ΣΧΕΔΙΑΣΜΟΣ ΧΗΜΙΚΩΝ ΒΙΟΜΗΧΑΝΙΩΝ ΙΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Σχετικά έγγραφα
ΣΧΕΔΙΑΣΜΟΣ ΧΗΜΙΚΩΝ ΒΙΟΜΗΧΑΝΙΩΝ ΙΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Εργαστηριακές Ασκήσεις

ΣΧΕΔΙΑΣΜΟΣ ΧΗΜΙΚΩΝ ΒΙΟΜΗΧΑΝΙΩΝ ΙΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΧΕΔΙΑΣΜΟΣ ΧΗΜΙΚΩΝ ΒΙΟΜΗΧΑΝΙΩΝ ΙΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Εργαστηριακές Ασκήσεις

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Μάθημα Επιλογής 8 ου εξαμήνου

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Μοντελοποίηση προβληµάτων

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

Διάλεξη 1: Βασικές Έννοιες

Μάθημα Επιλογής 8 ου εξαμήνου

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2)

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (3 ο Φυλλάδιο)

SÔntomec plhroforðec gia to glpsol (glpk)

Μοντελοποίηση Προσομοίωση

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (2 ο Φυλλάδιο)

Εφαρμογές Επιχειρησιακής Έρευνας. Δρ. Γεώργιος Κ.Δ. Σαχαρίδης

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Ακέραιος Γραμμικός Προγραμματισμός

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

Προβλήματα Μεταφορών (Transportation)

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

Ακέραιος Γραμμικός Προγραμματισμός

ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL

Μάθημα Επιλογής 8 ου εξαμήνου

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα I

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Γραµµικός Προγραµµατισµός (ΓΠ)

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Ακέραιος Γραμμικός Προγραμματισμός

Computing. Νοέμβριος Έκδοση 1.0

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Σχεδιασμός επέκτασης του συστήματος ηλεκτροπαραγωγής με τη χρήση Πολυκριτηριακού Γραμμικού Προγραμματισμού

Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Διαχείριση Εφοδιαστικής Αλυσίδας

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

Επιχειρησιακή Έρευνα I

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ. 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ. Μ. Καρλαύτης Ν. Λαγαρός

Γραμμικός Προγραμματισμός

Fermat, 1638, Newton Euler, Lagrange, 1807

Τμήμα Διοίκησης Επιχειρήσεων

Συστήματα Ανάκτησης Θερμότητας

Επιχειρησιακή έρευνα (ασκήσεις)

Δομημένος Προγραμματισμός (ΤΛ1006)

Επιχειρησιακή Έρευνα

ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER

3.7 Παραδείγματα Μεθόδου Simplex

Επιχειρησιακή Έρευνα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Μάθημα Επιλογής 8 ου εξαμήνου

Προβλήµατα Μεταφορών (Transportation)

Γραμμικός Προγραμματισμός

Ενότητα Ι. Βασικά Στοιχεία Σχεδιασμού

Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών

ΑΝΑΠΤΥΞΗ ΠΡΟΗΓΜΕΝΩΝ ΛΟΓΙΣΜΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΓΙΑ ΤΟ ΣΧΕ ΙΑΣΜΟ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΑΙ ΡΥΘΜΙΣΗ ΙΕΡΓΑΣΙΩΝ ΠΟΛΥΜΕΡΙΣΜΟΥ

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Οδηγίες χρήσης Aspen Plus 7.1

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

ΜΕΙΚΤΟΣ ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Το µαθηµατικό µοντέλο του Υδρονοµέα

Γιάννης Σαμωνάκης. 1 ο ΣΧΟΛΕΙΟ ΚΩΔΙΚΑ «Βασικά Θέματα Προγραμματισμού στην Ανάπτυξη Δυναμικών Διαδικτυακών Εφαρμογών» (Part 4 - PHP)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

z = c 1 x 1 + c 2 x c n x n

Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ.

