

x(t) = e st = e (σ+j2πf)t (7.1) h(t)e st dt (7.4) H(s) = y(t) = H{e st } = H(s)e st (7.5) Κεφάλαιο 7 Συστήματα στο χώρο του Laplace 7. Εισαγωγή Ο μετασχ. Laplace είναι ένα πολύτιμο εργαλείο για την ανάλυση συστημάτων. Η ικανότητά του να ερμηνεύει συχνοτικά πλήθος σημάτων, σημαντικά περισσότερων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ Θ.Ε. ΠΛΗ (0-3) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Στόχος της άσκησης είναι η εξοικείωση με γραφικές παραστάσεις βασικών σημάτων και πράξεις, καθώς και τον υπολογισμό ΜΣ Fourier βασικών σημάτων με τη χρήση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! ookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ i 1 i 2

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ i 1 i 2 ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, 007008 ΦΕΒΡΟΥΑΡΙΟΣ 008 ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΕ ΑΥΤΟ ΤΟ ΧΡΩΜΑ ΘΕΜΑ. [0%] Για το κύκλωμα δεξιά, ένα λογισμικό ανάλυσης κυκλωμάτων έδωσε τα παρακάτω αποτελέσματα:

Διαβάστε περισσότερα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Διάλεξη 4 - Σημειώσεις

Διάλεξη 4 - Σημειώσεις Διάλεξη 4 - Σημειώσεις Απροσδιόριστες μορφές και ο κανόνας l'hôpital Έστω ότι ζητούμε το όριο () της συνάρτησης () = () () η οποία δίνεται ως το πηλίκο δύο συναρτήσεων (), (). Τότε, () () () = () = ()

Διαβάστε περισσότερα