Εργαστήριο ADICV2. Image filtering. Κώστας Μαριάς

Σχετικά έγγραφα
Εργαστήριο ADICV2 Labs 2-6

Εργαστήριο ADICV3. Image filtering, Point Processing and Histogram Equalisation. Κώστας Μαριάς 20/3/2017

Εργαστήριο ADICV1. Image Boundary detection and filtering. Κώστας Μαριάς 13/3/2017

Advances in Digital Imaging and Computer Vision

Εργαστήριο ADICV. Fourier transform, frequency domain filtering and image restoration. Κώστας Μαριάς 3/4/2017

Advances in Digital Imaging and Computer Vision

Μάθημα: Μηχανική Όραση

Advances in Digital Imaging and Computer Vision

Ψηφιακή Επεξεργασία Εικόνας

Advances in Digital Imaging and Computer Vision

Digital Image Processing

Advances in Digital Imaging and Computer Vision

Digital Image Processing

ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 2η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΖΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και Ρομποτικής

Advances in Digital Imaging and Computer Vision

Digital Image Processing

Advances in Digital Imaging and Computer Vision

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Advances in Digital Imaging and Computer Vision

Βελτίωση - Φιλτράρισμα εικόνας

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα

Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Advances in Digital Imaging and Computer Vision

Κεφάλαιο 8 Φίλτρα. 8.1 Γενικά. Κωνσταντίνος Γ. Περάκης

Παρουσίαση Νο. 5 Βελτίωση εικόνας

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία Εικόνας

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

References. Chapter 10 The Hough and Distance Transforms

Advances in Digital Imaging and Computer Vision. Image Registration and Transformation

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών. «Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και. Ρομποτικής» Assignment 2

DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης

Μη γραμμικά Φίλτρα. Μεταπτυχιακό Πρόγραμμα. Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ 1/50

Προγραμματισμός Υπολογιστών με C++

ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ

7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή

Κεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73

Advances in Digital Imaging and Computer Vision

6-Aνίχνευση. Ακμών - Περιγράμματος

ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση

Νοέμβριος 2005 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/53

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων

Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας

Βελτίωση - Φιλτράρισμα εικόνας

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 3: Αποκατάσταση Εικόνας.

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

Ε Ρ Γ Α Σ Τ Η Ρ Ι Α9 Κ Η Α Σ Κ Η Σ Η

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Νοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57

Εφαρμοσμένα Μαθηματικά

Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ4 -1- ΑNIΧΝΕΥΣΗ ΑΚΜΩΝ (EDGE DETECTION)

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ)

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

Μια εισαγωγή στο φίλτρο Kalman

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Ψηφιακή Επεξεργασία Σήματος

Μέθοδοι Αναπαράστασης Περιγραµµάτων

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

ΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων:

Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη

ADVANCES IN DIGITAL AND COMPUTER VISION

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1

Ασκήσεις Επεξεργασίας Εικόνας

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.

Η μέθοδος PCA -Ανάλυση Κύριων Συνιστωσών

Digital Image Processing

Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων

Επεξεργασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #08

Kalman Filter Γιατί ο όρος φίλτρο;

Ανακατασκευή εικόνας από προβολές

1 x-μ - 2 σ. e σ 2π. f(x) =

Αποκατάσταση Εικόνας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας

1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα

Εισαγωγή στα Σήματα. Κυριακίδης Ιωάννης 2011

Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΑΝΑΛΥΣΗΣ ΕΙΚΟΝΑΣ (ΓΙΑ ΤΗΝ ΑΝΑ ΕΙΞΗ ΟΥΣΙΩ ΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΕΙΚΟΝΑΣ) ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ

Ποιότητα Ακτινοδιαγνωστικής Εικόνας

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

(f(x)+g(x)) =f (x)+g (x), x R

Transcript:

Εργαστήριο ADICV2 Image filtering Κώστας Μαριάς

Image Filtering ADICV Kostas Marias TEI Crete 2017 2

Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab Στη συνέχεια θα το συγκρίνουμε με το έτοιμο ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ που υπάρχει στη matlab. Τέλος θα συγκρίνουμε τα δυο φίλτρα και θα βρούμε πόσο αποκλίνουν υπολογίζοντας το σφάλμα ανα pixel μεταξύ του δικού μας φλιτρου και της matlab. 3

Παράδειγμα Επεξεργασίας Εικόνας με χωρικά φίλτρα Αρχική εικόνα: Εικόνα φιλτραρισμένη με 3x3 φίλτρο ομαλοποίησης 1 6 3 2 9 (x,y) 2 11 3 10 0 5 10 6 9 7 3 1 0 2 8 4 4 2 9 10 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 f(x,y)=f(2,2)=11 Νέα τιμή g(x,y)=t[f(x,y)] = 1 + 6 + 3 + 2 + 11 + 3 + 5 + 10 + 6 = 47/9 = 5.222 4

Παράδειγμα Επεξεργασίας Εικόνας με χωρικά φίλτρα Αρχική εικόνα: Εικόνα φιλτραρισμένη με 3x3 φίλτρο ομαλοποίησης 1 6 3 2 9 2 11 3 10 0 5 10 6 9 7 3 1 0 2 8 4 4 2 9 10 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 Νέα τιμή = 1 + 6 + 3 + 2 + 11 + 3 + 5 + 10 + 6 = 47/9 = 5.222 5

Παράδειγμα Επεξεργασίας Εικόνας με χωρικά φίλτρα Αρχική εικόνα: Εικόνα φιλτραρισμένη με 3x3 φίλτρο ομαλοποίησης 1 6 3 2 9 2 11 3 10 0 5 10 6 9 7 3 1 0 2 8 4 4 2 9 10 0 0 0 0 0 5 7 0 0 0 0 0 0 0 0 0 0 0 Νέα τιμή = 6 + 3 + 2 + 11 + 3 + 10 + 10 + 6 + 9 = 60/9 = 6.667 6

Παράδειγμα Επεξεργασίας Εικόνας με χωρικά φίλτρα Αρχική εικόνα: Εικόνα φιλτραρισμένη με 3x3 φίλτρο ομαλοποίησης 1 6 3 2 9 2 11 3 10 0 5 10 6 9 7 3 1 0 2 8 4 4 2 9 10 0 0 0 0 0 5 7 5 0 0 5 6 0 0 4 5 0 0 0 0 0 0 0 5 6 Στην επόμενη διαφάνεια θα δούμε την επίδραση (ομαλοποίηση) του 3x3 φίλτρου αυτού σε μια εικόνα. 7

ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) Η λειτουργία του φίλτρου μέσης τιμής συνίσταται με την αντικατάσταση της φωτεινότητας σε κάθε εικονοστοιχείο με τη μέση φωτεινότητα σε μια γειτονιά του. Είναι Χαμηλοπερατά (lowpass) φίλτρα μιας και αντικαθιστούμε τη τιμή του pixel με τη μέση τιμή της γειτονιάς του οπότε και μειώνουμε βαθμιαία απότομες αλλαγές στην ένταση των pixels. Ενώ μειώνουμε των τυχαίο θόρυβο όμως χάνουμε συνήθως ευκρίνεια στις ακμές τις εικόνας (edge blurring θόλωμα ακμών). 8

ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) Η γειτονιά Ν είναι συνήθως καθορισμένη για κάθε επεξεργασία και συνήθως αντιστοιχεί σε τετράγωνες μάσκες. Έτσι για ακτίνα ίση με ένα έχουμε ουσιαστικά μια γειτονιά διαστάσεων 3 3. Ένα 3 3 φίλτρο μέσης τιμής μπορεί πρακτικά να υλοποιηθεί με μια μάσκα της μορφής: ή 1 1 1 1 1 1 1 1 1 9