Επιχειρησιακή Έρευνα I

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

Επαναχρησιμοποίηση νερού Γραφήματα οριακής εξοικονόμησης και σχεδιασμός δικτύων

Γραμμικός Προγραμματισμός

Π Ρ Ο Γ Ρ Α Μ Μ Α Ε Ξ Ε Τ Α Σ Ε Ω Ν. ΤΕΧΝΙΚΗ ΚΑΥΣΗΣ & ΑΕΡΙΟΠΟΙΗΣΗΣ Κτ. Χ-Μ Αμφ. 1. ΔΙΑΧΕΙΡΙΣΗ & ΕΛΕΓΧΟΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κτ. Χ-Μ ΑΙΘ.

Α Ν Α Κ Ο Ι Ν Ω Σ Η. Ανακοινώνεται ότι κατόπιν. διόρθωσης τυπογραφικού λάθους. το Πρόγραμμα των Επαναληπτικών Εξετάσεων

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 6

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

Συστήματα Επιχειρηματικής Ευφυίας. CPLEX και OPL: ένα λογισμικό επίλυσης προβλημάτων Γραμμικού Προγραμματισμού

alpha Language age (3/5) alpha Language Φροντιστήριο Syntax Directed Translation and

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΓΑΣΙΩΝ ΔΙΑΧΩΡΙΣΜΟΥ ΜΑΔ, 2013

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ

Θερμοδυναμική - Εργαστήριο

Transcript:

EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων ΣΧΕΔΙΑΣΜΟΣ ΧΗΜΙΚΩΝ ΒΙΟΜΗΧΑΝΙΩΝ ΙΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Εργαστηριακές Ασκήσεις Διδάσκων: Α. Νικολακόπουλος

ΠΕΡΙΒΑΛΛΟΝ ΑΛΓΕΒΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΠΡΟΤΥΠΟΠΟΙΗΣΗΣ GAMS 2

Σκοπός Εξοικείωση με το περιβάλλον Μαθηματικής προτυποποίησης προβλημάτων βελτιστοποίησης GAMS Επίλυση απλών προβλημάτων Δομή άσκησης Διατύπωση προβλημάτων βελτιστοποίησης στο GAMS Επίλυση Ερμηνεία αποτελεσμάτων 3

Κίνητρο Οι διαδικασίες επίλυσης εδραιώθηκαν την δεκαετία του 50 Αλγόριθμοι και κώδικες Η/Υ Μεγάλα μαθηματικά μοντέλα Ωστόσο, η διαδικασία επίλυσης είναι μόνο ένα (μικρό) μέρος του προβλήματος. Σε πρακτικά προβλήματα οι προκλήσεις περιλαμβάνουν: Ευκολία στην διατύπωση του μοντέλου Συντήρηση και αυτοματισμός Αλληλεπίδραση με μη ειδικούς Ολοκλήρωση με συστήματα διαχείρισης πληροφορίας και άλλες πλατφόρμες 4

Περιβάλλον βελτιστοποίησης: περιγραφή Αποσφαλμάτωση (Debugging) Σφάλματα μεταγλώττισης (compilation) Εκτέλεσης (execution) επίλυσης (solve) errors Χρόνου μεταγλώττισης (compilation time) Χρήστης Διεπιφάνεια εργ. Πρόγραμμα διόρθωσης κειμένου (editor) min κόστος Υπό περιορισμούς... Αναφορά (Reporting) σύνοψη επίλυσης (solution summary) Ανάλυση αποτελεσμάτων (analysis of results) solver report Βιβλιοθήκη προτύπων (Model library) προγραμματισμός διϋλιστηρίου προγραμματισμός PVC Προγραμματισμός εμπορικών δραστηριοτήτων LP επιλύτης (IBM) LP επιλύτης ( ) MILP (CONOPT) MINLP (DICOPT++) επιλύτες 5

Τύποι Μοντέλων LP NLP DNLP MIP RMIP MINLP RMINLP MCP Γραμμικός Προγραμματισμός (Linear programming) Μη Γραμμικός Προγραμματισμός (Nonlinear programming) NLP με ασυνεχείς παραγώγους (discontinuous derivatives) Μικτός Ακέραιος προγραμματισμός (Mixed integer programming) Χαλαρωμένος MIP (Relaxed) Μικτός Ακέραιος Μη Γραμμικός προγραμματισμός (Mixed integer nonlinear programming) Χαλαρωμένος MINLP Μικτού Συμπληρωματικού προβλήματος (Mixed complementary problem) 6

Διαδικασία Επίλυσης Κώδικας του χρήστη sets Parameters Solve Αρχεία εισόδου ξεχωριστών επιλυτών Επιλύτης - 1 Επιλύτης - 3 Επιλύτης - 2 : Αριθμητικά δεδομένα (Numerical data) (παράγωγοι, αραιότητα πινάκων) και ρύθμιση 7

Περιβάλλον μοντελοποίησης και επίλυσης General Algebraic Modelling System (GAMS) 8

Βασική λίστα επιλυτών BDMLP: Ελεύθερος LP και MIP επιλύτης για μικρά και μεσαίου μεγέθους μοντέλα προβλημάτων (World Bank, T. Brooke, A. Drud and A. Meerhaus) CONOPT: LP και NLP επιλύτης. Στάδια προ-επεξεργασίας με πολλές επιλογές και ρυθμίσεις (Abadie and Carpentieers 1969; Drud: 1985 and 1992) CPLEX: Ένας από τους πιο σταθερούς LP και MILP επιλύτες μέρος της συλλογής του ILOG που χρησιμοποιείται σε μεγάλων προβλημάτων logistics επίλυση OSL: Υπορουτίνα της βιβλιοθήκης της IBM. Επιλύτες υψηλής απόδοσης για LP, MIP και QP (τετραγωνικός προγραμματισμός - quadratic programming) 9

Βασική λίστα επιλυτών (2) MINOS: DICOPT: BARON: Επιλογή επιλύτη: Επιλύτης NLP γενικής χρήσης. Καλός για λείες συναρτήσεις. Χρησιμοποιεί μια Langrange μέθοδο προβολής (Murtagh and Saunders 1982) Ο πρώτος εμπορικός επιλύτης MINLP που χρησιμοποιεί την μέθοδο εξωτερικής προσέγγισης των J Viswamathan and I Grossman (1990) and Kaas and Grossman (1987) Ο πιο πρόσφατος επιλύτης MINLP option lp = bdmlp; option milp = conopt; 10

Βιβλιοθήκες μοντέλων Γεωργικής Οικονομίας Εφαρμοσμένα Γενικά Ισοζύγια Μηχανική Οικονομική Ανάπτυξη Χαρακτηριστικά της γλώσσας του GAMS Οικονομικά Ενέργειας Οικονομικά Δασονομία Διεθνές Εμπόριο Διοικητική Επιστήμη και Επιχειρησιακή Έρευνα Μικρο-Οικονομικά Στατιστική 11

Μοντέλα στα Οικονομικά p 174, GAMS: A User s Guide 12

Οικονομία Ενέργειας p 173, GAMS: A User s Guide 13

Διοικητική Επιστήμη p 175, GAMS: A User s Guide 14

Μηχανική p 174, GAMS: A User s Guide p 173, GAMS: A User s Guide 15

Δομή ενός κειμένου του GAMS Sets (Σύνολα) Declaration (Δήλωση) Assignment (Ανάθεση) Data (parameters, tables, scalars) Δεδομένα (παράμετροι, πίνακες, αριθμοί) Declaration (Δήλωση) Assignment of values (Ανάθεση τιμών) Variables (Μεταβλητές) Declaration (Δήλωση) Assignment of type (Ανάθεση είδους) Equations (Εξισώσεις) Declaration (Δήλωση) Definition (Καθορισμός) Model and solve statement (Δήλωση προτύπου και επίλυσης) Display (Προβολή αποτελεσμάτων) 16

ΠΑΡΑΔΕΙΓΜΑ 17

Μη γραμμικό μοντέλο Subject to min 4x + 2 1 5 x 2 2 h( x 1, x 2 x ) 1 = 2x 1 1/ x + 2 3x 2 6 = 0