Φιλτράρισμα στο Χωρικό πεδίο Η αρχή γραμμικού φιλτραρίσματος στο χώρο παρουσιάζεται στο σχήμα: y Εικόνα f w(- 1, - 1) w(- 1, 0) w(- 1, 1) x w(0, - 1) w(0,0) w(0, 1) w( 1, - 1) w(1, 0) w( 1, 1) (x - 1, y - 1) (x - 1, y) (x - 1, y + 1) (x, y - 1) (x,y) (x, y + 1) Συντελεστές του φίλτρου (x + 1, y - 1) (x + 1, y) (x + 1, y + 1) Pixels εικόνας f που θα φιλτραριστούν 10

Φιλτράρισμα στο Χωρικό πεδίο Η αρχή γραμμικού φιλτραρίσματος στο χώρο δίνεται από τη σχέση: f(x - 1, y - 1) f(x - 1, y) f(x - 1, y + 1) w(- 1, - 1) w(- 1, 0) w(- 1, 1) f(x, y - 1) f(x,y) f(x, y + 1) w(0, - 1) w(0,0) w(0, 1) f(x + 1, y - 1) f(x + 1, y) f(x + 1, y + 1) w( 1, - 1) w(1, 0) w( 1, 1) 11

Φιλτράρισμα στο Χωρικό πεδίο Η αρχή γραμμικού φιλτραρίσματος στο χώρο δίνεται από τη σχέση συσχέτισης: f(x - 1, y - 1) f(x - 1, y) f(x - 1, y + 1) w(- 1, - 1) w(- 1, 0) w(- 1, 1) f(x, y - 1) f(x,y) f(x, y + 1) w(0, - 1) w(0,0) w(0, 1) f(x + 1, y - 1) f(x + 1, y) f(x + 1, y + 1) w( 1, - 1) w(1, 0) w( 1, 1) g(x, y) = w(-1, -1) f(x - 1, y - 1)+ w(-1, 0) f(x - 1, y) + w(-1, 1)f(x - 1, y+1) + w(0, -1) f(x, y - 1) + w(0, 0) f(x, y) + w(0, 1) f(x, y+1) + w(1,-1) f(x+1, y - 1) + w(1, 0) f(x+1, y) + w(1, 1) f(x +1, y+1) 12

Matlab ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ παράδειγμα με Matlab Εφαρμογή φίλτρου mean 3x3 αφού η αρχική εικόνα επιμολυνθεί θόρυβο Gauss. Χρησιμοποιούμε στη Matlab τη συνάρτηση imfilter(i,h) όπου I και h είναι πολυδιάστατοι πίνακες της εικόνας εισόδου και του φίλτρου. Το 3X3 φίλτρο μέσης τιμής δεν ανταποκρίνεται όσο καλά όσο το 5x5 το οποίο απομακρύνει καλύτερα τον θόρυβο με κόστος όμως το περαιτέρω θόλωμα της εικόνας. E. Jebamalar Leavline, D. Asir Antony Gnana Singh, On Teaching Digital Image Processing with MATLAB, American Journal of Signal Processing, Vol. 4 No. 1, 2014, pp. 7-15. doi: 10.5923/j.ajsp.20140401.02. % Teaching gaussian noise removal using a simple 3X3 %average filter clc;clear all; close all; Im = imread('cameraman.tif');i = imnoise(im,'gaussian'); h1 = ones(3,3) / 9;h2 = ones(5,5) / 25; I1 = imfilter(i,h1);i2 = imfilter(i,h2); subplot(2,2,1);imshow(im,[ ]);title('original Image'); subplot(2,2,2);imshow(i,[ ]);title('image with Gaussian noise'); subplot(2,2,3);imshow(i1,[ ]); title('filtered Image with 3X3 average filter'); subplot(2,2,4);imshow(i2,[ ]); title('filtered Image with 5X5 average filter'); 13