Επίλυση με Αναδιαμόρφωση περιορισμών Διαφορετική αρχικοποίηση Διαφορετικούς επιλύτες GAMS file: NonLinearExample.gms

Κωδικοποίηση στο GAMS min 4x + h( x 1, x 2 x 2 1 5 1 x ) = 2x 1 1/ x 2 2 + 3x 2 2 6 = 0 Δεν επιλύεται 20

Αναδιαμόρφωση Ισοδύναμη διαμόρφωση Subject to min 4x + 2 1 5 x 2 2 h( x 1, x x 1 2 x ) 2 = 1 2x 1 + 3x 2 6 = 0 Παρατηρήστε και ερμηνεύστε τα αποτελέσματα

Αρχικές συνθήκες Δοκιμή διαφορετικών αρχικών τιμών για το x 1 33.0 5.0 0.1 Ποια είναι τα αποτελέσματα σε κάθε περίπτωση

Διαφορετικοί επιλύτες Minos Pathnlp Baron Συγκρίνετε τα αποτελέσματα

ΠΑΡΑΔΕΙΓΜΑ 24

Πρόβλημα ανάμιξης σε διϋλιστήριο Crude oil #1 ($24/bbl) Crude oil #2 ($15/bbl) διϋλιστήριο Gasoline ($36/bbl) Kerosene ($24/bbl) Fuel oil ($31/bbl) Residual ($40/bbl) 25

Κατανομή προϊόντων #1 #2 Max demand (bbl/day) Gasoline 80 44 24,000 Kerosene 5 10 2,000 Fuel oil 10 36 6,000 Residual 5 10 - Cost ($/bbl) 0.5 1.0 Objective: maximise annual profits 26

Μεταβλητές X 3 Gasoline ($36/bbl) X 1 Crude oil #1 ($24/bbl) διϋλιστήριο Kerosene ($24/bbl) X 4 X 2 Crude oil #2 ($15/bbl) Fuel oil ($21/bbl) X 5 Residual ($10/bbl) X 6 27

Διαμόρφωση αντικειμενικής συνάρτησης Profit = Income Raw material Operating cost 36x 3 + 24x 4 + 21x 5 + 10x 6 24x 1 + 15x 2 0.5x 1 + x 2 28

Περιορισμοί Ισοζύγια Gasoline: 0.80x 1 + 0.44x 2 = x 3 Kerosene: 0.05x 1 + 0.10x 2 = x 4 Fuel oil: 0.10x 1 + 0.36x 2 = x 5 Residual: 0.05x 1 + 0.10x 2 = x 6 Περιορισμοί αγοράς Gasoline x 3 24,000 Kerosene x 4 2,000 Fuel x 5 6,000 Θετικές μεταβλητές x 1, x 2, x 3, x 4, x 5, x 6 0 DOF = NV - NE =2 29

Απλοποιημένη διατύπωση max 10.8 x 1 + 8.1 x 2 Subject to g 1 : 0.80x 1 + 0.44x 2 24,000 g 2 : 0.05x 1 + 0.10x 2 2,000 g 3 : 0.10x 1 + 0.36x 2 6,000 x 1, x 2 0 30

Κωδικοποίηση σε GAMS x 1, x 2 0 max 10.8 x 1 + 8.1 x 2 g 1 : 0.80x 1 + 0.44x 2 24,000 g 2 : 0.05x 1 + 0.10x 2 2,000 g 3 : 0.10x 1 + 0.36x 2 6,000 31

Άμεση και δυναμική ανάθεση Parameter c(i, j) transport cost in thousands of dollars per case; } δήλωση c(i, j) = f*d (i, j) / 1000; } ανάθεση τιμών Present (j) = future (j+1) * exp (- investment * time(j)); Parameter salaries (employee, manager, department) /anderson. murphy. toy = 6000 handry. smith. toy = 9000 hoffman. morgan. Cosmetics = 8000/; 32