Matlab ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ παράδειγμα με Matlab % Teaching gaussian noise removal using a simple 3X3 %average filter clc;clear all; close all; Im = imread('cameraman.tif');i = imnoise(im,'gaussian'); h1 = ones(3,3) / 9; I1 = imfilter(i,h1); subplot(2,2,1);imshow(im,[ ]);title('original Image'); subplot(2,2,2);imshow(i,[ ]);title('image with Gaussian noise'); subplot(2,2,3);imshow(i1,[ ]); title('filtered Image with 3X3 average filter'); subplot(2,2,4);imshow(im-i1,[ ]); title( Diafora anamesa se arxikh kai filtrarismenh'); 14

Matlab Φιλτράρισμα στο Χωρικό πεδίο Matlab Θα φτιάξουμε κώδικα matlab για να φίλτρο μέσης τιμής 3x3 : w=zeros(3,3); w(-1, -1) =; w(-1, 0)=; w(-1, 1)=; w(0, -1) =; w(0, 0)=; w(0, 1) =; w(1,-1)=; w(1, 0)=; w(1, 1) =; f = imread('cameraman.tif'); [m,n]=size(f); g=zeros(m,n); for x=1:m for y=1:n end End g(x, y) = w(-1, -1) f(x - 1, y - 1)+ w(-1, 0) f(x - 1, y) + w(-1, 1)f(x - 1, y+1) + w(0, -1) f(x, y - 1) + w(0, 0) f(x, y) + w(0, 1) f(x, y+1) + w(1,-1) f(x+1, y - 1) + w(1, 0) f(x+1, y) + w(1, 1) f(x +1, y+1) Ο ΚΩΔΙΚΑΣ ΑΥΤΟΣ ΕΊΝΑΙ ΛΑΘΟΣ!!!!!!!!!!!!!!!!!! Γιατι όμως???? 15

Matlab Φιλτράρισμα στο Χωρικό πεδίο Matlab Για να φτιάξουμε ένα πρόγραμμα Matlab πρέπει να μεταφέρουμε τις θεωρητικές συντεταγμένες της μάσκας 3x3 σε indexing ου είναι αποδεκτό από τη matlab (δηλ. από (1,1) έως (3,3)): w(- 1, - 1) w(- 1, 0) w(- 1, 1) w(1,1) w(1,2) w(1,3) w(0, - 1) w(0,0) w(0, 1) w(2,1) w(2,2) w(2,3) w( 1, - 1) w(1, 0) w( 1, 1) w( 3, 1) w(3,2) w( 3,3) 16

Matlab Φιλτράρισμα στο Χωρικό πεδίο κώδικα matlab για να φίλτρο μέσης τιμής 3x3 : w=zeros(3,3); w(:,:)=; f = imread('cameraman.tif'); [m,n]=size(f); g=uint8(zeros(m,n)); for x=2:m-1 for y=2:n-1 g(x,y)=w(1,1) *f(x-1, y-1)+ w(1,2)* f(x-1, y)+w(1,3)*f(x-1,y+1)+w(2,1)*f(x, y-1) + w(2,2)*f(x, y) + w(2,3)*f(x, y+1)+w(3,1)*f(x+1, y-1) + w(3,2)*f(x+1, y) + w(3,3)*f(x+1, y+1); end end % Η εικόνα g είναι τώρα η φιλτραρισμένη εικόνα f με φίλτρο 3x3 μέσης τιμής figure, imshow(g,[]) 17

Matlab Building a basic filtering code f = imread('cameraman.tif'); w=()*ones(3,3); g=zeros(size(f)); for x=2:size(f,1)-1 for y=2:size(f,2)-1 g(x,y)=w(1,1) *f(x-1, y-1)+ w(1,2)* f(x-1, y)+w(1,3)*f(x-1,y+1)+w(2,1)*f(x, y-1) + w(2,2)*f(x, y) + w(2,3)*f(x, y+1)+w(3,1)*f(x+1, y-1) + w(3,2)*f(x+1, y) + w(3,3)*f(x+1, y+1); end end subplot(1,2,1), imshow(f), title('original image') subplot(1,2,2), imshow(uint8(g)), title('filtered image') 18

19

Matlab Σύγκριση των 2 φίλτρων subplot(2,2,1);imshow(f,[]), title('original Image'); subplot(2,2,2);imshow(i,[]), title('image with Gaussian noise '); subplot(2,2,3);imshow(i1,[]), title('image filtered with Matlab s mean filter '); subplot(2,2,4);imshow(g,[]), title('filtered Image with our method'); figure, imshow(i1-g,[]), title('difference Image between the two methods'); sum(sum(i1-g))/(m*n) 20

ΦΙΛΤΡΑ GAUSS (Θόλωση Gauss) Είναι φίλτρα θόλωσης εικόνας που χρησιμοποιούν τη συνάρτηση Gauss (η οποία εκφράζει την κανονική κατανομή στη στατιστική)για να υπολογίσει τους συντελεστές του φίλτρου για τον μετασχηματισμό κάθε pixel: G x, y = 1 x 2 +y 2 2πσ 2 e 2σ 2 Όπου x,y είναι οι αποστάσεις από την αρχή των αξόνων και σ είναι η τυπική απόκλιση (standard deviation) της κατανομής Gauss. Στις 2 διαστάσεις η εξίσωση αυτή δίνε μια επιφάνεια της οποία τα περιγράμματα είναι ομόκεντροι κύκλοι με Γκαουσιανη κατανομή από το κεντρικό σημείο. https://en.wikipedia.org/wiki/gaussian_blur 21

ΦΙΛΤΡΑ GAUSS (Θόλωση Gauss) Μια προσέγγιση στο σχεδιασμό φίλτρων Gauss είναι να υπολογίσουμε τα βάρη της μάσκας απευθείας από την ασυνεχή κατανομή Gauss: G i, j = 1 2πσ 2 e i 2 +j 2 2σ 2 Προαιρετικά μπορούμε να χρησιμοποιήσουμε μια είναι σταθερά κανονικοποίησης c: G(i, j) c G i, j = 1 i 2 +j 2 2πσ 2 e 2σ 2 22

Matlab ΦΙΛΤΡΑ GAUSS στη Matlab Η εντολή h = fspecial('gaussian', hsize, sigma) Δίνει ένα περιφερειακά συμμετρικό φίλτρο Gauss (lowpass filter) μεγέθους hsize και τυπικής απόκλισης sigma (θετικός). Το hsize μπορεί να έιναι ένα διάνυσμα που να καθορίζει τον αριθμό γραμμών/στηλών στο h, η μπορεί να είναι βαθμωτη τιμή οπότε το h θα είναι τετράγωνος πίνακας. Η προεπιλεγμένη τιμή για το hsize είναι [3 3]και για το sigma 0.5. 23

Matlab ΦΙΛΤΡΑ GAUSS στη Matlab h=fspecial('gaussian', [100 100],2); figure, imshow(h,[]) figure, imagesc(h,[]) h=fspecial('gaussian', [100 100],7); figure, imagesc(h), colormap jet figure, surf(h), shading interp, colormap jet 24

Build 2 Gaussian masks a)5x5και σ=1.5, b)μια7x7και σ=1.5 and filter Image I. What happens? % Teaching gaussiannoise removal using a simple 3X3 Gaussian filter clc;clearall; close all; Im= imread('cameraman.tif');i = imnoise(im,'gaussian'); h1 = fspecial('gaussian'); h2 = fspecial('gaussian', [3 3],1.5); I1 = imfilter(i,h1); I2 = imfilter(i,h2); subplot(2,2,1);imshow(im,[ ]);title('original Image'); subplot(2,2,2);imshow(i,[ ]);title('image with Gaussian noise'); subplot(2,2,3);imshow(i1,[ ]); title('filtered Image with 3X3 Gaussian filter σ=0.5'); subplot(2,2,4);imshow(i2,[ ]); title('filtered Image with 3X3 Gaussian filter σ=1.5'); 25

Matlab ΦΙΛΤΡΑ GAUSS στη Matlab 26

Matlab ΦΙΛΤΡΑ GAUSS στη Matlab 27