Παράδειγμα: Το πρόβλημα του Dantzig trnsport.gms tutorial 33

Γενική διαμόρφωση: Πρόβλημα μεταφοράς a 1 1 x ij 1 b 1 a 2 2 2 b 2 a i i j b j Προμηθευτές Καταναλωτές a i : Διαθέσιμα προμηθευτή i b j : Ζήτηση καταναλωτή j c ij : Κόστος ανά μεταφερόμενη μονάδα μεταξύ πομηθευτή i και καταναλωτή j x ij : Μεταφερόμενη ποσότητα από τον προμηθευτή i στον καταναλωτή j 34

Μαθηματική διατύπωση Min c ij i Subject to x ij a i j for all i x ij b j for all j i j x ij Συμπυκνωμένη και γενική διατύπωση Πρόβλημα γραμμικού προγραμματισμού Γραμμική αντικειμενική συνάρτηση και περιορισμοί Το βέλτιστο βρίσκεται σε ακραίο σημείο της εφικτής περιοχής 35

Ειδική περίπτωση: το πρόβλημα του Danzig a 1 = 350 a 2 = 600 Seattle San Diego 300 275 50 275 New York Chicago Topeka b 1 = 325 b 2 = 300 b 3 = 275 Canning plants Markets Plants Shipping distances (1000 miles) New York Chicago Topeka Seattle 2.5 1.7 1.8 San Diego 2.5 1.8 1.4 Shipping cost c ij = $ 90/1000 miles 36

Ορισμός των συνόλων (sets) Sets i canning plants /seattle, san-diego/ j markets /new-york, chicago, topeka/; όνομα περιγραφή ανάθεση μελών Set t time periods /1991 * 2002/; Set m machines /mach1 * mach1000/; 37

Ορισμός παραμέτρων Περιγραφή Parameters a (i) capacity of plant i in cases /seattle 350 san-diego 600/; όνομα και ανάθεση τιμής Parameters b(j) demand at market j in cases /new-york 325 chicago 300 topeka 275/; Scalar f freight in dollars per case per thousand miles /90/; όνομα Περιγραφή ανάθεση τιμής 38

Ορισμός μεταβλητών Variable types (είδη μεταβλητών) Free Positive Negative Binary Integer Dantzig problem Variables x(i, j) z όνομα shipment quantities in cases total transportation cost in dollars; περιγραφή 39

Εξισώσεις: δήλωση και ορισμός Equations cost define objective function supply (i) observe supply limit at plant I demand (j) satisfy demand at market j; Cost.. Supply (i).. Demand (j).. z = e = sum ((i, j), c(i, j) * x(i, j)); sum (j, x(i, j)) = l = a(i); sum (i, x(i, j)) = g = b(j); Operators (τελεστές): = e =, = l =, = g = Explicit equations (εξειδικευμένες εξισώσεις) Constraint_on_topeka(i).. x(i, topeka ) = g = 10; 40

Δηλώσεις MODEL και SOLVE MODEL syntax MODEL Dantzig my first example /all/; όνομα περιγραφή περιεχόμενο εξισώσεις MODEL Lame_Dantzig my second example /cost, supply/; SOLVE syntax SOLVE Dantzig using LP minimizing z; όνομα μοντέλου είδος κατεύθυνση αντικειμενική συνάρτηση 41

Κώδικας GAMS για το πρόβλημα του Dantzig (1) 42

Κώδικας GAMS για το πρόβλημα του Dantzig (2) 43

Αναφορά και αποτελέσματα Εκτύπωσης εισόδου (Echo prints) Μηνύματα σφαλμάτων (Error messages) Χάρτες αναφοράς (Reference maps) Έλεγχος εξισώσεων (Equation testings) Στατιστικά μοντέλου (Model statistics) Αναφορά κατάστασης (Status report) Αναφοράς λύσης (Solution reports) 44

Αναφορά κατάστασης (Status report) Σύντομη περίληψη επίλυσης με μηνύματα SOLVER STATUS και MODEL STATUS που υποδεικνύουν την ποιότητα των αποτελεσμάτων p 25, GAMS: A User s Guide 45

Μηνύματα σφαλμάτων Παράδειγμα1: Σελ. 21, GAMS: A User s Guide Παράδειγμα 2: Σελ. 22, GAMS: A User s Guide 46

Αναφορά λύσης: εξισώσεις Οι γραμμές και οι στήλες ομαδοποιούνται και ονομάζονται ανάλογα με τα ονάματα που έχουν δοθεί στο μοντέλο p 26, GAMS: A User s Guide 47

Αναφορά μεταβλητών και σύνοψη Σελ. 26, GAMS: A User s Guide 48

Και κάποιες προχωρημένες επιλογές 49

Δηλώσεις υπό συνθήκη (Conditional statements) Εκφρασμένες με σύμβολα Αν (x > 1.5) τότε y = 2 Αν το k ανήκει στα σύνολα S και T τότε u(k) = a(k) Εκφρασμένες σε γλώσσα προτυποποίησης y$ (x > 1.5) = 2 ; u(k) $ (S(k) AND T(k)) = a(k) Εφαρμογές Προτυποποίηση εξισώσεων ορισμένες για υποσύνολα (δηλαδή για απασχολούμενους κάτω από συγκεκριμένο διευθυντή, για εργοστάσια σε συγκεκριμένες χώρες, κλπ.) Ανάπτυξη υπο-προβλημάτων μέσα από μεγαλύτερες διατυπώσεις (δυναμικά σύνολα) 50

Χαρακτηριστικά ελέγχου ροής Δήλωση Loop Χρήση: Σύνταξη Παράδειγμα Ανάπτυξη επαναλαμβανόμενων (ένθετων) λύσεων ενός μοντέλου. Σύνθετη διαμόρφωση loop (χώρος ελέγχου $(συνθήκη), δηλώση{ ; δηλώσεις} ) ; loop (k$ (z.l > target_for_z), solve dantzig using lp minimizing z; a(j) = scenario (k, j) ) ; Ομοίως: While, If-else if-else, For 51

ΠΑΡΑΔΕΙΓΜΑ 1 ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΝΑΛΛΑΚΤΗ 52

Περιγραφή του προβλήματος W 80 o F C p_c = 1 m = 100,000 lb/hr C p_h = 1 350 o F A Q 180 o F Α: επιφάνεια εναλλάκτη Q: μεταφερόμενη θερμότητα μεταξύ των δυο ρευμάτων Δεδομένα: t w (α) U := συνολικός συντελεστής μεταφοράς θερμότητας (β) C W := 10, μοναδιαία κόστη βοηθητικής παροχής C A := 20 μοναδιαίo κόστος επιφάνειας εναλλαγής (γ) t w 180 o F : προδιαγραφή (δ) ΔΤ min = 10 o F (ε) b = 1.3 εκθετικός όρος στο κόστος Στόχος: Ποιο είναι το ελάχιστο συνολικό κόστος για τον εναλλάκτη; C A A b + C W w 53

Να διατυπωθεί το μοντέλο μαθηματικού προγραμματισμού του προβλήματος Να υπολογιστούν οι βαθμοί ελευθερίας του μοντέλου Να μεταφραστεί το μοντέλο στην γλώσσα μοντελοποίησης του GAMS Να επιλεχθούν διαφορετικοί αλγόριθμοι επίλυσης και να ερμηνευθούν τυχόν διαφορές στα αποτελέσματά τους 54

Μαθηματικό μοντέλο Μεταβλητές: Περιορισμοί: Εξισώσεις: Ανισώσεις: h = m = dim? Περιορισμοί ΔΤ min : n m =? βαθμός ελευθερίας Αντικειμενική συνάρτηση: Ελαχιστοποίηση του: C A A b + C W w 55

Παράμετροι και μεταβλητές 56

Εξισώσεις και επίλυση 57

Αποτελέσματα και σχολιασμός File Options Solvers CONOPT Κακή επιλογή αρχικής λύσης και αδυναμία σύγκλισης BARON COUENNE Μη κυρτό πρόβλημα 58

ΠΑΡΑΔΕΙΓΜΑ 2 ΕΠΙΛΟΓΗ ΑΝΤΙΔΡΑΣΤΗΡΩΝ 59

Περιγραφή του προβλήματος 60

Να σχεδιαστεί η υπερδομή του προβλήματος Να διατυπωθεί το μοντέλο μαθηματικού προγραμματισμού Να υπολογιστούν οι βαθμοί ελευθερίας του μοντέλου Να μεταφραστεί το μοντέλο στην γλώσσα μοντελοποίησης του GAMS Να επιλεχθούν διαφορετικοί αρχικές λύσεις και αλγόριθμοι επίλυσης και να ερμηνευθούν τυχόν διαφορές στα αποτελέσματά τους 61

Παράδειγμα Επιλογή Αντιδραστήρων - Συνεχής προσέγγιση 62

Μαθηματικό μοντέλο 63

Αποτελέσματα και σχολιασμός SOLVER CONOPT + x2.l = 14.8 ή x2.l = 2; **** SOLVER STATUS 1 Normal Completion **** MODEL STATUS 2 Locally Optimal **** OBJECTIVE VALUE 952.6665 SOLVER COUENNE + x2.l = 14.8 ή x2.l = 2; **** SOLVER STATUS 1 Normal Completion **** MODEL STATUS 2 Locally Optimal **** OBJECTIVE VALUE 875.3276 SOLVER BARON + x2.l = 14.8 ή x2.l = 2; **** SOLVER STATUS 1 Normal Completion **** MODEL STATUS 2 Locally Optimal **** OBJECTIVE VALUE 875.3276 SOLVER KNITRO **** SOLVER STATUS 4 Terminated By Solver **** MODEL STATUS 14 No Solution Returned **** OBJECTIVE VALUE 0.0000 64

Επίλυση του NLP 875,3 65

ΠΑΡΑΔΕΙΓΜΑ 3 ΕΠΙΛΟΓΗ ΑΝΤΙΔΡΑΣΤΗΡΩΝ Με προσέγγιση μικτού ακέραιου προγραμματισμού 66

Περιγραφή του προβλήματος 67

Να διατυπωθεί το μοντέλο μαθηματικού προγραμματισμού Να μεταφραστεί το μοντέλο στην γλώσσα μοντελοποίησης του GAMS Να επιλεχθούν διαφορετικοί αρχικές λύσεις και αλγόριθμοι επίλυσης και να ερμηνευθούν τυχόν διαφορές στα αποτελέσματά τους 68

Μοντέλο και αποτελέσματα 69

ΠΑΡΑΔΕΙΓΜΑ 4 ΔΟΜΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΡΟΟΔΙΑΓΡΑΜΜΑΤΟΣ 70

Περιγραφή συστήματος Ο στόχος είναι η κερδοφόρα παραγωγή του χημικού C που μπορεί να παραχθεί από χημικό Β που μπορεί να αγοραστεί από το εξωτερική αγορά ή να είναι ένα ενδιάμεσο που παράγεται από την πρώτη ύλη A. Υπάρχουν δύο εναλλακτικές διαδρομές της παραγωγής του Β από το Α (P1 και P2). Διαμορφώστε μοντέλο μεικτού ακέραιου μη γραμμικού προγραμματισμού και επιλύστε το πρόβλημα σύνθεσης της διεργασίας και επέκτασης της παραγωγικότητας. Δεδομένα: - Μέγιστη ζήτηση αγοράς σε c: 1 kt/y - Τιμή ανά μονάδα προϊόντος: 11 k /kt - Μετατροπή b σε c στην διεργασία P1: 90% - Σχέση b και a σε διεργασία P2: b = ln(1 + a) - Σχέση b και a σε διεργασία P3: b = 1.2*ln(1 + a) - Πάγιο κόστος διεργασιών P1, P2 και P3: 3.5, 1 και 1.5 αντίστοιχα - Λειτουργικό κόστος διεργασιών P1 και P2: 1 και 1.2 k ανά kt παραγόμενου b το χρόνο αντίστοιχα - Κόστος πρώτων υλών: a: 1.8 k /kt b: 7.0 k /kt 71

Περιγραφή συστήματος 72

Μοντέλο 73

Λύση 74

ΠΑΡΑΔΕΙΓΜΑ 5 ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ 75

Περιγραφή του προβλήματος Καθορισμός της χημικής σύστασης σύνθετου μίγματος σε συνθήκες χημικής ισορροπίας Εφαρμογές Ανάλυση απόδοσης καυσίμων και προωθητικών Σύθεση πολύπλοκων οργανικών συστατικών κ.α. Δεύτερος θερμοδυναμικός νόμος Ένα μίγμα χημικών συστατικών που διατηρείται σε σταθερή πίεση και θερμοκρασία καταλήγει σε κατάσταση χημικής ισορροπίας με ταυτόχρονη ελαχιστοποίση της ελεύθερης ενέργειας. Αντικειμενική συνάρτηση: έκφραση της ελεύθερης ενέργειας του μίγματος (μη γραμμική) Περιορισμοί: δυνατές χημικές αντιδράσεις μεταξύ των συστατικών (γραμμικοί) 76

Μαθηματικό μοντέλο (1) Σύνολα: Θεωρούμε μίγμα m χημικών στοιχείων που μπορούν να συνδυαστούν μεταξύ τους για να διαμορφώσουν n χημικές ενώσεις (ή συστατικά) Παράμετροι: Πίεση P Τυπική συνάρτηση ελεύθερης ενέργειας (F 0 /RT) j για το συστατικό j (= 1,..., n) a ij αριθμός ατόμων στοιχείου i (= 1,, m) στο συστατικό j (= 1,..., n) b i αριθμός ατομικών βαρών του στοιχείου i στο μίγμα 77

Μαθηματικό μοντέλο (2) Μεταβλητές: x j αριθμός moles συστατικού j (= 1,..., n) στο μίγμα ισορροπίας x ο συνoλικός αριθμός moles στο μίγμα ισορροπίας όπου Gf ελεύθερη ενέργεια Gibbs x n = j = 1 x j Περιορισμοί: Iσοζύγια μάζας n j = 1 a x = b, i = 1,..., m (1) ij j i Θετικές μεταβλητές x 0, j = 1,..., n (2) j 78

Μαθηματικό μοντέλο (3) Αντικειμενική συνάρτηση n x j Gf = x j c j + ln (3) j = 1 x όπου c j 0 F = + ln P (4) RT j Το πρόβλημα μη γραμμικού προγραμματισμού είναι να επιλεχθούν τα x j (= 1,..., n) έτσι ώστε να ελαχιστοποιηθεί η (3) και να ικανοποιούνται η γραμμικοί περιορισμοί (1). 79

Μαθηματικό μοντέλο (4) n x mingf = x j c j + ln j = 1 x s.. t n j = 1 a c x j 0 F = + lnp RT x = n j = 1 s = b, i = 1,..., m ij j i x 0, j = 1,..., n j x j j 80

Δεδομένα Αρχικό μίγμα: 1 N H + 1 O 2 2 Θερμοκρασία: 3500 ο Κ Πίεση: 750 psi 2 4 2 Τυπική συνάρτηση ελεύθερης ενέργειας συστατικού j (F 0 /RT) j : j Συστατικό (F 0 /RT) j 1 H -10.021 2 H2-21.096 3 H2O -37.986 4 N -9.846 5 N2-28.653 6 NH -18.918 7 NO -28.032 8 O -14.640 9 O2-30.594 10 OH -26.111 81

Κώδικας GAMS (1) Σύνολα: Παράμετροι: 82

Κώδικας GAMS (2) Μεταβλητές: Ορισμός εξισώσεων Αντι. συνάρτηση: Περιορισμοί: Επίλυση: 83

Αποτελέσματα SOLVE SUMMARY Τιμές μεταβλητών 84